Alterable Energy Source Configuration Patents (Class 607/34)
  • Patent number: 11837902
    Abstract: A system and method utilizing deflective conversion for increasing the energy efficiency of a charging circuit utilizing electrostatic storage devices, different circuit configurations composing a group termed deflection converters. Methods of deflection converter operation and construction include autonomous voltage controlled operation, current and or voltage measurement based control, timing based control, both passive and active devices and used in circuits of both alternating and direct current enabling charging efficiency up to 100% with instantaneous charging.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: December 5, 2023
    Assignee: Atlas Power Technologies Inc.
    Inventor: Mitchell Miller
  • Patent number: 11824381
    Abstract: Systems and related methods for supplying power to an implantable blood pump are provided. A system includes a base module and a plurality of energy storage devices. A first energy storage device is operatively coupled to the base module. A second energy storage device is operatively coupled to the first modular energy storage device. The energy storage devices are mechanically coupled in series, electrically coupled in parallel, and configured to provide redundant sources of power to drive an implantable blood pump.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: November 21, 2023
    Assignee: TC1 LLC
    Inventors: Kevin Conyers, Jesse Gage, Carine Hoarau, Jaime Arturo Romero, Joseph C. Stark, III
  • Patent number: 11607553
    Abstract: The disclosed techniques allow for externalizing errors from an implantable medical device using the device's charging coil, for receipt at an external charger or other external device. Transmission of errors in this manner is particularly useful when telemetry of error codes through a traditional telemetry coil in the implant is not possible, for example, because the error experienced is so fundamental as to preclude use of such traditional means. By externalizing the error via the charging coil, and though the use of robust error modulation circuitry in the implant designed to be generally insensitive to fundamental errors, the external charger can be consulted to understand the failure mode involved, and to take appropriate action.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: March 21, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Jordi Parramon, Christopher Britton Gould
  • Patent number: 11451084
    Abstract: Disclosed are electronic devices including a polymer including a ferroelectric and quantum dots disposed in the ferroelectric, at least one solar cell configured to receive light through the polymer and to convert the light into electrical energy, and a battery configured to be charged with the electrical energy from the at least one solar cell.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: September 20, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-Jun Park, Jae-Hyun Park, Pradipta Patra
  • Patent number: 10680454
    Abstract: Provided is a power supply circuit that supplies electric power to a biological signal measurement circuit configured to detect, with an electrode set in contact with a human body, a biological signal which is a weak electric signal emitted by the human body. The power supply circuit includes a capacitance element accumulating the electric power, and a circuit switch coupled between the capacitance element and an external power supply for supplying electric power to the capacitance element, and configured to switch, not through a state where the external power supply and the biological signal measurement circuit are electrically coupled, a first state where the capacitance element establishes electrical continuity with the external power supply and is enabled to be charged, and a second state where the capacitance element establishes electrical continuity with the biological signal measurement circuit and is enabled to supply power to the biological signal measurement circuit.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: June 9, 2020
    Assignee: Simplex Quantum Inc.
    Inventors: Hiroshi Nakamura, Yuji Hamada
  • Patent number: 10148298
    Abstract: A radio frequency switch apparatus includes a radio frequency switch, a dynamic bias circuit, and a switch control circuit. The radio frequency switch includes a first radio frequency switch circuit connected between a first signal terminal and an input terminal. The first radio frequency switch circuit includes a series switch and a shunt switch. The dynamic bias circuit is configured to generate a bias voltage and a buffer voltage lower than a battery voltage by a preset voltage, using the battery voltage and configured to output the bias voltage to a signal line connected to the input terminal. The switch control circuit is configured to generate first and second gate voltages to switch the first radio frequency switch circuit, based on a band selection signal, using the battery voltage and the buffer voltage.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: December 4, 2018
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Byeong Hak Jo, Jeong Hoon Kim, Hyun Paek, Young Wong Jang
  • Patent number: 9981130
    Abstract: A multiple output current stimulator circuit with fast turn on time is described. At least one pair of input side and output side transistors is arranged in a current mirror connected to a supply transistor by cascode coupling. The output side transistor supplies stimulation current to an electrode in contact with tissue. An operational amplifier connected to a reference voltage and to the output side transistor drives the supply transistor to maintain the voltage at the output side transistor equal to the reference voltage. The at least one pair of transistors includes multiple pairs of transistors whose output side transistors drive respective electrodes with stimulation currents. The stimulator determines the initiation and duration of stimulation current pulses supplied to each electrode. At circuit activation, large currents are generated which discharge capacitances in the output side transistors causing rapid output side transistor turn on.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: May 29, 2018
    Assignee: ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventor: Edward K. F. Lee
  • Patent number: 9956888
    Abstract: A power supply system includes a plurality of electrical storage devices, a distributor configured to distribute electric power between the plurality of electrical storage devices in a desired distribution mode, and an electronic control unit. The electronic control unit configured to (i) set the desired distribution mode based on at least one of a magnitude relation between first rates of change in dischargeable power of the corresponding electrical storage device to a charge state value indicating a remaining level of charge of the corresponding electrical storage device, or a magnitude relation between second rates of change in chargeable power of the corresponding electrical storage device to the charge state value, and (ii) control the distributor such that electric power is distributed in the set distribution mode.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: May 1, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Toru Ando, Makoto Hirai
  • Patent number: 9800065
    Abstract: A charging equipment including a charging module, a communicating module, and a control module. The charging module is configured to charge a device for charging according to a control signal and produce a detecting signal according to a magnitude of an output current of the charging module. The communicating module has a communicating range. The communicating module selectively outputs the detecting signal produced by the charging module to another charging equipment operating in the same communicating range, or selectively receives a detecting signal produced by another charging equipment operating in the same communicating range. The control module electrically connects to the communicating module.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: October 24, 2017
    Assignee: Aver Information Inc.
    Inventors: Chien-Wen Weng, Lung-Te Lin, Ta-Chun Lin
  • Patent number: 9566450
    Abstract: In some examples, a method including wirelessly communicating, using an external medical device, with an implantable medical device via a telemetry head device, wherein the telemetry head device includes a power source configured to supply operational power to the telemetry head device; determining a first power level of the power source while the external medical device wirelessly communicates with the implantable medical device via the telemetry head device; suspending wireless communication between the implantable medical device and the external medical device based on the determined first power level. The wireless communication may be resumed, e.g., at the point communication was suspended, upon determining that the power level of the power source has been increased after the communication was suspended.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: February 14, 2017
    Assignee: Medtronic, Inc.
    Inventors: Ajinkya M. Joglekar, Warren W. Ball, Timmothy S. Carlson, Matthew L. Plante
  • Patent number: 9446241
    Abstract: A multiple output current stimulator circuit with fast turn on time is described. At least one pair of input side and output side transistors is arranged in a current mirror connected to a supply transistor by cascode coupling. The output side transistor supplies stimulation current to an electrode in contact with tissue. An operational amplifier connected to a reference voltage and to the output side transistor drives the supply transistor to maintain the voltage at the output side transistor equal to the reference voltage. The at least one pair of transistors includes multiple pairs of transistors whose output side transistors drive respective electrodes with stimulation currents. The stimulator determines the initiation and duration of stimulation current pulses supplied to each electrode. At circuit activation, large currents are generated which discharge capacitances in the output side transistors causing rapid output side transistor turn on.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: September 20, 2016
    Assignee: ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventor: Edward K. F. Lee
  • Patent number: 9407334
    Abstract: Exemplary embodiments are directed to reducing jamming caused by radiated fields generated by wireless power transmitters. Exemplary embodiments include detecting a jamming condition of a wireless power receiving device resulting from a radiated field from a wireless power transmitter of a charging device. Such embodiments include synchronizing the wireless power coupling with communication of the wireless power receiving device. Synchronizing wireless power coupling may include wireless power coupling at a first level when the wireless power receiving device is expected to receive a signal on a communication channel. Synchronizing wireless power coupling may further include coupling at a higher rate when the wireless power receiving device is not expected to receive a signal on the communication channel.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: August 2, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Stanley Slavko Toncich, Philip D. Coan
  • Patent number: 9392384
    Abstract: An integrated headpiece for a cochlear implant system includes a microphone for outputting an audio signal; signal processing electronics for processing the audio signal; and a transmitter for transmitting a processed audio signal received from the electronics to an implanted receiver. All of the microphone, signal processing electronics, and transmitter are disposed in a common housing of the integrated headpiece. The headpiece may also be one of a set of headpieces that can be alternatively used as needed to suit power consumption requirements or environmental conditions. Cochlear implant systems include a circuit board having electronic circuitry configured to generate one or more signals configured to direct electrical stimulation of one or more stimulation sites within a patient, an induction coil configured to transmit a telemetry signal by generating a telemetry magnetic field, and a telemetry flux guide positioned between the induction coil and the circuit board.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: July 12, 2016
    Assignee: Advanced Bionics AG
    Inventors: Scott A. Crawford, Douglas P. Lynch, Carla Mann Woods, Glenn A. Griffith
  • Patent number: 9259583
    Abstract: In supplying energy to a medical device implanted in a mammal patient a first coil system (20) external to the patient's body for wirelessly transferring energy can be used that inductively cooperates with a second coil system (12) that, when implanted in the patient's body, receives wirelessly transferred energy for supplying energy or control signals to the medical device, when implanted in the patient's body. The first and second coil systems comprise each at least two individual coils (50, 51; 60, 61) which are not directly electrically connected to each other and operate basically independently of each other. This may give a very efficient and versatile transfer of energy or control signals. The coils in each of the coil systems can be operating at different frequencies by being connected to respective electric circuits, where each of these respective electric circuits operate basically independently of each other generating e.g. alternating electric current of different frequencies.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: February 16, 2016
    Inventor: Peter Forsell
  • Patent number: 9214196
    Abstract: A system and method for powering a wireless sensor device are disclosed. In a first aspect, the wireless sensor device comprises at least two electrodes configured to be attached to a body and at least two leads coupled to the at least two electrodes. The wireless sensor device also includes a system on chip (SoC) coupled to the at least two leads and a portable power source (Vbatt) coupled to the SoC. When the at least two electrodes are attached to the body, a difference in resistance is measured between the at least two leads by the SoC and the difference in resistance is utilized by the SoC to enable the portable power source to activate the wireless sensor device.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: December 15, 2015
    Assignee: VITAL CONNECT, INC.
    Inventors: Arshan Aga, Yun Yang
  • Patent number: 9136728
    Abstract: Implantable devices and related systems utilize a single coil for both inductive telemetry at one telemetry signal frequency and recharge at another recharge energy frequency. The coil is included in a tank circuit that may have a variable reactance. During telemetry, particularly outside of a recharge period, the reactance may be set so that the tank circuit is tuned to the telemetry frequency. During recharge, the reactance is set so that the tank circuit is tuned to the recharge frequency. Furthermore, the tank circuit may have a Q that is sufficiently small that the tank circuit receives telemetry frequency signals that can be decoded by a receiver while the tank is tuned to the recharge frequency so that telemetry for recharge status purposes may be done during the recharge period without changing the tuning of the tank circuit.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: September 15, 2015
    Assignee: MEDTRONIC, INC.
    Inventors: David A. Dinsmoor, Joel A. Anderson
  • Patent number: 9037241
    Abstract: An improved architecture for an implantable medical device using a primary battery is disclosed which reduces the need for boosting the voltage of the primary battery, and hence reduces the power draw in the implant. The architecture includes a boost converter for boosting the voltage of the primary battery and for supplying that boosted voltage to certain of the circuit blocks, which is particularly useful if the battery voltage is necessarily lower than the minimal input power supply voltage necessary for the circuit blocks to operate. However, circuitry capable of operation even at low battery voltages—including the telemetry tank circuitry and the compliance voltage generator—receives the battery voltage directly without boosting, thus saving power.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: May 19, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Robert G. Lamont, Jordi Parramon, Robert D. Ozawa
  • Patent number: 9014813
    Abstract: An apparatus is disclosed for providing efficient stimulation. As an example, a variable compliance regulator can be connected to supply a compliance voltage to a power supply rail, which compliance voltage can vary dynamically based on a stimulus waveform. A pulse generator can be configured to provide an output waveform to one or more output based on the stimulus waveform for delivery of electrical therapy.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: April 21, 2015
    Assignee: Cleveland Clinic Foundation
    Inventors: Thomas J. Foutz, D. Michael Ackermann, Cameron C. McIntyre
  • Patent number: 8996121
    Abstract: A prosthesis including an external device and an implantable component. The external device includes a first inductive communication component. The implantable component includes a second inductive communication component, wherein the implantable component is configured to be implanted under skin of a recipient. The external device is configured to transmit power via magnetic induction transcutaneously to the implantable component via the second inductive communication component. The internal component is configured to receive at least a portion of the power transmitted from the external device via the inductive communication component. At least one of the first and second inductive communication components comprise an inductive communication component configured to vary its effective coil area.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: March 31, 2015
    Assignee: Cochlear Limited
    Inventor: Werner Meskens
  • Patent number: 8977365
    Abstract: An electronic system activatable by electrical power is described. The system is useful for influencing cellular functions or malfunctions in a warm-blooded mammalian subject. The system includes one or more controllable low energy HF (High Frequency) carrier signal generator circuits, one or more data processors for receiving control information, one or more amplitude modulation control generators and one or more amplitude modulation frequency control generators. The amplitude modulation frequency control generators are adapted to accurately control the frequency of the amplitude modulations to within an accuracy of at least 1000 ppm, most preferably to within about 1 ppm, relative to one or more determined or predetermined reference amplitude modulation frequencies.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: March 10, 2015
    Assignee: TheraBionic, LLC
    Inventors: Boris Pasche, Alexandre Barbault
  • Patent number: 8962170
    Abstract: A device for performing at least one medical function on a user is proposed. The device has at least one medical functional element that is designed to perform the medical function. The medical function is selected from a diagnostic, a therapeutic and a surgical function. The device has at least one evaluation and control part that comprises at least one actuation component for controlling the medical function. The evaluation and control part has at least one casing and at least one battery receptacle. The battery receptacle comprises at least one electrical energy reservoir, more particularly at least one battery. The battery receptacle is designed to be opened irreversibly by the user for removing the energy reservoir.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: February 24, 2015
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Stephan-Michael Frey, Helmut Walter, Juergen Braun, Juergen Pfrang
  • Patent number: 8961389
    Abstract: This embodiment suggests new approach for Endovascular Ventricular Assist Device, using the mathematical objective & principle of superposition allow design and calculation of the body response to VAD pump located in the Aorta. This new approach allows minimal invasive Endovascular VAD that result in similar relief to the heart as partial VAD. Using special power transfer technique will allow wireless power transformation into the aorta.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: February 24, 2015
    Assignee: Leviticus Cardio Ltd.
    Inventor: Michael Zilbershlag
  • Patent number: 8958877
    Abstract: An ambulatory or implantable device, such as a pacer, defibrillator, or other cardiac rhythm management device, can tolerate magnetic resonance imaging (MRI) or other noise without turning on an integrated circuit diode by selectively providing a bias voltage that can overcome an expected induced voltage resulting from the MRI or other noise.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: February 17, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Nicholas J. Stessman, Michael J. Lyden, Thomas M. Bocek, William J. Linder, Joseph M. Bocek
  • Publication number: 20150032175
    Abstract: Described herein are implantable cardiac stimulation devices, and methods for use therewith. A pacing channel of such a device includes a pace output terminal, a pulse generator and at least two pace return electrode terminals. The pace output terminal is coupleable to an electrode for use as an anode. The pulse generator is configured to selectively output an electrical stimulation pulse to the pace output terminal. Each of the pace return electrode terminals is coupleable to a separate one of at least two further electrodes for use as a cathode. Switching circuitry selectively couples any one of the pace return electrode terminals of the pacing channel to the pace return capacitor of the pacing channel at a time, thereby enabling the pace return capacitor to be shared by at least two of the pace return electrode terminals of the pacing channel. Additional embodiments are also disclosed herein.
    Type: Application
    Filed: July 25, 2013
    Publication date: January 29, 2015
    Applicant: Pacesetter, Inc.
    Inventors: Eric Labbe, Christian Sauer, Erno Klaassen
  • Patent number: 8914129
    Abstract: An implantable microstimulator configured for implantation beneath a patient's skin for tissue stimulation to prevent and/or treat various disorders, uses a self-contained power source. Periodic or occasional replenishment of the power source is accomplished, for example, by inductive coupling with an external device. A bidirectional telemetry link allows the microstimulator to provide information regarding the system's status, including the power source's charge level, and stimulation parameter states. Processing circuitry automatically controls the applied stimulation pulses to match a set of programmed stimulation parameters established for a particular patient. The microstimulator preferably has a cylindrical hermetically sealed case having a length no greater than about 27 mm and a diameter no greater than about 3.3 mm. A reference electrode is located on one end of the case and an active electrode is located on the other end.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: December 16, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Goran N. Marnfeldt
  • Patent number: 8892202
    Abstract: The disclosure relates to a current stimulator, which comprises a high voltage output module, a voltage control module and a charge pump module. The high voltage output module includes a plurality of stacked transistors, and receives an input control signal able to turn on/off the current stimulator and a first voltage. A second voltage is generated by adding the voltages output by all the transistors to the first voltage and then output to the voltage control module. The voltage control module outputs a voltage control signal able to stabilize the stimulus current for the load according to the second voltage and the load impedance variation. The charge pump regulates the first voltage according to the voltage control signal, and outputs the regulated first voltage to the high voltage output module. Thereby, the current stimulator can adaptively stabilize the stimulus current, responding to load impedance variation.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: November 18, 2014
    Assignee: National Chiao Tung University
    Inventors: Chun-Yu Lin, Yi-Ju Li, Ming-Dou Ker
  • Patent number: 8849402
    Abstract: A system and method for contactless power transfer in implantable devices for charging rechargeable batteries disposed within the implantable devices are provided. The system includes a first coil electrically couplable to a power source, wherein the first coil is configured to produce a magnetic field. The system further includes a second coil electrically coupled to the rechargeable battery disposed within the implantable device and configured to receive power from the first coil via the magnetic field and to transfer the power to the rechargeable battery. The system also includes a field focusing element disposed between the first coil and the second coil and configured as a self resonant coil having a standing wave current distribution to focus the magnetic field onto the second coil and enhance the coupling between the first coil and the second coil.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: September 30, 2014
    Assignee: General Electric Company
    Inventors: Adnan Kutubuddin Bohori, Somakumar Ramachandrapanicker, Suma Memana Narayana Bhat
  • Patent number: 8840539
    Abstract: This embodiment suggests new approach for Endovascular Ventricular Assist Device, using the mathematical objective & principle of superposition allow design and calculation of the body response to VAD pump located in the Aorta. This new approach allows minimal invasive Endovascular VAD that result in similar relief to the heart as partial VAD. Using special power transfer technique will allow wireless power transformation into the aorta. This methods and technique should dramatic reduce VAD barrier.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: September 23, 2014
    Assignee: Leviticus Cardio Ltd.
    Inventor: Michael Zilbershlag
  • Patent number: 8825173
    Abstract: For supplying energy to a medical implant (100) in a patient's body a receiver (102) cooperates with an external energizer (104) so that energy is wirelessly transferred. A feedback communication system (109) sends feedback information from the receiver to the energizer, the feedback information being related to the transfer of energy to the receiver. The feedback communication system communicates using the patient's body as an electrical signal line. In particular, the communication path between the receiver and the external energizer can be established using a capacitive coupling, i.e. the feedback information can be capacitively transferred over a capacitor having parts outside and inside the patient's body. An energy balance between the amount of energy received in the receiver and the energy used by the medical implant can be followed over time, and then the feedback information is related to the energy balance.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: September 2, 2014
    Inventor: Peter Forsell
  • Patent number: 8805530
    Abstract: An implantable, rechargeable medical system comprised of an implanted device, a power storage device connected to the implantable device, and a charging device operatively connected to the electrical storage device. The charging device can be thermoelectric and have components for transferring thermal energy from an intracranial heat accumulator to an extra-cranial heat sink, for generating an electrical current from the thermal energy transfer, for charging the electrical storage device using the electrical current, for measuring power generation, usage and reserve levels, for measuring temperatures of the intracranial and extra-cranial components, for physically disrupting heat transfer and charging operations, and for generating signals relevant to the status of temperature and electricity transfer in relation to energy generation criteria. The system may also have long-range and short range wireless power harvesting capability as well as movement, and photovoltaic charging capability.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: August 12, 2014
    Assignee: WiTricity Corporation
    Inventor: Michael Sasha John
  • Publication number: 20140172038
    Abstract: During auto-threshold, autocapture, or other evoked response sensing, post-pace artifact is reduced by using a smaller coupling capacitor value than what is used when not in such an evoked response sensing configuration. This can be accomplished by borrowing another capacitor for use as the coupling capacitor. The borrowed capacitor can be a backup pacing capacitor from the same or a different pacing channel. The borrowed capacitor can also be a coupling capacitor from a different pacing channel.
    Type: Application
    Filed: February 20, 2014
    Publication date: June 19, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Lyden, Nicholas J. Stessman
  • Patent number: 8755886
    Abstract: An ambulatory or implantable device, such as a pacer, defibrillator, or other cardiac rhythm management device, can tolerate magnetic resonance imaging (MRI) or other noise without turning on an integrated circuit diode by selectively providing a bias voltage that can overcome an expected induced voltage resulting from the MRI or other noise.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: June 17, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Nicholas J. Stessman, Michael J. Lyden, Thomas M. Bocek, William J. Linder, Joseph M. Bocek
  • Patent number: 8718773
    Abstract: Method and systems for optimizing acoustic energy transmission in implantable devices are disclosed. Transducer elements transmit acoustic locator signals towards a receiver assembly, and the receiver responds with a location signal. The location signal can reveal information related to the location of the receiver and the efficiency of the transmitted acoustic beam received by the receiver. This information enables the transmitter to target the receiver and optimize the acoustic energy transfer between the transmitter and the receiver. The energy can be used for therapeutic purposes, for example, stimulating tissue or for diagnostic purposes.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: May 6, 2014
    Assignee: EBR Systems, Inc.
    Inventors: N. Parker Willis, Axel F. Brisken, Mark W. Cowan, Michael Pare, Robert Fowler, James Brennan
  • Patent number: 8706253
    Abstract: An integrated activation system for an implantable medical device (IMD) sharing a power source, the activation system comprising a switching circuit having first and second inputs and having an output coupled to the acute use device, a gating element coupled to the first input and configured to gate power from the power source to the switching circuit, and a sensing element coupled to the second input of the switching circuit. The sensing element is configured to sense an activation condition, enable an operation interval of the switching circuit, and transmit a signal to the switching circuit during the activation condition. The switching circuit is configured to transmit power to the acute use device upon receipt of a pre-determined number of signals from the sensing element.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: April 22, 2014
    Assignee: Medtronic, Inc.
    Inventors: Daniel R. Greeninger, David A. Dinsmoor, Vincent Larik, Rogier Receveur, David L. Thompson
  • Patent number: 8676310
    Abstract: An implantable medical device (IMD) may include a battery dedicated to providing cardiac stimulation therapy and a separate power source that provides power for electrical stimulation therapy. Such a configuration preserves the battery dedicated for providing cardiac stimulation therapy even if the second power source is depleted. As an example, the IMD may comprise a cardiac stimulation module configured to deliver at least one stimulation therapy selected from a group consisting of pacing, cardioversion and defibrillation. The IMD further comprises a electrical stimulation module configured to deliver electrical stimulation therapy, a first power source including a battery, wherein the first power source is configured to supply power to the cardiac stimulation module and not to the electrical stimulation module, and a second power source. The second power source is configured to supply power to at least the electrical stimulation module.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: March 18, 2014
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, Paul G. Krause, William T. Donofrio
  • Patent number: 8630717
    Abstract: A transcutaneous energy transfer system, transcutaneous charging system, external power source, external charger and methods of transcutaneous energy transfer and charging for an implantable medical device and an external power source/charger. The implantable medical device has a secondary coil adapted to be inductively energized by an external primary coil at a carrier frequency. The external power source/charger has a primary coil and circuitry capable of inductively energizing the secondary coil by driving the primary coil at a carrier frequency adjusted to the resonant frequency to match a resonant frequency of the tuned inductive charging circuit, to minimize the impedance of the tuned inductive charging circuit or to increase the efficiency of energy transfer.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: January 14, 2014
    Assignee: Medtronic, Inc.
    Inventors: David P. Olson, Andrew L. Schmeling, Steven J. Nelson
  • Patent number: 8600517
    Abstract: The disclosed invention varies the width of the energy pulses with constant frequency and constant amplitude to regulate the amount of energy transferred from an energy transmitting device placed outside a patient to an energy receiver inside the patient. The pulse width is achieved with a modulation technique, PWMT, to control the amount of energy transferred from the external energy transmitting coil in the system to the implanted receiver. The PWMT is used to digitally vary the amount of power from the power amplifier that drives the transmitting coil. Compared to previous analog systems a PWM system is a great deal more efficient and can easily be controlled from a digital domain system such as a microprocessor.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: December 3, 2013
    Inventor: Peter Forsell
  • Patent number: 8588913
    Abstract: Implantable medical device power circuits are disclosed. Multiple batteries may be provided, along with a number of switches, enabling a plurality of battery and power circuit configurations to be defined. Configurations of the power circuit may be changed in response to changes in battery status as the batteries are used and/or near end-of-life. Configurations of the power circuit may also be performed in response to changes in device operation. Methods associated with operating such circuits and implantable medical devices are also disclosed.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: November 19, 2013
    Assignee: Cameron Health, Inc.
    Inventors: David M. Signoff, Marcus F. Julian
  • Patent number: 8579789
    Abstract: This embodiment suggests new approach for Endovascular Ventricular Assist Device, using the mathematical objective & principle of superposition allow design and calculation of the body response to VAD pump located in the Aorta. This new approach allows minimal invasive Endovascular VAD that result in similar relief to the heart as partial VAD. Using special power transfer technique will allow wireless power transformation into the aorta. This methods and technique should dramatic reduce VAD barrier.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: November 12, 2013
    Assignee: Leviticus Cardio Ltd.
    Inventor: Michael Zilbershlag
  • Patent number: 8577461
    Abstract: A device for altering cardiac performance includes an energy absorbing element which absorbs cardiac pumping energy from at least a portion of the heart. The energy may be delivered to another part of the body, such as another portion of the heart, to perform useful work such as providing blood pumping assistance.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: November 5, 2013
    Inventor: Matthias Vaska
  • Patent number: 8571679
    Abstract: An implantable microstimulator configured for implantation beneath a patient's skin for tissue stimulation to prevent and/or treat various disorders, uses a self-contained power source. Periodic or occasional replenishment of the power source is accomplished, for example, by inductive coupling with an external device. A bidirectional telemetry link allows the microstimulator to provide information regarding the system's status, including the power source's charge level, and stimulation parameter states. Processing circuitry automatically controls the applied stimulation pulses to match a set of programmed stimulation parameters established for a particular patient. The microstimulator preferably has a cylindrical hermetically sealed case having a length no greater than about 27 mm and a diameter no greater than about 3.3 mm. A reference electrode is located on one end of the case and an active electrode is located on the other end.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: October 29, 2013
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Goran N. Marnfeldt
  • Publication number: 20130226259
    Abstract: An implantable stimulation system comprises an implantable stimulator and a control device. The control device is configured to transmit acoustic waves to the implantable stimulator, and the implantable stimulator is configured to transform the acoustic waves into electrical current, and generate stimulation energy based on the electrical current. For example, the electrical current can be transformed into electrical energy that can be used to generate the stimulation energy. Or the electrical current can contain signals used to directly or indirectly control the generation of the stimulation energy.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 29, 2013
    Applicant: REMON MEDICAL TECHNOLOGIES, LTD.
    Inventor: REMON MEDICAL TECHNOLOGIES, LTD.
  • Patent number: 8463384
    Abstract: This disclosure relates to a medical electrical lead having fault detection and fault isolation. The lead may include a first conductor coupled to a first electrode and a second conductor coupled to a second electrode. A capacitor is disposed within the lead and selectively coupled to the first and second conductors of the lead. The capacitor is charged in a test mode of operation after the first and second electrodes have been isolated from the conductors via an isolation mechanism and the capacitor will discharge through the first and second conductors. The capacitor discharge morphology is processed to detect lead-related conditions.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: June 11, 2013
    Assignee: Medtronic, Inc.
    Inventors: Nancy M. Germanson, Thomas H. Spear, Patrick David Miller
  • Patent number: 8463383
    Abstract: Neurostimulation assemblies, systems, and methods make possible the providing of short-term therapy or diagnostic testing by providing electrical connections between muscles and/or nerves inside the body and stimulus generators and/or recording instruments mounted on the surface of the skin or carried outside the body. Neurostimulation assemblies, systems, and methods may include a carrier and an electronics pod, the electronics pod including stimulation generation circuitry and user interface components. A power source and/or flash memory may be incorporated in neurostimulation assembly and/or the return electrode. The assemblies, systems, and methods are adapted to provide coordinated neurostimulation to multiple regions of the body.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: June 11, 2013
    Assignee: NDI Medical, Inc.
    Inventors: Johnathan L. Sakai, Maria E. Bennett, Joseph W. Boggs, II, Robert B. Strother, Geoffrey B. Thrope, Kenneth P. Rundle, Stuart F. Rubin
  • Patent number: 8364260
    Abstract: An external defibrillator having a battery; a capacitor electrically communicable with the battery; at least two electrodes electrically communicable with the capacitor and with the skin of a patient; a controller configured to charge the capacitor from the battery and to discharge the capacitor through the electrodes; and a support supporting the battery, capacitor, electrodes and controller in a deployment configuration, the defibrillator having a maximum weight per unit area in the deployment configuration of 0.1 lb/in2 and/or a maximum thickness of 1 inch. The support may be a waterproof housing.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: January 29, 2013
    Assignee: Kuman and Rao Family Trust
    Inventor: Uday N. Kumar
  • Patent number: 8271089
    Abstract: A charging system is disclosed. In one embodiment, the system includes a charging unit having a primary coil, and an implantable medical device comprising a secondary coil to receive charge from the primary coil. The implantable medical device further includes a half-wave voltage-doubling rectifier coupled to the secondary coil, a full-wave rectifier coupled to the secondary coil, and a rechargeable power source. Control logic is provided to periodically configure the rechargeable power source to receive charge from a selected one of the voltage-doubling circuit and the full-wave rectifier in a manner that increases rate at which charge is transferred from the secondary coil to the rechargeable power source. The control logic may configure the rechargeable power source to receive charge based on one or more monitored conditions which may include, for example, an indication of a current, a voltage, a coupling coefficient, back-scatter, and temperature.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: September 18, 2012
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Todd A. Kallmyer, Joel A. Anderson, Timothy J. Denison
  • Patent number: 8249725
    Abstract: Methods, apparatus, and systems are provided to stimulate multiple sites in a heart. A controller senses electrical activity associated with sinus rhythm of the heart. A signal generator is configured to generate an electrical signal for stimulating the heart. Based on the electrical signal, a distributor circuit then distributes the stimulating signals, such as pacing pulses, to a heart. The distributor circuit may vary the delay time between stimulating signals, inhibit a stimulating signal, trigger application of a stimulating signal, or vary the characteristics, such as the pulse width and amplitude, of a stimulating signal.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: August 21, 2012
    Assignee: Mirowski Family Ventures, L.L.C.
    Inventor: Morton M Mower
  • Patent number: 8244367
    Abstract: A charging system for an implantable medical device having a secondary coil. The charging system includes an external power source having at least one primary coil, a modulation, circuit operatively coupled to the primary coil and capable of driving it in a manner characterized by a charging parameter, and a sensor in communication with the modulation circuit and capable of sensing a condition indicating a need to adjust the charging parameter during a charging process. The parameter may be varied so that data sensed by the sensor meets a threshold requirement, which may be based on a patient preference, a government regulation, a recommendation promulgated by a health authority and/or a requirement associated with another device carried by the patient. In one embodiment, the regulation dictates maximum magnetic field exposure, and a field limiting circuit is employed to adjust the charging process.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: August 14, 2012
    Assignee: Medtronic, Inc.
    Inventors: Carl D. Wahlstrand, John E. Kast, Timothy J. Denison, John J. Grevious, Todd A. Kallmyer
  • Patent number: 8229563
    Abstract: Devices configured to perform an adaptive method for initiating charging of high power capacitors and delivering therapy to a patient after the patient experiences a non-sustained arrhythmia. The adaptive methods adjust persistence criteria used to analyze an arrhythmia prior to initiating a charging sequence to deliver therapy.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: July 24, 2012
    Assignee: Cameron Health, Inc.
    Inventors: Jay A. Warren, Gust H. Bardy
  • Patent number: 8170673
    Abstract: A device which converts mechanical deformation in electrical current, these mechanical deformations are generated as a result of liquid pressure over a part of the device. This device is integrated within an implantable lead and inserted into the cardiovascular system of a patient. The purpose of the device is to charge a battery which stores energy for various uses of other implantable devices.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: May 1, 2012
    Assignee: Physical Logic AG
    Inventors: Noel Axelrod, Amir Lichtenstein, Eran Ofek