Electrical Treatment Of Pain Patents (Class 607/46)
  • Patent number: 11027126
    Abstract: Disclosed herein are systems and methods for nerve conduction block. The systems and methods can utilize at least one renewable electrode. The methods can include delivering a first direct current with a first polarity to an electrode proximate nervous tissue sufficient to block conduction in the nervous tissue. Delivering the first direct current can place the nervous tissue in a hypersuppressed state at least partially preventing conduction of the nervous tissue after cessation of delivering of the first direct current. The nervous tissue can be maintained in the hypersuppressed state for a desired period, such as at least about 1 minute.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: June 8, 2021
    Assignee: Presidio Medical, Inc.
    Inventors: Douglas Michael Ackermann, Kenneth Wu
  • Patent number: 11027131
    Abstract: The method and system described herein relate to stimulating nerve tissue using a pulse generator. A stimulus is created that comprises a signal that is produced from a frequency spectrum having a power spectral density per unit of bandwidth proportional to 1/f?, wherein ? is excludes 0. The stimulus is provided from the pulse generator to at least one stimulation lead; and applied to nerve tissue via one or several electrodes.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: June 8, 2021
    Inventor: Dirk De Ridder
  • Patent number: 11020586
    Abstract: An implantable electrical stimulation lead including a lead body having a distal end, a proximal end, and a longitudinal length, wherein the distal end of the lead body is formed into a hook or coil shape; a plurality of electrodes disposed along the hook or coil at the distal end of the lead body; a plurality of terminals disposed on the proximal end of the lead body; and a plurality of conductors, each conductor electrically coupling at least one of the electrodes to at least one of the terminals. The lead can be used to stimulate, for example, a dorsal root ganglion with the hook-shaped or coil-shaped distal end disposed around a portion of the dorsal root ganglion.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: June 1, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Joshua Dale Howard, Jacob B. Leven
  • Patent number: 11013921
    Abstract: A method of treating cardiovascular disease in a patient includes generating, by an implantable stimulator configured to be implanted beneath a skin surface of the patient, stimulation sessions at a duty cycle that is less than 0.05 and applying, by the implantable stimulator in accordance with the duty cycle, the stimulation sessions to a tissue location associated with the cardiovascular disease. The duty cycle is a ratio of T3 to T4. Each stimulation session included in the stimulation sessions has a duration of T3 minutes and occurs at a rate of once every T4 minutes. The implantable stimulator is powered by a primary battery located within the implantable stimulator and having an internal impedance greater than 5 ohms.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: May 25, 2021
    Assignee: Valencia Bioscience, Inc.
    Inventors: Jeffrey H. Greiner, David K. L. Peterson, Chuladatta Thenuwara
  • Patent number: 10987515
    Abstract: The techniques of the disclosure describe example medical devices, systems, and methods for delivering electrical stimulation therapy to a patient. In one example, a medical device selects subsets of a plurality of therapy parameter sets that define electrical stimulation therapy, each subset including at least one therapy parameter set and less than all of the therapy parameter sets. Further, the medical device delivers, via a plurality of electrodes, electrical stimulation therapy according to each subset via a respective set of electrodes different from sets of electrodes of each other subset of the therapy parameter sets. The medical device iteratively delivers the electrical stimulation therapy according to the subsets of the therapy parameter sets via the respective sets of electrodes. Further, the medical device selects at least one subset of the therapy parameter sets that treat a condition of the patient for defining subsequent delivery of electrical stimulation to the patient.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: April 27, 2021
    Assignee: Medtronic, Inc.
    Inventor: Nathan A. Torgerson
  • Patent number: 10980999
    Abstract: Paddle leads and delivery tools, and associated systems and methods are disclosed. A representative system is for use with a signal delivery paddle that is elongated along a longitudinal axis, and has a paddle length and a first cross-sectional area distribution that includes a first maxima. The system comprises a delivery tool including a proximal handle and a distal connection portion positioned to removably couple to the signal delivery paddle. The paddle and the delivery tool together have a combined second cross-sectional area distribution along the length of the paddle, with a second maxima that is no greater than the first maxima.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: April 20, 2021
    Assignee: Nevro Corp.
    Inventor: Mark Steven Wong
  • Patent number: 10974053
    Abstract: An example of a system may include a processor subsystem; and a memory device comprising instructions, which when executed by the processor subsystem, cause the processor subsystem to: receive at an application executing on a user device, a request to modify the application; transmit the request to an administrative user device for approval; receive a response to the request from the administrative user device; and modify a functionality of the application in response to receiving the response.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: April 13, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Joshua Dale Howard, Anne M. Pianca
  • Patent number: 10974051
    Abstract: An example of a system for programming a neurostimulator may include a storage device and a pattern generator. The storage device may store a pattern library and one or more neuronal network models. The pattern library may include fields and waveforms of neuromodulation. The one or more neuronal network models may each be configured to allow for evaluating effects of one or more fields in combination with one or more waveforms in treating one or more indications for neuromodulation. The pattern generator may be configured to construct and approximately optimize a spatio-temporal pattern of neurostimulation and/or its building blocks for a specified range of varying conditions using at least one neuronal network model.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: April 13, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: G. Karl Steinke, Michael A. Moffitt, Hemant Bokil
  • Patent number: 10967177
    Abstract: A method for stimulating a human leg, a stimulation system, and a garment including the stimulation system are disclosed. The method comprises: measuring, by a measuring unit, an electrical characteristic indicative of a physiological condition in a portion of the leg via a subset of skin electrodes comprised in a plurality of skin electrodes integrated in a leg part of a garment arranged to be worn about at least a part of the human leg; determining, by evaluating the measured electrical characteristic, if the portion of the leg is to be stimulated; and if it is determined that the portion is to be stimulated, applying a stimulation via a subset of stimulation units, comprised in a plurality of stimulation units being arranged in the leg part of the garment, such that the portion of the leg is stimulated. A stimulation system and a garment comprising such as stimulation system are also disclosed.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: April 6, 2021
    Assignee: Stichting IMEC Nederland
    Inventor: Seulki Lee
  • Patent number: 10940311
    Abstract: Apparatus for transcutaneous electrical nerve stimulation in a user, the apparatus comprising: a stimulator for electrically stimulating at least one nerve; a stimulator housing; a monitor for monitoring transient motion of the stimulator housing; an analyzer for analyzing transient motion monitored by the monitor for determining whether transient motion of the stimulator housing has occurred; and a controller for automatically transitioning at least one of the stimulator, the monitor, and the analyzer between a standby mode and a power save mode; wherein the power save mode supports a subset of the functionality of the stimulator and the monitor which is available in the standby mode so as to conserve battery power in the power save mode.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: March 9, 2021
    Assignee: Neurometrix, Inc.
    Inventors: Shai N. Gozani, Xuan Kong, Thomas C. Ferree
  • Patent number: 10912942
    Abstract: An implantable pulse generator (IPG) is disclosed having an improved ability to steer anodic and cathodic currents between the IPG's electrodes. Each electrode node has at least one PDAC/NDAC pair to source/sink or sink/source a stimulation current to an associated electrode node. Each PDAC and NDAC receives a current with a magnitude indicative of a total anodic and cathodic current, and data indicative of a percentage of that total that each PDAC and NDAC will produce in the patient's tissue at any given time, which activates a number of branches in each PDAC or NDAC. Each PDAC and NDAC may also receive one or more resolution control signals specifying an increment by which the stimulation current may be adjusted at each electrode. The current received by each PDAC and NDAC is generated by a master DAC, and is preferably distributed to the PDACs and NDACs by distribution circuitry.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: February 9, 2021
    Assignee: Boston Scientific Neuromoduiation Corporation
    Inventors: Pujitha Weerakoon, David M. Wagenbach, Philip L. Weiss, Goran N. Marnfeldt
  • Patent number: 10894161
    Abstract: A method is provided to deliver C tactile fiber stimulation to nervous tissue of a patient. The method comprises delivering a first tactile stimulation waveform to a first electrode combination within an array of electrodes located proximate to nervous tissue of interest. The method further provides sequentially delivering successive tactile stimulation waveforms to successive electrode combinations within the array of electrodes. The first and successive tactile stimulation waveforms include at least one series of pulses having a pulse amplitude and pulse frequency. Delaying delivery of the successive tactile stimulation waveforms by a firing delay, the pulse amplitude, pulse frequency and firing delay represent therapy parameters. The method manages at least one of the therapy parameters of the first and successive tactile stimulation waveforms to excite C tactile fibers of the nervous tissue of interest.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: January 19, 2021
    Inventor: Dirk De Ridder
  • Patent number: 10870010
    Abstract: A DC-DC converter for implantable medical devices includes a switch capacitor converter core including a plurality of power transistor switches configured to receive an input voltage and output an output voltage; a switch driver connected with the switch capacitor converter core and configured to turn on corresponding power transistor switches in the switch capacitor converter core so as to supply power to a load receiving the output voltage; a switch signal router connected with the switch driver and configured to selectively transmit signals required by the switch driver; a gain selection decoder connected with the switch signal router; a gain controller connected with the gain selection decoder, the gain selection decoder being configured to decode gain selection instructions transmitted from the gain controller; an input adjusting device connected with the gain controller and configured to receive the input voltage and a reference voltage, to indicate relationship between the input voltage and the referen
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: December 22, 2020
    Assignee: SHENZHEN DANSHA TECHNOLOGY CO., LTD.
    Inventor: Min Tan
  • Patent number: 10850102
    Abstract: Apparatus and methods for managing pain uses separate varying electromagnetic fields, with a variety of temporal and amplitude characteristics, which are applied to a particular neural structure to modulate glial and neuronal interactions as a mechanism for relieving chronic pain. In another embodiment, a single composite modulation/stimulation signal which has rhythmically varying characteristics is used to achieve the same results as separate varying electromagnetic fields. Also, disclosed is an apparatus and method for modulating the expression of genes involved in diverse pathways including inflammatory/immune system mediators, ion channels and neurotransmitters, in both the Spinal Cord (SC) and Dorsal Root Ganglion (DRG) where such expression modulation is caused by spinal cord stimulation or peripheral nerve stimulation using the disclosed apparatus and techniques.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: December 1, 2020
    Assignee: MEDTRONIC SG, LLC
    Inventors: Ricardo Vallejo, David Leonardo Cedeno, Ramsin M. Benyamin
  • Patent number: 10842403
    Abstract: Example methods are disclosed herein that include obtaining electroencephalographic (EEG) data from a subject via a device comprising two or more independently adjustable bands, each of the bands having a plurality of electrodes to detect the electroencephalographic data from a brain of the subject, each band selectively rotatable relative to an adjacent band and each band selectively compressible to increase a force of the electrodes against a head of the subject. The example method also includes converting the EEG data into digital EEG signals and conditioning the digital EEG signals. In addition, the example method includes analyzing the digital EEG signals using one or more analysis protocols to determine a mental characteristic of the subject and transmitting the mental characteristic to an output device.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: November 24, 2020
    Assignee: The Nielsen Company (US), LLC
    Inventors: Yakob Badower, Ramachandran Gurumoorthy, A. K. Pradeep, Robert T. Knight
  • Patent number: 10842997
    Abstract: An example of a system may include a processor and a memory device comprising instructions, which when executed by the processor, cause the processor to: access a patient metric of a subject; use the patient metric as an input to a machine learning algorithm, the machine learning algorithm to search a plurality of neuromodulation parameter sets and to identify a candidate neuromodulation parameter set of the plurality of neuromodulation parameter sets, the candidate neuromodulation parameter set designed to produce a non-regular waveform that varies over a time domain and a space domain; and program a neuromodulator using the candidate neuromodulation parameter set to stimulate the subject.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: November 24, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Natalie A. Brill, Jianwen Gu, Juan Gabriel Hincapie Ordonez, Changfang Zhu, Hemant Bokil, Stephen Carcieri
  • Patent number: 10842128
    Abstract: A device is described comprising a microcontroller coupled to a transformer, wherein the transformer comprises a primary winding and a secondary winding, wherein the microcontroller is connected to a secondary circuit at a first location. The microcontroller is configured to provide a voltage at a first value to the primary winding for a period of time, wherein ceasing the delivery of the voltage induces a flow of current through the secondary winding and the secondary circuit, wherein the secondary circuit comprises at least one resistor and a resistive load, wherein the resistive load is variable. The microcontroller is configured to measure and/or compute voltage, time constant and peak current values with respect to the secondary circuit. The microcontroller is configured to monitor the intensity level at the resistive load using peak current and time constant values.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: November 24, 2020
    Assignee: RADIO SYSTEMS CORPORATION
    Inventor: Scott McFarland
  • Patent number: 10835706
    Abstract: Provided herein is a needle device for a nerve block, which includes a gripping part having a longitudinal passage through which a liquid fluid flows, said liquid fluid also flowing through the inside of a needle aligned with the longitudinal passage. The device also includes a nerve stimulator through which electricity is transmitted to the needle. The gripping part includes a radial duct that intersects tangentially with the longitudinal passage, the radial duct having two opposite female couplings into either of which the nerve stimulator can be inserted, depending on whether the user is left-handed or right-handed.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: November 17, 2020
    Inventors: Bartolomé Lajarín Barquero, Beatriz Castellón Hernández
  • Patent number: 10828495
    Abstract: An external control device for indicating whether a stimulation parameter set for use in a neurostimulator is available on a remote control in communication with the external control device is provided. The device includes a user interface configured for displaying the stimulation parameter set and an indicator that indicates whether the stimulation parameter set is available to the patient from the remote control. The device also includes control circuitry configured for, in response to input from the user (e.g., actuating the indicator), selectively turning the indicator on or off. The indicator may be an icon, and the icon may be a graphical depiction of a remote control. The user interface may be further configured for receiving additional input from the user, and the control circuitry may be further configured for, in response to the additional input from the user, programming the remote control with the stimulation parameter set.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: November 10, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Sridhar Kothandaraman, Mun Pook Lui
  • Patent number: 10828491
    Abstract: The present disclosure is directed to a system and method for selectively and reversibly modulating targeted neural and non-neural tissue of a nervous system for the treatment of pain. An electrical stimulation is delivered to the treatment site that selectively and reversibly modulates the targeted neural- and non-neural tissue of the nervous structure, inhibiting pain while preserving other sensory and motor function, and proprioception.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: November 10, 2020
    Assignee: Avent, Inc.
    Inventors: Eric A. Schepis, David M. Page, Phillip A. Schorr, Shyamy R. Sastry, Leah Roldan, Natalia Alexeeva, Ryan Caldwell, Amol Soin
  • Patent number: 10828485
    Abstract: The present disclose generally relates to high-charge capacity electrodes that include a substrate and a coating covering at least a portion of the substrate that includes active particles held together by a biocompatible binding material. One aspect of the present disclosure relates a system that can block conduction in a nerve. The system can include a current generator that generates a direct current (DC). The system can also include a high-charge capacity electrode that can be coupled to the current generator to deliver the DC to block conduction in a nerve.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: November 10, 2020
    Assignee: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Narendra Bhadra, Jesse Wainright, Niloy Bhadra, Kevin L. Kilgore, Tina Vrabec
  • Patent number: 10828490
    Abstract: A system for restoring muscle function to the lumbar spine to treat low back pain is provided. The system may include electrodes coupled to an implantable pulse generator (IPG), a handheld activator configured to transfer a stimulation command to the IPG, and an external programmer configured to transfer programming data to the IPG. The stimulation command directs the programmable controller to stimulate the tissue in accordance with the programming data. The system may include a software-based programming system run on a computer such that the treating physician may program and adjust stimulation parameters.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: November 10, 2020
    Assignee: Mainstay Medical Limited
    Inventors: Dan Sachs, Prashant Brijmohansingh Rawat, Jason Alan Shiroff, Peter Andrew Crosby
  • Patent number: 10821286
    Abstract: An example method includes delivering, by an implantable medical device and during a first period of time, high density electrical neurostimulation therapy to a patient using a first set of electrodes of a plurality of electrodes; and delivering, by the implantable medical device and during a second period of time, high density electrical neurostimulation therapy to the patient using a second set of electrodes of the plurality of electrodes.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: November 3, 2020
    Assignee: Medtronic, Inc.
    Inventors: Brian K. Acklin, Michael E. Newell
  • Patent number: 10806926
    Abstract: An implantable stimulator for stimulating muscles or nerves, including, an array of electrodes for electrically stimulating muscles or nerves, a controller for controlling the activity of the electrodes, and wherein the controller is adapted to dynamically select the electrodes that are used to participate in stimulating the muscles or nerves.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: October 20, 2020
    Assignee: MAN & SCIENCE SA
    Inventor: Adi Mashiach
  • Patent number: 10810614
    Abstract: A wireless charger system for inductively charging a rechargeable battery of an implantable pulse generator (IPG) implanted in a human body is provided. A charging coil in the charger is wirelessly coupled to a receiving coil of the IPG to charge the rechargeable battery. An end-of-charge (EOC) circuit continuously monitors the reflected impedance from a reflected impedance sensor and determines the end of charge when a predetermined pattern of the reflected impedance corresponding to an EOC signal from the IPG is received. Advantageously, receiving the EOC signal through the charging coil eliminates the need to provide a separate communication circuit in the IPG that communicates with the charger.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: October 20, 2020
    Assignee: CIRTEC MEDICAL CORP.
    Inventors: Raghavendra Angara, Saif Khalil, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Patent number: 10792496
    Abstract: The exemplified systems and methods facilitate a nerve conduction block at a target nerve using electrical stimulation applied from one or more electrodes located on a percutaneous lead that are placed in parallel, or substantially in parallel, and without direct contact, to a long axis of the peripheral nerve over an overlapping nerve region of greater than about 3 millimeters. The exemplified system and method can be further configured to block nerve condition without eliciting onset activity and co-excitation of non-targeted structures. The exemplified method and system can be performed using conventional percutaneous leads, though an improved percutaneous lead design is disclosed herein. In an aspect, an introducer is disclosed that facilitates accurate and consistent insertion of the percutaneous lead to the specified or intended position relative to the target nerve. In another aspect, a treatment kit comprising the various system components to treat pain is disclosed.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: October 6, 2020
    Assignee: Avent, Inc.
    Inventors: Eric A. Schepis, Phillip A. Schorr, Shyamy R. Sastry, Ryan Caldwell, David M. Page, Amol Soin
  • Patent number: 10786669
    Abstract: The disclosure describes devices and methods for providing transdermal electrical stimulation therapy to a subject including positioning a stimulator electrode over a glabrous skin surface overlying a palm of the subject and delivering electrical stimulation via a pulse generator transdermally through the glabrous skin surface and to a target nerve or tissue within the hand to stimulate the target nerve or tissue within the hand so that pain felt by the subject is mitigated. The pulses generated during the electrical stimulation therapy may include pulses of two different magnitudes.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: September 29, 2020
    Assignee: EMKinetics, Inc.
    Inventors: Amit Rajguru, Daniel R. Burnett, Alexander Vergara, Michael Hemati
  • Patent number: 10780274
    Abstract: This document discusses, among other things, systems and methods to provide a paresthesia therapy to a patient using an implantable neuromodulation system, wherein providing the paresthesia therapy may include delivering to the patient an electrical waveform having a duration and a distribution of frequencies in the range of 0.001 kHz to 20 kHz, wherein the distribution of frequencies includes a first frequency group of one or more frequencies and a second frequency group of one or more frequencies, and wherein the patient continuously experiences paresthesia throughout the duration of the electrical waveform.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: September 22, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Que T. Doan
  • Patent number: 10780282
    Abstract: A method for determining a set of stimulation parameters for an electrical stimulation lead or steering electrical stimulation includes receiving a target geometrical parameter describing a stimulation field; receiving a first programming state; determining a first stimulation parameter for the first programming state that achieves the target geometrical parameter within at least 10% of the target geometrical parameter; and outputting set of stimulation parameters to be received by an electrical stimulation device for delivery of electrical stimulation to a patient via an electrical stimulation lead, wherein the set of stimulation parameters comprises the first stimulation parameter and represents the first programming state. In other embodiments, the target geometrical parameter is determined from either i) a first set of stimulation parameters or ii) a starting programming state and starting first stimulation parameter.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: September 22, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Richard Mustakos, G. Karl Steinke
  • Patent number: 10743778
    Abstract: The present invention is for a method and system for pain classification and monitoring optionally in a subject that is an awake, semi-awake or sedated.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: August 18, 2020
    Assignee: Medasense Biometrics Ltd.
    Inventors: Galit Zuckerman-Stark, Mark Kliger
  • Patent number: 10744330
    Abstract: An external control device for use with a neurostimulation system having a plurality of electrodes capable of conveying an electrical stimulation field into tissue in which the electrodes are implanted is provided. The external control device comprises a user interface having one or more control elements, a processor configured for generating stimulation parameters designed to modify the electrical stimulation field relative to one or more neurostimulation lead carrying the electrodes. The external control device further comprises output circuitry configured for transmitting the stimulation parameters to the neurostimulation system.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: August 18, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Sridhar Kothandaraman, James Carl Makous
  • Patent number: 10737095
    Abstract: Neurostimulator devices are described. An example neurostimulator device includes a stimulation assembly connectable to a plurality of electrodes, wherein the plurality of electrodes are configured to stimulate a spinal cord. The neurostimulator device also includes an interface and at least one processor configured to modify at least one complex stimulation pattern deliverable by the plurality of electrodes by integrating data from the interface and performing a machine learning algorithm on the at least one complex stimulation pattern.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: August 11, 2020
    Assignee: Californina Institute of Technology
    Inventors: Joel W. Burdick, Yu-Chong Tai, John F. Naber, Robert S. Keynton, Victor Reggie Edgerton, Roland R Roy, Yury Gerasimenko, Susan J. Harkema, Jonathan Hodes, Claudia A. Angeli, Mandheerej S. Nandra, Thomas Anthony Desautels, Steven L. Upchurch, Douglas J. Jackson, Nicholas A. Terrafranca, Jr., Yangsheng Chen
  • Patent number: 10729905
    Abstract: This document discusses, among other things, systems and methods for managing pain of a subject. A system may include one or more sensors configured to sense a signal indicative of muscle electrical or mechanical activity at a specific body location. The muscle electrical or mechanical activity signal may include an electromyography or a mechanical contraction signal. A pain analyzer circuit may extract from the sensed signal one or more signal metrics indicative of muscle tension, and generate a pain score using the signal metrics. The pain score may be output to a user or a process. The system may include a neurostimulator that can adaptively control the delivery of pain therapy by automatically adjusting stimulation parameters based on the pain score.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: August 4, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Elizabeth Mary Annoni, Jianwen Gu, Pramodsingh Hirasingh Thakur, Bryan Allen Clark, Kyle Harish Srivastava
  • Patent number: 10722715
    Abstract: Embodiments of the present invention provide systems and methods for the treatment of pain through activation of select neural fibers. The neural fibers may comprise one or more afferent neural fibers and/or one or more efferent neural fibers. If afferent fibers are stimulated, alone or in combination with efferent fibers, a therapeutically effective amount of electrical stimulation is applied to activate afferent pathways in a manner approximating natural afferent activity. The afferent fibers may be associated with primary receptors of muscle spindles, golgi tendon organs, secondary receptors of muscle spindles, joint receptors, touch receptors, and other types of mechanoreceptors and/or proprioceptors. If efferent fibers are stimulated, alone or in combination with afferent fibers, a therapeutically effective amount of electrical stimulation is applied to activate intrafusal and/or extrafusal muscle fibers, which results in an indirect activation of afferent fibers associated therewith.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: July 28, 2020
    Assignee: SPR Therapeutics, Inc.
    Inventors: Maria E. Bennett, Joseph W. Boggs, Warren M. Grill, John Chae
  • Patent number: 10688306
    Abstract: The present technology provides a medical stimulation system having a clinical programmer configured to operate on a computational and memory device having a wireless communication device. The technology also provides a neurostimulator configured to wirelessly communicate with the clinical programmer. The neurostimulator also includes a pulse generator operatively coupled with an electrode by a lead. The pulse generator is configured to transmit an electrical signal comprising a repeating succession of non-regular pulse trains. Each pulse train includes a plurality of pulses having non-regular, non-random, differing inter-pulse intervals therebetween. The pulse trains repeat in succession to treat a neurological condition. Further, the pulse trains are initiated by instructions communicated by the clinical programmer.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: June 23, 2020
    Assignee: Deep Brain Innovations LLC
    Inventors: Robert Strother, Jonathan Sakai, Geoffrey Thrope
  • Patent number: 10675458
    Abstract: The present invention provides a single surgical method, procedure and/or system that creates open visual and physical access to an identified spinal treatment site that comprises both targeted vertebral and spinal levels to be treated, wherein the spinal levels comprise at least one dorsal root ganglion. A spinal treatment procedure is performed generally in combination with implantation of a neuromodulation system that may comprise placement of electrical lead(s) on the at least one dorsal root ganglion, wherein each lead is in operative connection with a pulse generator that may also be implanted during the surgical method. Electrical stimulation may be generated with the pulse generator through the electrical leads to the at least one dorsal root ganglion during and/or after the closure of the identified spinal treatment site.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: June 9, 2020
    Assignee: SynerFuse, Inc.
    Inventors: Gregory F. Molnar, Christopher G. Frank, Justin D. Zenanko, Beth A. Lindborg, Nazmi Peyman, Kyle Grube, Michael Park, Matthew Hunt, Kathy Hill
  • Patent number: 10661078
    Abstract: Apparatus and methods for treating back pain are provided, in which an implantable stimulator is configured to communicate with an external control system, the implantable stimulator providing a neuromuscular electrical stimulation therapy designed to cause muscle contraction to rehabilitate the muscle, restore neural drive and restore spinal stability; the implantable stimulator further including one or more of a number of additional therapeutic modalities, including a module that provides analgesic stimulation; a module that monitors muscle performance and adjusts the muscle stimulation regime; and/or a module that provides longer term pain relief by selectively and repeatedly ablating nerve fibers. In an alternative embodiment, a standalone implantable RF ablation system is described.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: May 26, 2020
    Assignee: Mainstay Medical Limited
    Inventors: Peter Andrew Crosby, Dan Sachs, Prashant Brijmohansingh Rawat, Jason Alan Shiroff, Johannes Petrus Heemels
  • Patent number: 10653884
    Abstract: A controller for implementing a method, device and/or system for generating arbitrary waveforms of a desired shape that can be used for generating a stimulation pulse for medical purposes such as for spinal cord stimulation therapy, where such arbitrary waveforms can also be used for charge balancing purposes.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: May 19, 2020
    Assignee: NUVECTRA CORPORATION
    Inventors: Stephen C. Trier, Jeffrey A. Weisgarber, Richard J. Polefko, David J. Howard
  • Patent number: 10646708
    Abstract: Described herein are methods and apparatuses for the application of transdermal electrical stimulation (TES). The apparatuses described herein include neck-worn devices having electrodes (or configured to connect to electrodes, including automatically self-connecting to electrodes) adapted to couple to the midline of the back of user's neck. A neck-worn controller may be configured as a cord, band, wire, torc, necklace, loop, strap, or the like, and may be rigid or semi-rigid and may be worn at least partially around the subject's neck. The controller may controllably apply one or more waveforms to the electrodes of the electrode pad (e.g., patch) to deliver TES adapted to treat a disorder (e.g., psoriasis) and/or to induce or enhance a relaxed cognitive state.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: May 12, 2020
    Assignee: Thync Global, Inc.
    Inventors: Isy Goldwasser, Douglas Jeffery, Sumon K. Pal, Wing Law
  • Patent number: 10639480
    Abstract: In accordance with the present invention, various embodiments of neurostimulators and stimulation systems are disclosed that provide different shapes and patterns of stimulus pulses and trains of pulses with fixed and no fixed frequencies. The neurostimulator can be configured to provide high frequency stimulation and also be implantable in the head or neck regions in order to stimulate nerves and nerve ganglions in the head and neck regions and also stimulate the brain.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: May 5, 2020
    Assignee: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: Brian R. Dearden, Harshit Suri, Edward K. F. Lee
  • Patent number: 10631776
    Abstract: This document discusses, among other things, systems and methods for managing pain of a subject. A system may include a sensor circuit configured to sense a respiration signal and a heart rate signal. A pain analyzer circuit may determine respiratory cycles and respiratory phases in a respiratory cycle, and generate one or more signal metrics indicative of respiration-mediated heart rate variation. The pain analyzer may generate a pain score using the signal metrics indicative of respiration-mediated heart rate variation. The pain score may be output to a user or a process. The system may include an electrostimulator to generate and deliver closed-loop pain therapy according to the pain score.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: April 28, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Elizabeth Mary Annoni, Bryan Allen Clark, Pramodsingh Hirasingh Thakur, Kyle Harish Srivastava
  • Patent number: 10631777
    Abstract: This document discusses, among other things, systems and methods for managing pain of a subject. A system may include a motion sensor configured to sense at least one functional signal indicative a physical state of the subject. The at least one functional signal may include at least one motor activity signal or at least one sleep state signal. A pain analyzer circuit may extract, from the functional signal, signal metrics indicative of subject motor control or kinetics, and generate a pain score using the signal metrics. The pain score may be output to a user or a process. The system may additionally include an electrostimulator to generate and deliver a closed-loop pain therapy according to the pain score.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: April 28, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Bryan Allen Clark, Elizabeth Mary Annoni, Jianwen Gu, Kyle Harish Srivastava, Pramodsingh Hirasingh Thakur, James John Kleinedler, David J. Ternes
  • Patent number: 10632307
    Abstract: Applying therapeutic neural stimuli involves monitoring for at least one of sensory input and movement of a user. In response to detection of sensory input or user movement, an increased stimulus dosage is delivered within a period of time corresponding to a duration of time for which the detected sensory input or user movement gives rise to masking, the increased stimulus dosage being configured to give rise to increased neural recruitment.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: April 28, 2020
    Assignee: Saluda Medical Pty Ltd
    Inventor: John Louis Parker
  • Patent number: 10617872
    Abstract: This document discusses, among other things, systems and methods for programming a neuromodulation therapy to treat neurological or cardiovascular diseases. A system includes an ambulatory medical device (AMD) and at least one computer-readable storage medium including instructions executable on an external system. The instructions, when executed by the external system, causes a user interface in the external system to receive a waveform function and one or more modulation parameter values. The waveform function includes one or more modulation programs characterized by one or more modulation parameters. The instructions causes a compiler to translate the waveform function into virtual machine (VM) instructions, which can be transmitted to the AMD. The AMD includes a VM that executes the VM instructions, and generates one or more modulation waveform datasets. The AMD may generate and deliver electrostimulation therapy in accordance with the one or more modulation waveform datasets.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: April 14, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Goran N. Marnfeldt
  • Patent number: 10617871
    Abstract: A therapeutic neurostimulation system configured for providing therapy to a patient. The neurostimulation system comprises a neurostimulation lead having an array of electrodes arranged along a longitudinal axis configured for being implanted along a spinal cord of a patient, a neurostimulation device configured for delivering electrical stimulation energy to active ones of the electrode array, and control/processing circuitry for instructing the neurostimulation device to configure an active electrode as a cathode, and two active electrodes longitudinally flanking and laterally offset from the cathode as anodes, selecting a ratio of stimulation amplitude values for the two anodes based on a known longitudinal location of the implanted neurostimulation lead relative to the spinal cord, and instructing the neurostimulation device to distribute the electrical stimulation energy between the two anodes in accordance with the selected stimulation amplitude value ratio.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: April 14, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Emarit A. S. Ranu
  • Patent number: 10610688
    Abstract: Systems and methods for managing pain in patient are described. A system may include sensors configured to sense physiological or functional signals, and a pain analyzer to generate signal metrics from the physiological or functional signals. The pain analyzer also generates weight factors corresponding to the signal metrics. The weight factors may indicate the signal metrics reliability in representing an intensity of the pain. The pain analyzer generates a pain score using a plurality of signal metrics and a plurality of weight factors. The pain score may be output to a user or a process. The system may additionally include an electrostimulator to generate and deliver closed-loop pain therapy according to the pain score.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: April 7, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Pramodsingh Hirasingh Thakur, Jianwen Gu, Bryan Allen Clark, David J. Ternes, David L. Perschbacher, James John Kleinedler, Elizabeth M. Annoni
  • Patent number: 10596378
    Abstract: Disclosed are methods of treating depression, mania, post-traumatic stress disorder (PTSD), and various other neurologic conditions using synaptic pathway training. Methods of synaptic pathway training include, generally, achieving a favorable treatment result by activating a synaptic pathway using a pharmacologic agent, such as treating refractory symptoms of depression with ketamine, following by potentiation of the favorable result by repeatedly stimulating the activated pathway. Stimulation of a synaptic pathway may be achieved by intrinsic means, such as performance of cognitive exercised, or extrinsic means, such as by delivery of a sensory stimulus to the patient, placing a potential voltage difference across the brain or a brain region, or by placing the brain or a brain region in a magnetic field.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: March 24, 2020
    Inventor: Joseph Rustick
  • Patent number: 10576265
    Abstract: Improved stimulation circuitry for controlling the stimulation delivered by an implantable stimulator is disclosed. The stimulation circuitry includes memory circuitry that stores pulse programs that define pulse shapes, steering programs that define electrode configurations, and aggregate programs that link a selected pulse program with a selected steering program. Each steering program defines the stimulation polarity and the allocation of current of the specified stimulation polarity for each of the pulse generator's electrodes. Each pulse program includes one or more pulse instructions, where each instruction defines the parameters of a single phase of the pulse program. Pulse definition circuits in the stimulation circuitry execute aggregate programs to generate stimulation waveforms, which stimulation waveforms can be generated simultaneously by the different pulse definition circuits.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: March 3, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Philip Leonard Weiss, Goran N. Marnfeldt, David Michael Wagenbach
  • Patent number: 10576282
    Abstract: Methods and systems for testing and treating spinal cord stimulation (SCS) patients are disclosed. Patients are eventually treated with sub-perception (paresthesia free) therapy. However, supra-perception stimulation is used during “sweet spot searching” during which active electrodes are selected for the patient. This allows sweet spot searching to occur much more quickly and without the need to wash in the various electrode combinations that are tried. After selecting electrodes using supra-perception therapy, therapy is titrated to sub-perception levels using the selected electrodes. Such sub-perception therapy has been investigated using pulses at or below 10 kHz, and it has been determined that a statistically significant correlation exists between pulse width (PW) and frequency (F) in this frequency range at which SCS patients experience significant reduction in symptoms such as back pain.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: March 3, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Que T. Doan, Jianwen Gu, Ismael Huertas Fernandez, Rosana Esteller, Michael A. Moffitt
  • Patent number: 10576286
    Abstract: Short pulse width spinal cord modulation for inhibiting pain with reduced side effects and associated systems and methods are disclosed. In particular embodiments, modulation signal has pulse widths in the range of from about 10 microseconds to about 50 microseconds may be applied to the patient's spinal cord region to address chronic pain without using paresthesia or tingling to mask or cover the patient's sensation of pain. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: March 3, 2020
    Assignee: Nevro Corp.
    Inventor: Sangsoo Wesley Park