Directly Or Indirectly Stimulating Motor Muscles Patents (Class 607/48)
  • Patent number: 12251225
    Abstract: A non-invasive diagnostic assembly that includes an interface configured for connection to a diagnostic monitoring device; a plurality of electrodes configured for adhesion to a patient's skin at respective locations and electrically connected to the interface; and at least one adjustable connection segment having a concertina/accordion/ripple-shaped configuration connecting at least two electrodes of the plurality of electrodes.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: March 18, 2025
    Assignee: Xavant Technologies (Pty) Ltd.
    Inventors: Corlius Fourie Birkill, Roche Janse Van Rensburg, Barend Jacques Swart, Dawid Gideon Le Roux Van Niekerk, Florian Martin Lipp, Johan Amey Sieling
  • Patent number: 12248629
    Abstract: Techniques for static and dynamic input multiplexing for high-density neural signal recording are disclosed herein. A multiplexer can receive a first set of neural signals via inputs. A subset of the first set of neural signals above a threshold can be determined. A group of the inputs corresponding to the subset of the first set of neural signals can be determined. Operation of the multiplexer can be modified to block inputs not in the identified group of the inputs. A second set of neural signals can be received into the multiplexer via the group of the inputs. The second set of neural signals can be transmitted to a plurality of channels of an amplifier while blocking inputs not in the identified group of the inputs. The second set of neural signals can be amplified using the amplifier. The amplified second set of neural signals can be transmitted for further processing.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: March 11, 2025
    Assignee: Neuralink Corp.
    Inventors: Do Yeon Yoon, Dongjin Seo, SungWon Chung
  • Patent number: 12201833
    Abstract: A neuromodulation system, device, and method are disclosed. In an embodiment, a neuromodulation system includes a processor, a signal generator, a first electrode, and a second electrode. The processor in cooperation with the signal generator, the first electrode, and the second electrode are configured to deliver a transcutaneous stimulation to a mammal. The transcutaneous stimulation is configured by the processor for inducing voluntary movement in the mammal. The first electrode is positioned transcutaneously on a spinal cord and/or spinal cord dorsal roots of the mammal. Additionally, the second electrode is placed transcutaneously on or over at least one of the spinal cord and/or the spinal cord dorsal roots, a muscle, a nerve, or on or near a target end organ or bodily structure of the mammal. The second electrode is in communication with the first electrode through a hardwire or wireless connection.
    Type: Grant
    Filed: May 2, 2023
    Date of Patent: January 21, 2025
    Assignee: The Regents of the University of California
    Inventors: Victor Reggie Edgerton, Yury P. Gerasimenko, Parag Gad, Nicholas A. Terrafranca
  • Patent number: 12186561
    Abstract: Methods and systems for facilitating the determining and setting of stimulation parameters for programming an electrical stimulation system are disclosed. The disclosed systems and methods use algorithms to identify patient-specific metrics to use as feedback variables for optimizing stimulation parameters for a patient. The patient-specific metric(s) are determined by ranking a plurality of clinical indicators for the patient with and without the presence of a medical intervention to determine which clinical indicators respond most strongly to the medical intervention. The clinical indicators that respond most strongly can be used as the patient-specific metric for optimizing stimulation, or a composite patient-specific metric may be derived as a mathematical combination of a plurality of clinical indicators that respond well to the intervention.
    Type: Grant
    Filed: June 7, 2023
    Date of Patent: January 7, 2025
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: León M. Juárez Paz
  • Patent number: 12178606
    Abstract: Systems, devices and methods are provided for neuromonitoring, particularly neuromonitoring to reduce the risks of contacting or damaging nerves or causing patient discomfort during and after surgical procedures, including spinal surgeries. The neuromonitoring procedures include monitoring for the presence of or damage to sensory nerves, and optionally includes additional monitoring for motor nerves. In some systems, including systems that monitor for both sensory and motor nerves, components of the monitoring systems (e.g., stimulating electrodes and response sensors), may be combined with one or more surgical instruments. The systems, devices, and methods provide for pre-surgical assessment of neural anatomy and surgical planning, intraoperative monitoring of nerve condition, and post-operative assessment of nerve position and health.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: December 31, 2024
    Assignee: Cadwell Laboratories, Inc.
    Inventors: Justin Scott, John Cadwell
  • Patent number: 12178746
    Abstract: Medical devices, systems, and methods for pain management and other applications may apply cooling with at least one probe inserted through an exposed skin surface of skin. The cooling may remodel one or more target tissues so as to effect a desired change in composition of the target tissue and/or a change in its behavior, often to interfere with transmission of pain signals along sensory nerves. Alternative embodiments may interfere with the function of motor nerves, the function of contractile muscles, and/or some other tissue included in the contractile function chain so as to inhibit muscle contraction and thereby alleviate associated pain. In some embodiments, other sources of pain such as components of the spine (optionally including herniated disks) may be treated.
    Type: Grant
    Filed: May 1, 2023
    Date of Patent: December 31, 2024
    Assignee: Pacira CryoTech, Inc.
    Inventors: Keith Burger, Lisa Elkins, Ronald Williams
  • Patent number: 12168128
    Abstract: Systems and methods are disclosed that allow a patient to self-treat a medical condition, such as migraine headache and trigeminal neuralgia and the like. The system comprises a stimulator configured for wireless coupling to a mobile device and comprising a signal generator that generates an electrical impulse and an energy source. The stimulator includes a contact surface configured to contact an outer skin surface of a head of a patient and a user interface for selecting a therapy regimen. The stimulator transmits the electrical impulse transcutaneously through the outer skin surface to a nerve at a target region of the head, wherein the electrical impulse is sufficient to modulate the nerve and modify the medical condition. The system further comprises a software program downloadable onto the mobile device and configured to communicate with the stimulator.
    Type: Grant
    Filed: November 1, 2023
    Date of Patent: December 17, 2024
    Assignee: ELECTROCORE, INC.
    Inventors: Joseph P. Errico, Steven Mendez, Bruce J. Simon
  • Patent number: 12168133
    Abstract: Devices, systems, and techniques are described for identifying stimulation parameter values based on electrical stimulation that induces dyskinesia for the patient. For example, a method may include controlling, by processing circuitry, a medical device to deliver electrical stimulation to a portion of a brain of a patient, receiving, by the processing circuitry, information representative of an electrical signal sensed from the brain after delivery of the electrical stimulation, determining, by the processing circuitry and from the information representative of the electrical signal, a peak in a spectral power of the electrical signal at a second frequency lower than a first frequency of the electrical stimulation, and responsive to determining the peak in the spectral power of the electrical signal at the second frequency, performing, by the processing circuitry, an action.
    Type: Grant
    Filed: April 10, 2023
    Date of Patent: December 17, 2024
    Assignee: Medtronic, Inc.
    Inventors: Rene A. Molina, Scott R. Stanslaski, Jadin C. Jackson, Christopher L Pulliam, Eric J. Panken, Michelle A. Case, Abbey Beuning Holt Becker
  • Patent number: 12167918
    Abstract: A transcutaneous electrical stimulation system is provided that can include a number of features. In one implementation, the system can include a plurality of electrodes configured to be in contact with a skin surface of a patient. The system can further include a flexible hub electrically connected to the electrodes and configured to be in contact with the patient. A bend sensor can be disposed in the hub and configured to measure a curvature of the hub. The system can include a signal processing device electrically coupled to the plurality of electrodes and the bend sensor, the signal processing device being configured to change stimulation settings of the plurality of electrodes based on the curvature of the hub. In some implementations, the system can include a multi-channel stimulator. Methods of use are also provided.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: December 17, 2024
    Assignee: NICHE BIOMEDICAL, INC.
    Inventors: Yi-Kai Lo, Rachel Yung, Po-Min Wang, Alexander Barnes Baldwin, Chia-Hung Ni
  • Patent number: 12161864
    Abstract: A functional electrical stimulation (FES) device includes electrodes arranged to apply functional electrical stimulation to a body part of the user. FES stimulation is performed by: receiving values of a set of user metrics for the user; receiving a target position of the body part represented as values for a set of body part position measurements; determining a user-specific energization pattern for producing the target position based on the received target position and the received values of the set of user metrics for the user; and energizing the electrodes of the FES device in accordance with the determined user-specific energization pattern. The determination may utilize an FES calibration database with records having fields containing: values of the set of user metrics for reference users; energization patterns; and values of the set of body part position metrics for positions assumed by the body part in response to applying the energization patterns.
    Type: Grant
    Filed: December 20, 2023
    Date of Patent: December 10, 2024
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: David A. Friedenberg, Po-Hsu Chen, Samuel Colachis, Nicholas Annetta, Douglas E. Boyd, Collin Dunlap, Ian W. Baumgart, Herbert S. Bresler
  • Patent number: 12161861
    Abstract: Devices and methods for blocking signal transmission through neural tissue. One step of a method includes placing a therapy delivery device into electrical communication with the neural tissue. The therapy delivery device includes an electrode contact having a high charge capacity material. A multi-phase direct current (DC) can be applied to the neural tissue without damaging the neural tissue. The multi-phase DC includes a cathodic DC phase and anodic DC phase that collectively produce a neural block and reduce the charge delivered by the therapy delivery device. The DC delivery can be combined with high frequency alternating current (HFAC) block to produce a system that provides effective, safe, long term block without inducing an onset response.
    Type: Grant
    Filed: November 21, 2022
    Date of Patent: December 10, 2024
    Assignee: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Niloy Bhadra, Kevin L. Kilgore, Narendra Bhadra, Jesse Wainright, Tina Vrabec, Manfred Franke
  • Patent number: 12144981
    Abstract: One aspect of the present disclosure relates to a system that can modulate the intensity of a neural stimulation signal over time. A pulse generator can be configured to generate a stimulation signal for application to neural tissue of an individual and modulate a parameter related to intensity of a pattern of pulses of the stimulation signal over time. An electrode can be coupled to the pulse generator and configured to apply the stimulation signal to the neural tissue. A population of axons in the neural tissue can be recruited with each pulse of the stimulation signal.
    Type: Grant
    Filed: June 8, 2023
    Date of Patent: November 19, 2024
    Assignee: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Dustin J. Tyler, Daniel Tan, Matthew Schiefer
  • Patent number: 12102819
    Abstract: The present disclosure relates to an EMS method using EMS electrode pads. Each electrode may be provided to correspond to the shape and size of the divided area according to the virtual line. The EMS method using the same according to the present invention may minimize the edge current effect by the shape of the electrode to which electric energy is applied. In addition, energy transfer efficiency may be improved by capacitive coupling between the electrode and the skin. In addition, due to the coating of the electrode, a rate of contact with an affected part may be increased so that current may be applied evenly to each part.
    Type: Grant
    Filed: September 18, 2023
    Date of Patent: October 1, 2024
    Assignee: LUTRONIC CORPORATION
    Inventors: Kwang Chon Ko, James Bartholomeusz
  • Patent number: 12097365
    Abstract: Apparatus and methods for treating back pain are provided, in which an implantable stimulator is configured to communicate with an external control system, the implantable stimulator providing a neuromuscular electrical stimulation therapy designed to cause muscle contraction to rehabilitate the muscle, restore neural drive and restore spinal stability; the implantable stimulator further including one or more of a number of additional therapeutic modalities, including a module that provides analgesic stimulation; a module that monitors muscle performance and adjusts the muscle stimulation regime; and/or a module that provides longer term pain relief by selectively and repeatedly ablating nerve fibers. In an alternative embodiment, a standalone implantable RF ablation system is described.
    Type: Grant
    Filed: October 14, 2022
    Date of Patent: September 24, 2024
    Assignee: Mainstay Medical Limited
    Inventors: Peter Andrew Crosby, Dan Sachs, Prashant Brijmohansingh Rawat, Jason Alan Shiroff, Johannes Petrus Heemels
  • Patent number: 12090321
    Abstract: Example systems for positioning an implantable electrode may include a stimulation circuitry, a sensing circuitry, and processing circuitry. The stimulation circuitry may generate electrical stimulation deliverable to a patient. The sensing circuitry may sense electromyographic (EMG) responses. The processing circuitry may control the stimulation circuitry to deliver the electrical stimulation at a plurality of different stimulation metric levels at each of a plurality of different positions. The processing circuitry may sense, via the sensing circuitry, electromyographic (EMG) responses to the electrical stimulation. The processing circuitry may score one or more of the different positions for chronic implantation of at least one implantable electrode. The scoring may be based on a stimulation metric level greater than a predetermined metric threshold sufficient to evoke at least some of the sensed EMG responses, and a level of the at least some of the sensed EMG responses.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: September 17, 2024
    Assignee: Medtronic, Inc.
    Inventors: Xin Su, David A. Dinsmoor, Jason E. Agran
  • Patent number: 12076558
    Abstract: A method and system for facilitating stimulating of muscles of users are provided. Further, the method may include a step of receiving muscle data from sensors, analyzing the muscle data, generating first muscle activity data of the muscles of first users based on the analyzing of the muscle data, receiving first biological metrics of the first users from first devices, receiving second biological metrics of second users from second devices, analyzing the first muscle activity data, the first biological metrics, and the second biological metrics, transforming the first muscle activities into second muscle activities of the muscles of the second users, generating muscle activation commands for the muscle activation of the muscles of the second users, transmitting the muscle activation commands to muscle stimulators disposable on body parts of the second users, and storing the first muscle activity data and the muscle activation commands.
    Type: Grant
    Filed: September 22, 2021
    Date of Patent: September 3, 2024
    Inventor: Gary Thomas Baker, Jr.
  • Patent number: 12076557
    Abstract: A treatment assembly can have an inner layer having an inner surface and an outer surface and defining a plurality of openings extending therethrough. The treatment assembly can further comprise a plurality of plates, each plate being at least partially received within a respective opening of the plurality of openings of the inner layer. The treatment assembly can further comprise treatment circuitry comprising a cable having a plurality of electrical leads and a plurality of lead ends, each electrical lead being electrically connected to a respective lead end of the plurality of lead ends. A cover layer can be attached to the outer surface of the inner layer and overlie the plurality of lead ends of the cable. The plurality of lead ends can be in contact with respective plates of the plurality of plates to define a plurality of electrodes.
    Type: Grant
    Filed: September 7, 2022
    Date of Patent: September 3, 2024
    Assignee: NOVOCURE GMBH
    Inventors: Mijal Munster, Yoram Wasserman, Michael Shtotland, Shiri Davidi, Roni Blat, Golan Bar Tal, Moshe Giladi, Michael Krinitsky, Shalom Strauss
  • Patent number: 12070265
    Abstract: The present disclosure provides electroporation systems and methods of preconditioning tissue for electroporation therapy. An electroporation generator includes an electroporation circuit, a preconditioning circuit, and a controller. The electroporation circuit is configured to be coupled to a catheter for delivering the electroporation therapy to target tissue of the patient. The electroporation circuit is further configured to transmit an electroporation signal through the catheter. The preconditioning circuit is configured to be coupled to a preconditioning electrode for stimulating skeletal muscle tissue of the patient. The preconditioning circuit is further configured to transmit a preconditioning signal to the preconditioning electrode.
    Type: Grant
    Filed: August 3, 2022
    Date of Patent: August 27, 2024
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Jeff Schweitzer, Gregory K. Olson
  • Patent number: 12073933
    Abstract: An application user is granted access to one or more applications that provide the user with information and assistance. Altitude and/or motion data is collected from one or more devices associated with the user, and the device altitude and/or motion data is utilized to identify physical activities being performed by the user. The device altitude and/or motion data is further analyzed to determine physical activity count data, physical activity speed, velocity, and/or acceleration data, and physical activity length data. The physical activity data is then analyzed to identify and monitor changes or anomalies in the physical and/or psychological state of the user using baseline physical activity data. Upon identification of changes or anomalies in the user's physical and/or psychological state, one or more actions are taken to assist the user.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: August 27, 2024
    Assignee: Mahana Therapeutics, Inc.
    Inventor: Simon Levy
  • Patent number: 12064635
    Abstract: An example of a system to program a neuromodulator to deliver neuromodulation to a neural target using a plurality of electrodes may comprise a programming control circuit configured to determine target energy allocations for the plurality of electrodes based on at least one target pole to provide a target sub-perception modulation field, and normalize the target sub-perception modulation field, including determine a time domain scaling factor to account for at least one property of a neural target or of a neuromodulation waveform, and apply the time domain scaling factor to the target energy allocations.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: August 20, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tianhe Zhang, Changfang Zhu, Que T. Doan
  • Patent number: 12053606
    Abstract: An opioid overdose rescue device is provided that includes an ingestible capsule. Within the ingestible capsule is a non-refillable drug dispenser comprising an opioid antidote and at least one sensor configured to detect at least one physiological parameter indicative of an opioid overdose. A controller is also contained within the ingestible capsule and is operatively coupled to the drug dispenser and the least one sensor. The controller is configured to receive a signal detected by the least one sensor of the at least one physiological parameter to actuate release of the opioid antidote from the drug dispenser into the intestine of the patient upon a determination that the at least one physiological parameter falls outside a threshold value or range for the at least one physiological parameter indicating that an opioid overdose has been detected.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: August 6, 2024
    Assignee: CELERO SYSTEMS, INC.
    Inventors: Benjamin D. Pless, Daniel Bacher
  • Patent number: 12053632
    Abstract: Methods and systems for making adjustments to electrical stimulation based on patient-specific factors can includes the following instructions or actions: receiving information regarding at least one of i) electrical response of patient tissue, ii) patient response to stimulation, or iii) an arrangement of the implanted lead or the electrodes of the implanted lead with respect to patient anatomy; and calculating an electrode weight for each of a plurality of the electrodes of the implanted lead based on the received information.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: August 6, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jessica Block, Andrew James Haddock, Rosana Esteller
  • Patent number: 12023505
    Abstract: A sensing electrode selection algorithm is disclosed for use with an implantable pulse generator having an electrode array. The algorithm automatically selects optimal sensing electrodes in the array to be used with a pre-determined stimulation therapy appropriate for the patient. The algorithm preferably senses stimulation artifacts using different sensing electrodes, and more specifically different sensing electrode pairs as is appropriate when differential sensing is used. The algorithm further preferably senses these stimulation artifacts with the patient placed in two or more postures. The algorithm processes the stimulation artifact features measured at the different sensing electrodes and at the different postures to automatically determine one or more sensing electrode pairs that best distinguishes the two or more postures given the prescribed stimulation therapy.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: July 2, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tianhe Zhang, Rosana Esteller, Thomas W. Stouffer
  • Patent number: 12004861
    Abstract: A device includes an EMG processing application operable with a processing module to receive an output signal from EMG testing, wherein the output signal represents electrical activity of at least one muscle. The EMG processing application is operable to process the output signal to detect at least one type of waveform of a plurality of types of waveforms from the output signal and display the detected at least one type of waveform.
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: June 11, 2024
    Inventor: Tomasz Andrzej Kosierkiewicz
  • Patent number: 11980765
    Abstract: A neurostimulation system configured for providing neurostimulation therapy to a patient. A user customizes a pulse pattern on a pulse-by-pulse basis. Electrical stimulation energy is delivered to at least one electrode in accordance with the customized pulse pattern.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: May 14, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Michael A. Moffitt
  • Patent number: 11964189
    Abstract: A training device includes a force receiving component, a location detector, a resistance generator, and a controller. The force receiving component moves along a closed trajectory. The location detector is configured to detect a location of the force receiving component in the closed trajectory and to output a location signal. The resistance generator is configured to exert a resistance on the force receiving component. The controller controls the resistance generator to adjust the resistance based on the location signal.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: April 23, 2024
    Assignee: WISTRON CORPORATION
    Inventors: Chuan-Yen Kao, Yao-Tsung Chang, Chih-Yang Hung
  • Patent number: 11957906
    Abstract: This external stimulus application system is structured so as to comprise: an external stimulus unit that applies an external stimulus to a target area of a user's body; a detection unit that detects changes in a detected area of the user's body during an action of the user; a control unit that causes the external stimulus unit to produce a stimulus if a detected value detected by the detection unit satisfies a prescribed condition; and a storage unit that stores the detected value.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: April 16, 2024
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Hidetoshi Tomita, Yuki Kondo, Motoyasu Yasui, Kenji Iida
  • Patent number: 11957905
    Abstract: An electric current stimulation device includes a first electrode and a second electrode that are arranged in a body, and an output circuit that outputs an electric signal; wherein the electric signal by which the user feels no pain is output from the output circuit, and the electric signal is applied to a distal portion of extremities or near the same by the first electrode and the second electrode when arranging the body at the distal portion of the extremities of the user or near the same.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: April 16, 2024
    Assignee: ITO CO., LTD.
    Inventors: Tsukasa Kurahashi, Mayuko Kurahashi, Daigo Yoshida
  • Patent number: 11957902
    Abstract: A living body stimulator includes a low-frequency pulse generator, a high-frequency signal generator, a synthesizer for forming a synthesized waveform where a high-frequency signal of the high-frequency signal generator is superimposed on a low-frequency pulse signal of the low-frequency pulse generator, a waveform control signal circuit for controlling the synthesizer so that one cycle includes an ON period of the synthesized waveform where the high-frequency signal is superimposed on the low-frequency pulse signal and an OFF period where the high-frequency signal is not superimposed on the low-frequency pulse signal, and an output transformer for receiving the synthesized waveform. An impedance on an output side of the output transformer is set such that a voltage of the synthesized waveform gradually increases and decreases during the ON period on the output of the output transformer when pads connected to the output of the output transformer are attached to the living body.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: April 16, 2024
    Inventor: Ryoji Kuwahata
  • Patent number: 11944821
    Abstract: A computer-implemented method for determining the volume of activation of neural tissue. In one embodiment, the method uses one or more parametric equations that define a volume of activation, wherein the parameters for the one or more parametric equations are given as a function of an input vector that includes stimulation parameters. After receiving input data that includes values for the stimulation parameters and defining the input vector using the input data, the input vector is applied to the function to obtain the parameters for the one or more parametric equations. The parametric equation is solved to obtain a calculated volume of activation.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: April 2, 2024
    Assignee: The Cleveland Clinic Foundation
    Inventors: J. Luis Lujan, Ashutosh Chaturvedi, Cameron McIntyre
  • Patent number: 11931571
    Abstract: A mobility augmentation system assists a user's movement by determining a corresponding electrical stimulation for the movement. A wearable stimulation array includes sensors, electrodes, an electrode multiplexer, and a controller that executes the mobility augmentation system. The sensors measure movement data, and the mobility augmentation system applies a movement model to the measured movement data. The model can determine different electrical actuation instructions depending on the movement stimulated. For example, to stimulate a knee flexion, the movement model output enables a first set of the electrodes to operate as cathodes and a second set of electrodes to operate as anodes. To stimulate a knee extension, the first set of electrodes can be enabled to operate as anodes and a third set of electrodes as cathodes. The user can provide feedback of the applied stimulation, which the system can use to retrain the model and optimize the stimulation to the user.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: March 19, 2024
    Assignee: Cionic, Inc.
    Inventors: Jeremiah Robison, Lina Avancini Colucci, Ren Gibbons
  • Patent number: 11931579
    Abstract: Passive tissue biasing circuitry in an Implantable Pulse Generator (IPG) is disclosed to facilitate the sensing of neural responses by holding the voltage of the tissue to a common mode voltage (Vcm). The IPG's conductive case electrode, or any other electrode, is passively biased to Vcm using a capacitor, as opposed to actively driving the (case) electrode to a prescribed voltage using a voltage source. Once Vcm is established, voltages accompanying the production of stimulation pulses will be referenced to Vcm, which eases neural response sensing. An amplifier can be used to set a virtual reference voltage and to limit the amount of current that flows to the case during the production of Vcm. In other examples, circuitry can be used to monitor the virtual reference voltage as useful to enabling the sensing the neural responses, and as useful to setting a compliance voltage for the current generation circuitry.
    Type: Grant
    Filed: February 20, 2023
    Date of Patent: March 19, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Goran N. Marnfeldt
  • Patent number: 11931583
    Abstract: A neurostimulation system comprises a control system configured to monitor a patient receiving neurostimulation therapy. The neurostimulation therapy has a stimulation cycle comprising a stimulation ON period, in which the patient is receiving neurostimulation, and a stimulation OFF period, in which the patient is not receiving neurostimulation. The control system is programmed to receive electrocardiogram (ECG) data from the patient receiving the neurostimulation therapy. The control system is further programmed to monitor a heart rate of the patient based on the ECG data over at least one stimulation cycle of the neurostimulation therapy. The control system is further programmed to generate an indication of signal stability to be displayed to a user based on the received ECG data.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: March 19, 2024
    Assignee: LivaNova USA, Inc.
    Inventors: Imad Libbus, Scott R. Stubbs, Bruce H. KenKnight, Scott Mazar, Badri Amurthur
  • Patent number: 11911604
    Abstract: A garment is wearable on an anatomical region and includes electrodes contacting the anatomical region when the garment is worn on the anatomical region. An electronic controller is configured to detect electromyography (EMG) signals as a function of anatomical location and time using the electrodes, and identify tremors as a function of anatomical location and time based on the EMG signals.
    Type: Grant
    Filed: April 4, 2023
    Date of Patent: February 27, 2024
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Gaurav Sharma, Patrick Ganzer
  • Patent number: 11883656
    Abstract: A functional electrical stimulation (FES) device includes electrodes arranged to apply functional electrical stimulation to a body part of the user. FES stimulation is performed by: receiving values of a set of user metrics for the user; receiving a target position of the body part represented as values for a set of body part position measurements; determining a user-specific energization pattern for producing the target position based on the received target position and the received values of the set of user metrics for the user; and energizing the electrodes of the FES device in accordance with the determined user-specific energization pattern. The determination may utilize an FES calibration database with records having fields containing: values of the set of user metrics for reference users; energization patterns; and values of the set of body part position metrics for positions assumed by the body part in response to applying the energization patterns.
    Type: Grant
    Filed: October 20, 2022
    Date of Patent: January 30, 2024
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: David A. Friedenberg, Po-Hsu Chen, Samuel Colachis, Nicholas Annetta, Douglas E. Boyd, Collin Dunlap, Ian W. Baumgart, Herbert S. Bresler
  • Patent number: 11872388
    Abstract: An electrostimulation method of at least one muscle group responsible for performing a complex movement includes associating to each of the muscles of the at least one muscle group an electrostimulation channel provided with at least one respective electrode. Each electrostimulation channel is suitable to transmit to the respective muscle bipolar electrical pulses in sequence. For all the electrostimulation channels, a same cycle time defining a repeatable period of stimulation is determined, in which, within the stimulation period, each channel performs its own stimulation sequence. Each stimulation period is sub-divided into two half-periods of equal duration. Each half-period is sub-divided into sub-intervals of the same duration. At least one of the sub-intervals is a stimulation sub-interval wherein a basic sequence of pulses including one or more pulse packets is performed, each pulse packet being given by a predetermined sequence of individual bipolar electric pulses.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: January 16, 2024
    Assignee: VIKTOR S.R.L.
    Inventor: Viktor Terekhov
  • Patent number: 11839762
    Abstract: The present disclosure provides a neuromodulation medical treatment device and a medical treatment neuromodulation method for stimulating peripheral nerves. The device comprises a pulse generator and at least one active electrode connected to the pulse generator. The at least one active electrode has an electrically conductive surface of less than or equal to 0.3100 square inch and the electrically conductive surface is attachable to a patient's skin in a proximity of branches of peripheral nerves. The at least one active electrode is adapted to stimulate via the electrically conductive surface the peripheral nerves by electrical pulses generated by the pulse generator. The control unit controls the pulse generator and sets at least one parameter of generated electrical pulses.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: December 12, 2023
    Assignee: STIMVIA s.r.o.
    Inventors: Lukas Doskocil, Zdenek Krcil, Michal Drahos
  • Patent number: 11839759
    Abstract: An electrical stimulation training and neuromuscular rehabilitation system including a machine-washable stimulation suit with multiple electrodes to provide controlled stimulation of various muscle groups is provided. The stimulation suit may also include one or more integrated biosensors to provide diagnostic capability in addition to stimulation. The system may also include a software platform executable on a user computing device (such as a tablet) that may facilitate control of the stimulation programs (e.g., intensity level, duration, isolation of individual muscle groups vs. full body stimulation) of one or more stimulation suits by the wearer or a fitness practitioner or trainer and/or that may facilitate intervention by a medical provider through a remote telemedicine platform.
    Type: Grant
    Filed: March 21, 2023
    Date of Patent: December 12, 2023
    Assignee: NEURO20 TECHNOLOGIES CORP.
    Inventors: Michael Howard Finkelstein, Dennis Michael Schmitt, Jana Schmitt
  • Patent number: 11819332
    Abstract: A method for determining a desired location at which to apply a neural therapy. An array of electrodes is positioned proximal to neural tissue. A stimulus is applied from the array which evokes a neural compound action potential response in the neural tissue proximal to the array. A plurality of electrodes of the array simultaneously obtain respective measurements of the neural compound action potential response. From the measurements of the neural compound action potential response a desired location for a neural therapy is determined.
    Type: Grant
    Filed: December 24, 2019
    Date of Patent: November 21, 2023
    Assignee: Saluda Medical Pty Ltd
    Inventors: John Louis Parker, Dean Michael Karantonis
  • Patent number: 11813454
    Abstract: A method of stimulating muscle in a person having neurological damage, by applying electric current to nerves at an area above an area of neurological damage, bypassing or bridging an area of neurological damage, and moving the muscle in a natural manner. A method of moving muscles of a paraplegic or a person who suffers from other movement-related disorders of the body by applying electric current to nerves at an area above an area of neurological damage, bypassing or bridging an area of neurological damage, and moving normally non-functioning muscles and moving normally non-functioning limbs.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: November 14, 2023
    Assignee: IINN, Inc.
    Inventor: Jawad A. Shah
  • Patent number: 11786737
    Abstract: Medical device systems and methods for providing spinal cord stimulation (SCS) are disclosed. The SCS systems and methods provide therapy below the perception threshold of the patient. The methods and systems are configured to measure neurological responses to stimulation and use the neurological responses as biomarkers to maintain and adjust therapy. An example of neurological responses includes an evoked compound action potential (ECAP).
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: October 17, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rosana Esteller, Rafael Carbunaru
  • Patent number: 11786743
    Abstract: A medical device stores a set of stimulation profiles, wherein each stimulation profile of the set of stimulation profiles is associated with a set of values for stimulation parameters; selects from the set of stimulation profiles, one or more active stimulation profiles; produces, by a stimulation generator, multiple electrical pulses based on the one or more active stimulation profiles; and separately controls parameter values of respective individual pulses of the multiple pulses.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: October 17, 2023
    Assignee: Medtronic, Inc.
    Inventors: Erik J. Peterson, Mandla Shongwe
  • Patent number: 11779762
    Abstract: One aspect of the present disclosure is a system including a waveform generator, a controller, and an electrical contact. The waveform generator is for generating an electrical nerve conduction block (ENCB). The controller is coupled with the waveform generator. The controller is configured to receive an input comprising at least one parameter to adjust the ENCB. The electrical contact is coupled with the waveform generator. The electrical contact is configured to be placed into contact with a nerve. The electrical contact comprises a high charge capacity material that prevents formation of damaging electro-chemical products at a charge delivered by the ENCB. The electrical contact is configured to deliver the ENCB to the nerve to block transmission of a signal related to a pain through the nerve.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: October 10, 2023
    Assignee: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Niloy Bhadra, Narendra Bhadra, Kevin L. Kilgore, Scott Lempka, Jesse Wainright, Tina Vrabec, Manfred Franke
  • Patent number: 11771888
    Abstract: A first electrode, a second electrode, a third electrode and a fourth electrode are placed on a head of the patient. The electrodes are electrically connected to a master unit or sub-control unit that generates a first stimulation signal, during a first time period, to the first and second electrodes to stimulate the brain inside the head. The third and fourth electrodes receive a first brain signal, during a second time period, and forwards the first brain signal to the master unit or sub-control unit which analyzes the first brain signal and adapting a second stimulation signal based on information in the first brain signal.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: October 3, 2023
    Assignee: EXONEURAL NETWORK AB
    Inventors: Lars Dernebo, Fredrik Lundqvist
  • Patent number: 11759625
    Abstract: A electrical treatment device (100) includes a band-like member (20), a first electrode portion (41), a second electrode portion (42), a first mark portion (31) configured to be aligned with a specific position of a right lower limb when the band-like member (20) is wrapped around the right lower limb such that the first electrode portion (41) is guided to a first target position and the second electrode portion (42) is guided to a second target position, and a second mark portion (32) configured to be aligned with a specific position of a left lower limb when the band-like member (20) is wrapped around the left lower limb such that the first electrode portion (41) is guided to a third target position and the second electrode portion (42) is guided to a fourth target position.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: September 19, 2023
    Assignee: OMRON HEALTHCARE CO., LTD.
    Inventors: Tamaki Ito, Tsuyoshi Ogihara, Taiki Yukutake
  • Patent number: 11759674
    Abstract: A ground-effect footplate against which a user applies plantar force and moves their foot in 3D across all seven lower-extremity biomechanical axes to accomplish specific as well as global ambulatory objectives related to lower extremity performance improvement, injury prevention and rehabilitation. A device comprising at least one articulating leg connected to a ground-effect footplate and a surface for a user to position against. The device can be used in conjunction with software to create virtual ambulatory environments that mimic GRFVs and cause moments of force that initiate muscular activations that substantially mimic human ambulation, and can couple those movements with non-functional movements in order to improve ROM, speed, strength, and proprioception.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: September 19, 2023
    Inventor: Andre Foucault
  • Patent number: 11752339
    Abstract: Systems and methods of generating and applying a synthetic neuromodulatory signal are described. A subject may be put under a particular condition that causes an effect in the subject. While the subject is under the condition, a recording of neurogram signals derived from the condition can be made from the subject. For example, neuronal signals traveling on the vagus nerve of the subject may be monitored and recorded. The neurogram may then be used to create a synthetic neuromodulatory signal that can be administered to a user. When the synthetic neuromodulatory signal is administered to the user, the user may experience the same effect as the subject that had been placed in the condition, even though the user was never put under the same condition.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: September 12, 2023
    Assignee: SRI International
    Inventors: Christopher Connolly, Patrick Lincoln, Maneesh Yadav, John Cornwell, Bhaskar Ramamurthy
  • Patent number: 11738195
    Abstract: A portable electrical stimulation device is disclosed. In one aspect, the device includes a pair of electrodes configured to be electrically coupled to a user and a wave generator configured to provide an electrical signal to the user via the pair of electrodes. The wave generator is further configured to generate the electrical signal at one of a plurality of levels. Each of the plurality of levels is defined by at least a frequency, a peak voltage, and a peak current. For each of the levels the frequency is in a range of about 50 Hz-about 500 Hz, the peak voltage is in a range of about 40 V-about 250 V, the peak current is in a range of about 25 mA-about 150 mA, and the frequency and the peak voltage have a generally inverse relationship.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: August 29, 2023
    Assignee: NuEnerchi, Inc.
    Inventors: Sam Ira Young, Jeffrey Karl Lucas, Bruce Wayne Nash, John R Haggis, Robert M Salter, III
  • Patent number: 11724110
    Abstract: A stimulation therapy system dynamically modifies therapy intensity based on measured neurotransmitter levels. In some examples, the system delivers, via an electrode implanted in a brain of a patient and stimulation circuitry, an electrical stimulus; monitors an electrical current generated by the stimulation circuitry to deliver the electrical stimulus; determines, based on the electrical current, a value representative of a concentration of dopamine in the brain of the patient; determines, based on the value representative of the concentration of dopamine, a value for one or more stimulation parameters that at least partially define electrical stimulation therapy; and delivers, via the electrode, the electrical stimulation therapy.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: August 15, 2023
    Assignee: Medtronic, Inc.
    Inventors: Jadin C. Jackson, Alan Shi
  • Patent number: 11717682
    Abstract: Apparatus for transcutaneous electrical nerve stimulation in humans, the apparatus comprising: a housing; a stimulation unit mounted within the housing for electrically stimulating nerves; an electrode array releasably mounted to the housing and connectable to the stimulation means, the electrode array comprising a plurality of electrodes for electrical stimulation of nerves; a control unit mounted to the housing and electrically connected to the stimulation unit for controlling at least one characteristic of the stimulation unit; a monitoring unit mounted to the housing and electrically connected to the stimulation unit for monitoring at least one characteristic of the stimulation unit; a user interface unit mounted to the housing and electrically connected to the control unit for controlling the stimulation unit; a display unit mounted to the housing and electrically connected to the control unit and the monitoring unit for displaying the status of the stimulations unit; and a strap attached to the housing;
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: August 8, 2023
    Assignee: NeuroMetrix, Inc
    Inventors: Shai N. Gozani, Xuan Kong, Andres Aguirre, Glenn Herb, Marc Cryan, Michael Williams