Feature Of Stimulator Housing Or Encapsulation Patents (Class 607/36)
  • Patent number: 11395924
    Abstract: An implantable device has a hermetically sealed enclosure, an electronic device within the hermetically sealed enclosure, and a plurality of feedthrough conductors in mechanical contact with the hermetically sealed enclosure and exposed outside of the hermetically sealed enclosure. The implantable device also has a flexible substrate with a plurality of therapy contacts, and a plurality of continuously conductive elements extending along the flexible substrate from the array of therapy contacts and terminating at a plurality of connection pads. Each of the continuously conductive element is integral with at least one therapy contact and at least one connection pad to electrically communicate the noted therapy contact(s) and the noted connection pad(s). The thickness of each continuously conductive element may be between about 5 and 190 microns. The implantable device also has a plurality of mechanical welded couplings that each couple at least one of the connection pads.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: July 26, 2022
    Assignee: Micro-Leads, Inc.
    Inventors: Bryan McLaughlin, Girish Chitnis, John Ogren
  • Patent number: 11376424
    Abstract: An open coiled pacemaker lead is provided that has improved structural stability and functional life in vivo. The open coiled lead includes an electrically conductive material that is coated or covered by a thin layer of electrically insulative material. The coated coiled lead has adequate spacing between adjacent coils, and has a lumen of sufficient diameter, to allow for infiltration of biological connective tissue onto the surface of the coated coil when maintained in vivo for a sufficient amount of time. Infiltration of the connective tissue essentially uniformly along the entire coiled lead strengthens and lengthens the functional life of the coated coil lead.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: July 5, 2022
    Assignees: CHILDREN'S HOSPITAL LOS ANGELES, UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Yaniv Bar-Cohen, Gerald Loeb, Li Zhou, Xiao Yun
  • Patent number: 11369414
    Abstract: A catheter system for retrieving a leadless cardiac pacemaker from a patient is provided. The cardiac pacemaker can include a docking or retrieval feature configured to be grasped by the catheter system. In some embodiments, the retrieval catheter can include a snare configured to engage the retrieval feature of the pacemaker. The retrieval catheter can include a torque shaft selectively connectable to a docking cap and be configured to apply rotational torque to a pacemaker to be retrieved. Methods of delivering the leadless cardiac pacemaker with the delivery system are also provided.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: June 28, 2022
    Assignee: PACESETTER, INC.
    Inventors: Alexander Khairkhahan, Alan Klenk, Thomas Blake Eby
  • Patent number: 11351384
    Abstract: An implantable medical device includes a header body and a septum assembly. The header body includes a first welding surface and a septum bore extending inwardly from an outer surface to an inner cavity. The septum assembly is at least partially disposed within the septum bore of the header assembly and includes a septum configured to allow insertion of a tool through the septum into the inner cavity and to otherwise provide a seal. The septum assembly further includes a retainer within which at least a portion of the septum is retained. The retainer includes a welding feature coupled to the retainer body, the welding feature providing a second welding surface. The retainer is coupled to the header body by welding the first welding surface to the second welding surface.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: June 7, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Asghar Dadashian, Christopher R. Jenney
  • Patent number: 11344735
    Abstract: Medical devices include a separate enclosure that houses a battery and electrically isolates the battery from external conditions such as any metal enclosures and ultimately isolates the battery from body fluids. Thus, the separate enclosure attaches to a housing of a medical device and provides for modularity of the battery which allows, for instance, different size batteries to be used with the same medical device design. The separate enclosure further prevents stimulation current from leaking back to the battery housing by providing the electrical isolation.
    Type: Grant
    Filed: June 22, 2019
    Date of Patent: May 31, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: Erik J. Hovland, Rajesh V. Iyer, Steven J. May, Gordon O. Munns, Wesley A. Santa
  • Patent number: 11331503
    Abstract: An implantable medical device (IMD) has a housing enclosing an electronic circuit. The housing includes a shield member defining a first portion of an interior cavity of the implantable medical device and a skirted feedthrough assembly. The feedthrough assembly includes a shield extender having a top face and a sidewall that extends from the top face so that the top face and the sidewall are a single continuous component. At least one feedthrough aperture extends through the top face.
    Type: Grant
    Filed: May 25, 2020
    Date of Patent: May 17, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: John E. Kast, Linda M. Johnson-Morke, Chris J. Paidosh, Randy S. Roles
  • Patent number: 11247060
    Abstract: Implantable medical devices including interconnections having strain-relief structure. The interconnections can take the form of flexible circuits. Strain relief gaps and shapes are integrated in the interconnections to relieve forces in each of three dimensions. In some examples, the region of an interconnection which couples with a component of the implantable medical device is separated by a strain relief gap from a connection to a second component and/or a location where the flex bends around a corner.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: February 15, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Jean M. Bobgan, Moira B. Sweeney, James E. Blood, Robert A. Jones, John E. Hansen, Keith R. Maile
  • Patent number: 11229794
    Abstract: A system is described for obtaining the electrical interconnection between an intrinsically extensible conductor (120) and a not intrinsically extensible one (110), or between two intrinsically extensible conductors. The system is particularly applied in the production of devices implantable in the human or animal body, highly conformable and deformable, for neurostimulation and/or neurorecording.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: January 25, 2022
    Assignee: WISE S.R.L.
    Inventors: Mattia Marelli, Alessandro Antonini, Cristian Ghisleri, Laura Spreafico, Sandro Ferrari
  • Patent number: 11229800
    Abstract: The energy harvesting module is provided with a pendular unit comprising an inertial mass coupled to an elastic piezoelectric beam providing a power voltage. An acceleration sensor provides a signal representative of the instantaneous acceleration of the beam in a direction perpendicular to a surface of the beam, and an angular speed sensor provides a signal representative of the instantaneous angular speed of rotation of the beam about an axis perpendicular to a plane of bending of the beam. Based on the voltage, acceleration and angular speed values, a beam integrity monitoring circuit estimates parameters of a mechanical-electrical transfer function and derives therefrom metrics representative of physical and electrical parameters of the pendular unit and of the material of the beam. This makes it possible to evaluate the proper operation of the energy harvester and to detect a potential performance decrease liable to lead to a failure in the more or less short term.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: January 25, 2022
    Assignee: CAIRDAC
    Inventors: Alaa Makdissi, An Nguyen-Dinh
  • Patent number: 11206751
    Abstract: A magnetic field shielding structure includes a magnetic field generating source configured to generate a magnetic field. The magnetic field shielding structure further includes a shielding member that includes a pair of layers. The pair of layers includes a layer having high magnetic permeability, and a layer having low magnetic permeability laminated with the layer having high magnetic permeability. The layer having high magnetic permeability is closer to the magnetic field generating source than the layer having low magnetic permeability.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: December 21, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masayuki Yoshikawa, Kenichi Ichinose, Kazuhisa Ori, Hiroyuki Nishimura, Hidetoshi Katoh
  • Patent number: 11196145
    Abstract: Embodiments include an antenna assembly comprising a non-conductive housing having an open end; an antenna element positioned inside the non-conductive housing; an electrical cable having a first end electrically coupled to the antenna element and a second end extending out from the open end; one or more dielectric materials positioned inside the non-conductive housing; and a conductive gasket coupled to a portion of the electrical cable positioned adjacent to the open end and outside the non-conductive housing. One embodiment includes a portable wireless bodypack device comprising a frame having a first external sidewall opposite a second external sidewall; a first antenna housing forming a portion of the first sidewall and including a first diversity antenna; and a second antenna housing forming a portion of the second sidewall and including a second diversity antenna.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: December 7, 2021
    Assignee: Shure Acquisition Holdings, Inc.
    Inventors: Christopher Zachara, Christopher Richard Knipstein, Thomas John Downs
  • Patent number: 11174942
    Abstract: A sealing ring for a header of an implantable device has an outer ring and an inner ring. The outer ring is formed with, or of, a high-performance thermoplastic material. The inner ring is formed with, or of, liquid silicone or polyurethane. The inner and outer rings are arranged with a form-fit relative to each other. There is also described a method for manufacturing such a sealing ring and also a contact socket and an implantable device with such a sealing ring.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: November 16, 2021
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Kathy Hartmann-Bax, Stefan Lehmann
  • Patent number: 11160483
    Abstract: An electrode system includes an electrode, a connector, and a cable with an in-line radio-frequency filter module comprising resistors and inductors without any deliberately added capacitance. The resistors are arranged in an alternating series of resistors and inductors, preferably with resistors at both outer ends, and connected electrically in series. The in-line module is located at a specific location along the wire, chosen through computer modeling and real-world testing for minimum transfer of received RF energy to a patient's skin, such as between 100 cm and 150 cm from the electrode end of a 240 centimeter cable. The total resistance of the resistors plus cable, connectors and solder is 1000 ohms or less; while the total inductance is roughly 1560 nanohenries. The inductors do not include ferrite or other magnetic material and are, together with the resistors, stock components thereby simplifying manufacture and reducing cost.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: November 2, 2021
    Assignee: RHYTHMLINK INTERNATIONAL, LLC
    Inventors: James W. Kronberg, Harrison Floyd, Daniel E. McCoy, Gabriel Orsinger
  • Patent number: 11165103
    Abstract: The invention relates to a method for regenerating the capacity of an electrochemical lithium battery, including the following steps: a) evaluating the quantity of lithium ions; b) when the evaluated lithium ion quantity is less than or equal to a threshold value, applying an electric current between the cathode or the anode and the container such as to cause the delithiation of the casing, the casing is also arranged to house an element providing both electric insulation and ionic conduction between the anode and cathode electrodes of the electrochemical cell and the casing, said casing including at least one lithium ion storage zone.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: November 2, 2021
    Assignee: COMMISSARIAT À L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: David Brun-Buisson, Sylvie Genies
  • Patent number: 11141595
    Abstract: An implantable medical device (IMD) may include a housing having a proximal end and a distal end and a set of one or more electrodes connected to but spaced apart from the housing. The IMD may further include a controller disposed within the housing, wherein the controller is configured to sense cardiac electrical signals, and deliver electrical stimulation pulses via the first set of one or more electrodes. In some embodiments, a first portion of the housing is configured to be disposed at least partly within a coronary sinus of a patient's heart and a second portion of the housing is configured to be disposed at least partly within a right atrium of the patient's heart.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: October 12, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventor: Brendan E. Koop
  • Patent number: 11141597
    Abstract: A leadless biostimulator including an attachment feature to facilitate precise manipulation during delivery or retrieval is described. The attachment feature can be monolithically formed from a rigid material, and includes a base, a button, and a stem interconnecting the base to the button. The stem is a single post having a transverse profile extending around a central axis. The transverse profile can be annular and can surround the central axis. The leadless biostimulator includes a battery assembly having a cell can that includes an end boss. A tether recess in the end boss is axially aligned with a face port in the button to receive tethers of a delivery or retrieval system through an inner lumen of the stem. The attachment feature can be mounted on and welded to the cell can at a thickened transition region around the end boss. Other embodiments are also described and claimed.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: October 12, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Thomas B. Eby, Benjamin F. James, IV, Kavous Sahabi, Travis Lieber, Arees Garabed, Craig E. Mar, Sondra Orts, Tyler J. Strang, Jennifer Heisel, Bernhard Arnar, Daniel Coyle, Daniel Goodman, Scott Smith, Scott Kerns, David Rickheim, Adam Weber, Mike Sacha, Byron Liehwah Chun
  • Patent number: 11129995
    Abstract: A metal outer casing part of an implantable medical electronic device contains at least one inner cavity and/or non-conductive inclusion or portion with multiple small cavities and/or non-conductive inclusions which is closed off in a hermetically sealed manner at least towards the housing outer side by a closed metal layer.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: September 28, 2021
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Daniel Kronmueller, Thomas Sontheimer
  • Patent number: 11129279
    Abstract: An optical subassembly includes: a support block made of ceramic in front of the first surface, the support block having a substrate mounting surface, the support block having a first side opposite to a surface in front of the first surface; an element-mounted substrate on the substrate mounting surface, the element-mounted substrate having a first conductor pattern; a pedestal made of metal and configured to be the same potential as the eyelet, the pedestal situated in front of the first surface; and a lead pin in the through-hole and for transmitting the electric signal. The support block has a metallization pattern that is electrically connected to the pedestal and is continuous from at least a part of the substrate mounting surface to at least a part of the first side.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: September 21, 2021
    Assignee: CIG PHOTONICS JAPAN LIMITED
    Inventors: Daisuke Noguchi, Hiroshi Yamamoto
  • Patent number: 11103716
    Abstract: A control module for an electrical stimulation system includes an electronic subassembly disposed within an electronics housing. A power assembly extends outwardly from the electronics housing and collectively with the electronics housing forms a sealed cavity. The power assembly includes a power source; a conduit assembly extending from the power source to the electronics housing; and one or more power conductors extending along the conduit assembly and electrically coupling the power source to the electronic subassembly. The control module further includes one or more connector assemblies. Each of the one or more connector assemblies includes a connector lumen configured to receive a lead; connector contacts arranged along the connector lumen and in electrical communication with the electronic subassembly; and connector conductors electrically coupled to the connector contacts.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: August 31, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jeffery Van Funderburk, Zdzislaw Bernard Malinowski
  • Patent number: 11103711
    Abstract: Implantable medical devices (IMD) such as those used in Deep Brain Stimulation application are commonly replaced when the device's useful life expires. At the time of replacement, the electrodes that were connected to the initial IMD are typically reused with the replacement IMD. It is desirable for the replacement IMD to utilize the stimulation parameters that were being utilized to provide stimulation in the initial IMD, but it is important that the electrodes be connected to the replacement IMD in a similar manner as they were connected to the initial IMD if stimulation parameters are reused. A connected electrode profile that includes measurements of electrical parameters associated with the electrodes can be generated in the initial IMD and the replacement IMD, and the profiles can be compared to determine whether the electrodes are connected in a similar manner in the replacement IMD as they were in the initial IMD.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: August 31, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Chirag Shah, G. Karl Steinke
  • Patent number: 11090499
    Abstract: An implantable medical device includes an enclosure sleeve that includes grade 5 titanium. Within the enclosure sleeve is a circuit board that includes at least a portion of circuitry that provides a pulse generator and a battery that is electrically coupled to the at least the portion of circuitry. A bottom cap is attached to the enclosure sleeve. A connector block module assembly is coupled to the enclosure sleeve. A plurality of lead connections are within the connector block module assembly with the at least the portion of circuity. Feedthrough pins carry stimulation signals of the pulse generator to the lead connections of the connector block module assembly. A ground conductor extends within the enclosure sleeve and is electrically coupled to the circuit board, and a ground pin is electrically coupled to the ground conductor.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: August 17, 2021
    Assignee: Medtronic, Inc.
    Inventors: Steven T. Deininger, Michael J. Baade, Charles E. Peters
  • Patent number: 11077299
    Abstract: Implantation of a cardiac stimulus system using the ITV. Superior, intercostal, and inferior access methods are discussed and disclosed. Superior access may be performed using the brachiocephalic vein to access the ITV, with access to the brachiocephalic vein achieved using subclavian vein, using standard visualization techniques. A positioning mechanism may be advanced to the ITV, a location of the positioning mechanism may then be obtained, and an external access may then be established. Inferior external access may be accomplished inferior to the lower rib margin via the superior epigastric or musculophrenic vein. Intercostal external access may be accomplished via an intercostal vein between two ribs. A lead may then be attached to the positioning mechanism and drawn into the ITV.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: August 3, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Christopher Alan Fuhs, Andrew L. De Kock, G. Shantanu Reddy, Peter Hall, James K. Cawthra, Jr., Daniel J. Foster
  • Patent number: 11071857
    Abstract: Wireless treatment of arrhythmias. At least some of the example embodiments are methods including: charging a capacitor of a first microchip device abutting heart tissue, the charging by harvesting ambient energy; charging a capacitor of a second microchip device abutting the heart tissue, the charging of the capacitor of the second microchip device by harvesting ambient energy; sending a command wirelessly from a communication device outside the rib cage to the microchip devices; applying electrical energy to the heart tissue by the first microchip device responsive to the command, the electrical energy applied from the capacitor of the first microchip device; and applying electrical energy to the heart tissue by the second microchip device responsive to the command to the second microchip device, the electrical energy applied from the capacitor of the second microchip device.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: July 27, 2021
    Assignees: William Marsh Rice University, Baylor College of Medicine, Texas Heart Institute
    Inventors: Yuxiang Sun, Aydin Babakhani, Mehdi Razavi, David Burkland, Brian Greet, Mathews John, Hongming Lyu
  • Patent number: 11065461
    Abstract: An apparatus includes a power adapter having a housing and a circuit at least partially disposed in the housing. The housing is configured to be coupled to an implantable device for disposition in a body. The circuit is configured to be electrically connected to a power circuit of the implantable device when the housing is coupled to the implantable electrical conductor. When the housing is coupled to the implantable electrical conductor and implanted in a body, the circuit is configured to (1) receive, transcutaneously from a power supply, a first energy, (2) convert the first energy to a second energy, and (3) transfer, to the implantable device, the second energy such that the second energy powers the implantable device.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: July 20, 2021
    Assignee: Bioness Inc.
    Inventors: Keith McBride, Arkady Glukhovsky
  • Patent number: 11052256
    Abstract: An implantable medical device (IMD) includes a heterogeneous housing configured to receive and store one or more components of the IMD. The housing includes an intrinsically non-conductive and non-magnetic base material and at least one dopant with a property of at least one of electrical conductance and magnetic permeability. The base material and the dopant form a first region of the housing including a first skin depth and a second region of the housing including a second skin depth different than the first skin depth.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: July 6, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey E. Stahmann, Keith R. Maile, Moira B. Sweeney
  • Patent number: 11026617
    Abstract: A medical lead with at least a distal portion thereof implantable in the brain of a patient is described, together with methods and systems for using the lead. The lead is provided with at least two sensing modalities (e.g., two or more sensing modalities for measurements of field potential measurements, neuronal single unit activity, neuronal multi unit activity, optical blood volume, optical blood oxygenation, voltammetry and rheoencephalography). Acquisition of measurements and the lead components and other components for accomplishing a measurement in each modality are also described as are various applications for the multimodal brain sensing lead.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: June 8, 2021
    Assignee: NeuroPace, Inc.
    Inventor: Thomas K. Tcheng
  • Patent number: 10980570
    Abstract: Implantation of a cardiac stimulus system using the intercostal veins. Superior, intercostal, and inferior access methods are discussed and disclosed. Superior access may be performed by entering the brachiocephalic vein from a jugular, subclavian, or other vein, and then accessing the internal thoracic vein, traversing a portion of the internal thoracic vein and then accessing an intercostal vein therefrom. Inferior access may be accomplished inferior to the lower rib margin via the superior epigastric vein, advancing superiorly into the internal thoracic vein and then accessing an intercostal vein therefrom. Intercostal access may include creating an opening in an intercostal space between two ribs and advancing a needle using ultrasound guidance to enter the intercostal vein directly.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: April 20, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: G. Shantanu Reddy, Andrew L. De Kock, James O. Gilkerson, James K. Cawthra, Jr., Christopher Alan Fuhs, Daniel J. Foster, Peter Hall
  • Patent number: 10960215
    Abstract: A method for subcutaneously treating pain in a patient includes first providing a neurostimulator with an IPG body and at least a primary, a secondary, and a tertiary integral lead with electrodes disposed thereon. A primary incision is opened to expose the subcutaneous region below the dermis in a selected portion of the body. A pocket is then opened for the IPG through the primary incision and the integral leads are inserted through the primary incision and routed subcutaneously to desired nerve regions along desired paths. The IPG is disposed in the pocket through the primary incision. The primary incision is then closed and the IPG and the electrodes activated to provide localized stimulation to the desired nerve regions and at least three of the nerves associated therewith to achieve a desired pain reduction response from the patient.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: March 30, 2021
    Assignee: NUXCEL, INC.
    Inventors: Kenneth Lyle Reed, Robert Raymond Bulger, Paul Griffith, Bob Ozawa, Navin Bunyan
  • Patent number: 10946204
    Abstract: Molded headers, implantable signal generators having molded headers, and associated systems and methods are disclosed herein. An implantable signal generator in accordance with a particular embodiment includes a can having a shell and a battery positioned at least partially within the shell. An output terminal can be operably coupled to the battery and positioned to provide electrical power to a signal delivery device. A pre-molded header having a plurality of openings can be coupled to the can, and the output terminal can be positioned at least partially within an individual opening.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: March 16, 2021
    Assignee: Nevro Corp.
    Inventors: Vivek Sharma, Jon Parker, Yougandh Chitre, Andre B. Walker
  • Patent number: 10918866
    Abstract: Communication and charging assemblies for medical devices are disclosed herein. A communication and charging assembly in accordance with a particular embodiment includes a support element, with a communication antenna and a charging coil coupled to the support element. The charging coil can include wire loops having a plurality of wires and the support element can include a mounting surface shaped to match the charging coil and the communication antenna. In one embodiment, the communication and charging assembly are mounted in a header of an implantable signal generator.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: February 16, 2021
    Assignee: Nevro Corp.
    Inventors: Jon Parker, Yougandh Chitre, Andre B. Walker
  • Patent number: 10869634
    Abstract: A device and method for manufacturing an implantable cardiac monitor device are provided. The method joins a feed-through assembly to a device housing having electronic components therein. The feed-through assembly includes conductors having distal ends connected to the electronic components and has proximal ends projecting from the feed-through assembly. The method assembles a header having a sensing electrode and an antenna embedded within a non-conductive header body. The electrode and antenna includes corresponding interconnection plates. The header body includes a housing mounting surface that includes at least one passage aligned with an interconnect cavity that includes the interconnection plates. The header body further includes a window exposing the interconnect cavity and interconnect regions.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: December 22, 2020
    Assignee: PACESETTER, INC.
    Inventors: Wisit Lim, Reza Imani, Brett Villacencio, Mitch Goodman, Ofer Rosenzweig
  • Patent number: 10828499
    Abstract: Implementations described and claimed herein provide systems and methods for delivering and retrieving a leadless pacemaker. In one implementation, a leadless pacemaker has a docking end, and the docking end having a docking projection extending from a surface. A docking cap has a body defining a chamber. The docking cap has a proximal opening into the chamber. The proximal opening is coaxial with a longitudinal axis of a lumen of a catheter. A retriever has a flexible grasper with a first arm disposed opposite a second arm. Each of the first arm and the second arm form a hinge biased radially outwards from the longitudinal axis. The docking cap locks the first arm and the second arm on the docking projection when the body is sheathed over the retriever until the flexible grasper is disposed within the chamber.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: November 10, 2020
    Assignee: PACESETTER, INC.
    Inventors: Arundhati Kabe, Thomas B. Eby
  • Patent number: 10814136
    Abstract: An electrical stimulation lead latching kit includes a connector having a housing that defines a lead lumen and a latching lumen that at least partially intersects the lead lumen; and a latching device including a latching pin, a handle, and an attaching element that attaches the latching pin to the handle. The latching pin has a longitudinal surface and is configured for insertion into the latching lumen, and the attaching element is configured to enable the latching pin to detach from the handle when the latching pin is in the latching lumen. When the latching pin is positioned in the latching lumen and a portion of an electrical stimulation lead or lead extension is positioned in the lead lumen, the longitudinal surface of the latching pin engages the electrical stimulation lead or lead extension to latch the electrical stimulation lead or lead extension to the connector.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: October 27, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Zdzislaw Bernard Malinowski, Jeffery Van Funderburk
  • Patent number: 10790482
    Abstract: An lithium-iodine electrochemical cell and method of making is described. The cell comprises a lithium anode and a cathode of a charge transfer complex which includes iodine and preferably polyvinylpyridine. The iodine-containing cathode is in operative contact with both the anode the cell casing serving as the cathode current collector. Preferably the casing is composed of stainless steel that has been thermally annealed at temperatures of 1,800° F. or less. The annealed stainless steel has a grain size of about ASTM 7 or finer. When the iodine-containing cathode material in liquid form is filled into the casing, it contacts the inner casing surface. The passivation layer that subsequently forms at the contact interface affects cell impedance during discharge. It is desirable to maintain the internal impedance as low as possible.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: September 29, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Lasantha Viyannalage, Adrish Ganguly, Ashish Shah, David Panek
  • Patent number: 10779767
    Abstract: An implantable cardiac monitoring device and method of manufacture are provided. The device comprises a device housing having electronic components therein. A feedthrough assembly is joined to the device housing. The device comprises an antenna. A header body is mounted to the device housing and encloses the antenna and feedthrough assembly. The antenna includes a pin mounting section and a plate shaped radiating section. The pin mounting and radiating sections are interconnected by a ribbon section having a predetermined length to at least partially tune the antenna to a communication frequency. The radiating section is positioned proximate to, and shaped to extend along, an outer surface of the header body.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: September 22, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Perry Li, Patrick Kirk, Reza Imani, Mitch Goodman
  • Patent number: 10780284
    Abstract: Medical devices provide metallic connector enclosures. The metallic connector enclosures may be constructed with relatively thin walls in comparison to polymer connector enclosures to aid in miniaturizing the medical device. The metallic connector enclosures may be constructed with interior surfaces that deviate less from an ideal inner surface shape in comparison to polymer connector enclosures to allow for better concentricity of electrical connectors. The metallic connector enclosures may include a panel that allows access to the cavity of the connector enclosure where set screw blocks, lead connectors, spacers, seals, and the like may be located. Furthermore, the lead connectors within the metallic connector enclosures may be separated from the metallic connector enclosure by being positioned within non-conductive seals that reside within features included in cavity walls of the connector enclosure.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: September 22, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Steven T. Deininger, Jeffrey J. Clayton, Charles E. Peters
  • Patent number: 10758734
    Abstract: An implantable medical device (IMD) includes a housing that is formed of a biocompatible material such as silicone. The housing includes integral contact receptacles that house individual contacts, which contacts are electrically connected to electrical circuitry within a main interior cavity of the housing. The integral contact receptacles receive electrode leads, and the contacts are aligned with electrode terminals on the proximal end of the electrode leads, which establishes an electrical connection between the electrical circuitry and electrodes at the distal end of the leads. The housing is filled with a silicone gel such as a tacky diphenyl silicone gel. The silicone gel provides electrical, mechanical, and thermal insulation, and prevents the ingress of bodily fluids when the IMD is implanted.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: September 1, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Zdzislaw Bernard Malinowski
  • Patent number: 10751528
    Abstract: Disclosed herein is an implantable electronic device for use with an implantable medical lead. The implantable electronic device includes a housing and a header connector assembly coupled to the housing and adapted to receive the proximal lead end of the implantable medical lead. The header connector assembly includes a connector assembly including a connector, a feedthru extending through the housing, and a conductor coupling the feedthru to the connector. The conductor includes a first conductor segment and a second conductor segment offset from the first conductor segment and each of the first conductor segment and the second conductor segment are resistance welded to the connector.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: August 25, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Shichan Chiang, Evan Sheldon, Armando M. Cappa
  • Patent number: 10734139
    Abstract: A feedthrough assembly and methods of making the feedthrough assembly are shown. A feedthrough assembly including a ferrule disposed about an insulator and having an outer surface and a first aperture defined by an inner surface, wherein the first aperture is sized and shaped to include a reservoir for a braze material, the reservoir including a base, the base having a width sized to accommodate a preform of the braze material, and at least two ledges formed by the inner surface, each ledge having a first surface facing inwardly toward the insulator and a second surface facing upwardly is shown. Methods of making the feedthrough assembly including such a ferrule are shown.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: August 4, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Troy Anthony Giese
  • Patent number: 10712813
    Abstract: Technology is provided for a tracking constellation assembly for use in a virtual reality system. The tracking constellation assembly includes a translucent panel having an outward facing surface, and an inward facing surface and a mounting surface each opposite the outward facing surface. The translucent panel is substantially opaque to visible light and translucent to infrared light. The assembly includes a flexible circuit board including first and second opposed surfaces. A spacer interconnects the first surface of the flexible circuit board and the mounting surface of the translucent panel. Infrared light emitting diodes are connected to the flexible circuit board and positioned to direct light through the translucent panel.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: July 14, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Jared I. Drinkwater, Robin Michael Miller, Boyd Drew Allin
  • Patent number: 10682519
    Abstract: A pulse generator comprises a header connector assembly coupled with a housing. The header connector assembly includes a connector assembly and a header enclosing the connector assembly. The connector assembly includes an electrically insulative segment, a first electrically conductive segment, and a second electrically conductive segment axially spaced apart from the first electrically conductive segment by the electrically insulative segment. Each electrically conductive segment includes a connector ring, a spring housing and a spring supported by the spring housing. The connector ring and spring housing are in electrical communication with each other. The electrically insulative segment includes an insulator ring that is positioned between the first and second electrically conductive segments. The insulator ring includes a first end and a second end axially opposite the first end.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: June 16, 2020
    Assignee: PACESETTER, INC.
    Inventors: Asghar Dadashian, Kavous Sahabi, Avi Bilu, Ofer Rosenzweig, Arees Garabed, Armando M. Cappa, Evan Sheldon, Xiangqun Chen, Alexander Robertson
  • Patent number: 10674928
    Abstract: A leadless pacing system includes a leadless pacing device and a sensing extension extending from a housing of the leadless pacing device. The sensing extension includes one or more electrodes with which the leadless pacing device may sense electrical cardiac activity. The one or more electrodes of the sensing extension may be carried by a self-supporting body that is configured to passively position the one or more electrodes proximate or within a chamber of the heart other than the chamber in which the LPD is implanted.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: June 9, 2020
    Assignee: Medtronic, Inc.
    Inventors: Thomas A Anderson, Todd J Sheldon, Matthew D Bonner, Noelle C Neafus
  • Patent number: 10661088
    Abstract: An implantable medical device (IMD) has a housing enclosing an electronic circuit. The housing includes a shield member defining a first portion of an interior cavity of the implantable medical device and a skirted feedthrough assembly. The feedthrough assembly includes a shield extender having a top face and a sidewall that extends from the top face so that the top face and the sidewall are a single continuous component. At least one feedthrough aperture extends through the top face.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: May 26, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: John E. Kast, Linda M. Johnson-Morke, Chris J. Paidosh, Randy S. Roles
  • Patent number: 10646719
    Abstract: Connector enclosure assemblies for medical devices provide an angled lead passageway. The lead passageway which is defined by electrical connectors and intervening seals within the connector enclosure assembly establishes the angle relative to a base plane of the connector enclosure assembly. Various other aspects may be included in conjunction with the angled lead passageway, including an angled housing of the connector enclosure assembly, feedthrough pins that extend to the electrical connectors where the feedthrough pins may include angled sections, and a set screw passageway set at an angle relative to the lead passageway to provide fixation of a lead within the lead passageway.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: May 12, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Steven T. Deininger, Michael J. Baade, Katherine J. Bach, Van L. Snyder
  • Patent number: 10644542
    Abstract: Methods, systems, and devices are disclosed for wirelessly charging electronic devices. In one aspect, a wireless charging transmitter device includes a three-dimensional coil array electrically coupled to a power source and Power Source structured to include two or more coils to produce an electromagnetic field that emanates from the three-dimensional coil array, in which the coils are arranged such that at least two coils are perpendicular to each other to direct the electromagnetic field. The wireless charging transmitter device is operable to wirelessly charge an electronic device by providing the electromagnetic field at a receiver coil of the electronic device to convert the electromagnetic energy to electrical energy to power the electronic device.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: May 5, 2020
    Assignee: Yank Technologies, Inc.
    Inventor: Joshua Aaron Yankowitz
  • Patent number: 10639489
    Abstract: Systems and methods involve an intrathoracic cardiac stimulation device operable to provide autonomous cardiac sensing and energy delivery. The cardiac stimulation device includes a housing configured for intrathoracic placement relative to a patient's heart. A fixation arrangement of the housing is configured to affix the housing at an implant location within cardiac tissue or cardiac vasculature. An electrode arrangement supported by the housing is configured to sense cardiac activity and deliver stimulation energy to the cardiac tissue or cardiac vasculature. Energy delivery circuitry in the housing is coupled to the electrode arrangement. Detection circuitry is provided in the housing and coupled to the electrode arrangement. Communications circuitry may optionally be supported by the housing. A controller in the housing coordinates delivery of energy to the cardiac tissue or cardiac vasculature in accordance with an energy delivery protocol appropriate for the implant location.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: May 5, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Jeffrey P. Bodner, Randy Bierwerth
  • Patent number: 10617879
    Abstract: One aspect relates to a device including a hollow body, an inner volume and a surrounding volume. The inner volume includes an electronic component and the hollow body encloses the inner volume and includes a first component, a second component and an electrode. The first component is electrically conductive and the second component electrically insulates the electrode from the first component. The electrode includes a cermet, connects the inner volume to the surrounding volume in an electrically conductive manner, and includes a contact surface. The contact surface contacts eukaryotic tissue and has a maximum distance from the electronic component of less than 80 mm.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: April 14, 2020
    Assignee: Heraeus Deutschland GmbH & Co. KG
    Inventors: Stefan Schibli, Jens Trötzschel
  • Patent number: 10609845
    Abstract: A modular system of plastic walls having embedded and coextensive electrically conductive components configured to electrically connect with each other when the walls are mated. The walls have joining edges that form joint seams with other walls when joined together to create an enclosure. When enough walls are used to surround a storage space, a Faraday cage is created. The walls additionally have portions of tortuous paths at each joining edge that mate with a complementary portion of a tortuous path of another wall when the walls are joined together. A torturous path seal is thereby created at each joint seam. The plastic walls can be configured in a multiplicity of combinations to create various enclosures necessary for RFID-enabled storage and tracking of medical articles. Containers, enclosures, cabinets, and drawers of differing heights and sizes can be made and they may be stacked or otherwise assembled.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: March 31, 2020
    Assignee: MEPS Real-Time, Inc.
    Inventor: Paul M. Elizondo, II
  • Patent number: 10583302
    Abstract: The application of a titanium hydride coating on a ceramic, preferably an alumina ceramic, as a facile and inexpensive approach to bond gold to the ceramic during brazing is described. During the brazing process, the deposited titanium hydride is first partially decomposed to form pure titanium intermixed with titanium hydride. The combination of pure titanium and titanium hydride contributes to improved adhesion of gold with the alumina ceramic without any detrimental reaction between pure titanium and gold. The titanium hydride coating can be applied by dip/spray/paint coating.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: March 10, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Dongfa Li, Biswa P. Das, Ashish Shah
  • Patent number: RE48319
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous device (e.g. subcutaneous implantable (SD)) is described. In one or more other embodiments, SD is implanted into a patient's heart. Electrical signals are then sensed which includes moderately lengthened QRS duration data from the patient's heart. A determination is made as to whether cardiac resynchronization pacing therapy (CRT pacing) is appropriate based upon the moderately lengthened QRS duration in the sensed electrical signals. The CRT pacing pulses are delivered to the heart using electrodes. In one or more embodiments, the SD can switch between fusion pacing and biventricular pacing based upon data (e.g. moderately lengthened QRS, etc.) sensed from the heart.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: November 24, 2020
    Assignee: Medtronic, Inc.
    Inventor: Aleksandre T. Sambelashvili