Combined Cardioverting/defibrillating And Pacing Patents (Class 607/4)
  • Patent number: 8024031
    Abstract: Device for classifying tachyarrhythmia that obtains pre-defined values, monitors atrial intervals and compares lengths of each interval with pre-defined value IL, stores length of atrial interval if length is shorter than IL, in case X of most recent Y number of atrial intervals have length shorter than IL, evaluates most recent <=N atrial intervals with length <IL and performs test for stored lengths via criteria, classifies atrial tachyarrhythmia as stable if all tested lengths pass >=1 criteria, and controls a cardiac device depending on the classification. Atrial intervals are first evaluated by using the “X-out-of-Y” criterion and subsequently checked for stability after an atrial tachyarrhythmia is detected using “X-out-of-Y” criterion. For stability check, only intervals found shorter than the interval limit are used. Check is based on interval-to-interval comparison rather than as generally practiced, comparisons of individual intervals with the minimum or average of all intervals.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: September 20, 2011
    Assignee: Biotronik CRM Patent AG
    Inventors: Indra B. Nigam, Dirk Muessig, Hannes Kraetschmer
  • Patent number: 8019415
    Abstract: An implantable cardiac stimulator having an at least partially electrically conductive housing, a ventricular stimulation unit connectable to left ventricular or right ventricular stimulation electrode and designed to generate ventricular stimulation pulses for stimulation of heart ventricle, having terminal for right ventricular defibrillation electrode. Has far-field electrogram detection unit (FFEDU) and stimulation success detecting unit (SSDU), of which FFEDU has first input connected to the terminal for right ventricular defibrillation electrode and second input connected to housing. FFEDU detects far-field electrocardiogram based on electric potentials applied to inputs and deliver these potentials to SSDU.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: September 13, 2011
    Assignee: Biotronik CRM Patent AG
    Inventors: Thomas Doerr, Frank Tscherch, Ulrich Tietze
  • Patent number: 8010190
    Abstract: The present invention comprises a cardiopulmonary resuscitation (CPR) feedback device and a method for performing CPR. A chest compression detector device is provided that measures chest compression during the administration of CPR. The chest compression detector device comprises a signal transmitter operably positioned on the chest of the patient and adapted to broadcast a signal, and a signal receiver adapted to receive the signal. The chest compression detector device also comprises a processor, operably connected to the signal transmitter and the signal receiver. The processor repeatedly analyzes the signal received to determine from the signal a series of measurements of compression of the chest, and feedback is provided to the rescuer based on the series of measurements.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: August 30, 2011
    Assignee: Cardiac Science Corporation
    Inventors: Kenneth F. Olson, Peter Peterson
  • Patent number: 8005545
    Abstract: A method is provided, including identifying that a subject is at risk of suffering from atrial fibrillation (AF). Responsively to the identifying, a risk of an occurrence of an episode of the AF is reduced by applying an electrical current to a site of the subject selected from the group consisting of: a vagus nerve, a sinoatrial (SA) node fat pad, a pulmonary vein, a carotid artery, a carotid sinus, a coronary sinus, a vena cava vein, a jugular vein, an azygos vein, an innominate vein, and a subclavian vein, and configuring the current to stimulate autonomic nervous tissue in the site. Other embodiments are also described.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: August 23, 2011
    Assignee: Bio Control Medical (B.C.M.) Ltd.
    Inventors: Tamir Ben-David, Omry Ben-Ezra, Ehud Cohen
  • Patent number: 8005542
    Abstract: Apparatus for treating a subject suffering from spontaneous atrial fibrillation includes an electrode device, adapted to be coupled to a vagus nerve of the subject, and a control unit, adapted to drive the electrode device to apply an electrical current to the vagus nerve, and to configure the current to maintain the spontaneous AF for at least about 24 hours, so as to modify blood flow within the atria and reduce risk of thromboembolic events.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: August 23, 2011
    Assignee: Bio Control Medical (B.C.M.) Ltd.
    Inventors: Omry Ben-Ezra, Ehud Cohen, Tamir Ben-David
  • Publication number: 20110202099
    Abstract: An active medical device such as pacemaker, defibrillator and/or resynchronizer with automatic optimization of atrioventricular delay is disclosed. The active medical device is adapted for analyzing a signal delivered by a hemodynamic sensor such as an endocardial acceleration sensor, whose variation according to the AVD is represented by a sigmoid function. An optimal AVD is searched by: applying a reference AVD (XC), at least one left AVD (XL, XLL) and at least one right AVD (XR, XRR); measuring the corresponding hemodynamic parameters (Y1, Y2, Y3, Y4, Y5); evaluating the second derivative of the function at the respective points (XC, Y3; XL, Y2, XR, Y4) of the characteristic corresponding to the reference AVD, to the left AVD and to the right AVD; estimating from these values of second derivatives, the position of an intermediate point of the characteristic for which the second derivative is zero or minimum, and determining the corresponding AVD for that intermediate point as the optimal AVD.
    Type: Application
    Filed: February 17, 2011
    Publication date: August 18, 2011
    Inventor: Alaa MAKDISSI
  • Patent number: 8000788
    Abstract: An implantable medical device such as an implantable pulse generator that includes EEG sensing for monitoring and treating neurological conditions, and leadless ECG sensing for monitoring cardiac signals. The device includes a connector block with provisions for cardiac leads which may be used/enabled when needed. If significant co-morbid cardiac events are observed in patients via the leadless ECG monitoring, then cardiac leads may be subsequently connected for therapeutic use.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: August 16, 2011
    Assignee: Medtronic, Inc.
    Inventors: Jonathon E. Giftakis, Nina M. Graves, Jonathan C. Werder, Eric J. Panken
  • Publication number: 20110196439
    Abstract: Detected changes in atrial activation can be used to discriminate between hemodynamically stable and hemodynamically unstable tachyarrhythmias.
    Type: Application
    Filed: February 7, 2011
    Publication date: August 11, 2011
    Inventors: Dan Li, Arjun Sharma
  • Patent number: 7996072
    Abstract: Cardiac sensing and/or stimulation devices and methods that adapt to implant location and positioning, and may employ automated vector selection from multiple electrodes. Devices include a housing having a first face opposing a second face, and an edge extending around the perimeter. A pulse generator and controller are coupled to three or more electrodes. Electrode arrangement facilitates selection of the particular electrodes that sense cardiac activity irrespective of one or more of positioning of the device, rotation of the housing, and which of the first and second faces of the housing is orientated toward the patient's skin. A first vector may be selected that provides for sensing cardiac activity, and a second vector may sense skeletal muscle activity. The vectors may be selected based on amplitude or signal-to-noise ratio exceeding a predetermined threshold. Methods may involve delivering defibrillation or cardioversion energy and/or determining cardiac rhythm states using selected vectors.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: August 9, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Paul Allan Haefner
  • Patent number: 7996081
    Abstract: A resuscitation device for automatic compression of victim's chest using a compression belt which exerts force evenly over the entire thoracic cavity. The belt is constricted and relaxed through a motorized spool assembly which repeatedly tightens the belt and relaxes the belt to provide repeated and rapid chest compression. An assembly includes various resuscitation devices including chest compression devices, defibrillation devices, and airway management devices, along with communications devices and senses with initiate communications with emergency medical personnel automatically upon use of the device.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: August 9, 2011
    Assignee: ZOLL Circulation, Inc.
    Inventors: Steven R. Bystrom, Darren R. Sherman, Kenneth H. Mollenauer
  • Patent number: 7991467
    Abstract: Subcutaneous Implantable cardioverter-defibrillators (SubQ ICDs) are disclosed that are entirely implantable subcutaneously with minimal surgical intrusion into the body of the patient and provide distributed cardioversion-defibrillation sense and stimulation electrodes for delivery of cardioversion-defibrillation shock and pacing therapies across the heart when necessary. The SubQ ICD is implemented with other implantable and external medical devices and communicates to provide drugs and therapy in a coordinated and synergistic manner.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: August 2, 2011
    Assignee: Medtronic, Inc.
    Inventors: H. Toby Markowitz, Douglas A. Hettrick, William J. Combs, Todd J. Sheldon, David L. Thompson, Raja N. Ghanem, Kevin A. Wanasek
  • Patent number: 7983752
    Abstract: Implantable cardiac stimulator, with chamber stimulation unit connectable to left/right ventricular stimulation electrode to generate/deliver chamber stimulation pulses for stimulation of ventricle; ventricular sensing unit (VSU) to detect respective chamber contraction and deliver ventricular sensing signal when chamber contraction detected; optional atrial stimulation unit, connectable to atrial stimulation electrode to generate atrial stimulation pulses to stimulate atrium; atrial sensing unit, to detect atrial contraction, deliver atrial sensing signal indicating respective atrial event; tachycardia detection unit, connected to VSU to detect and categorize ventricular/supraventricular tachycardia; treatment control unit (TCU), triggers chamber stimulation unit to deliver antitachycardiac stimulation (ATP); analyzer unit, connected to atrial sensing unit and TCU.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: July 19, 2011
    Assignee: Biotronik CRM Patent AG
    Inventors: Thomas Doerr, Peter Schneider, Torsten Lang
  • Publication number: 20110172544
    Abstract: A medical device and method for determining baroreflex sensitivity (BRS) based on one or more respiration cycles. The BRS determination may be performed continuously based on measurements of heart rate, blood pressure, and respiration cycles.
    Type: Application
    Filed: January 25, 2011
    Publication date: July 14, 2011
    Applicant: Medtronic, Inc.
    Inventors: Yong K. Cho, Tommy D. Bennett
  • Publication number: 20110172727
    Abstract: An implantable medical device (IMD) identifies suspected non-lethal ventricular arrhythmia, and takes one or more actions in response to the identification to avoid or delay delivery of a defibrillation or cardioversion shock. The IMD employs number of intervals to detect (NID) thresholds for detection of ventricular arrhythmias. When a NID threshold is met, the IMD determines whether the ventricular rhythm is a suspected non-lethal rhythm despite satisfying a NID threshold. In some embodiments, the IMD increases the NID threshold, i.e., extends the time for detection, in response to identifying a rhythm as a suspected non-lethal rhythm, and monitors subsequent ventricular beats to determine if the increased NID threshold is met before detecting a ventricular arrhythmia and delivering therapy. The IMD can determine whether a rhythm is a suspected non-lethal arrhythmia by, for example, comparing the median ventricular cycle length (VCL) to the median atrial cycle length (ACL).
    Type: Application
    Filed: March 22, 2011
    Publication date: July 14, 2011
    Inventor: Kevin T. Ousdigian
  • Patent number: 7979122
    Abstract: Preventing sudden cardiac death involves providing an implantable device configured to deliver only two forms of cardiac therapy, the two forms of cardiac therapy including an anti-tachyarrhythmia therapy and an asystole prevention pacing therapy. The tachyarrhythmia therapy is delivered in response to detecting a tachyarrhythmia, and the pacing therapy is delivered in response to detection of cardiac asystole. An implantable cardiac device for preventing sudden cardiac death may be configured to be fully operational upon setting a therapy On/Off parameter and two or less programmable parameters associated with therapy delivery. Control circuitry configures the device for operation to prevent sudden cardiac death after programming the two or less programmable parameters and enabling the therapy On/Off parameter.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: July 12, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Mike Favet, Eric G. Lovett
  • Patent number: 7979120
    Abstract: One embodiment includes an apparatus that includes an implantable device housing, a capacitor disposed in the implantable device housing, the capacitor including a dielectric comprising CaCu3Ti4O12 and BaTiO3, the dielectric insulating an anode from a cathode and pulse control electronics disposed in the implantable device housing and connected to the capacitor.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: July 12, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Gregory J. Sherwood
  • Publication number: 20110166613
    Abstract: Methods and systems for selecting tachyarrhythmia therapy based on the morphological organization level of the arrhythmia are described. Morphological organization levels of arrhythmias are associated with cardiac therapies. The morphological organization levels are related to cardiac signal morphologies of the arrhythmias. An arrhythmia episode is detected and the morphological organization level of the arrhythmia episode is determined. A cardiac therapy associated with the morphological organization level of the arrhythmia episode is delivered to treat the arrhythmia. For example, the morphological organization levels may be associated with the cardiac therapies based on one or more of retrospective database analysis, patient therapy tolerance, and physician input. The associations may be static or may be dynamically adjusted based on therapy efficacy.
    Type: Application
    Filed: March 15, 2011
    Publication date: July 7, 2011
    Inventors: Dan Li, Yayun Lin
  • Publication number: 20110160782
    Abstract: A method and device to enable a medical or surgical procedure using electro-cautery on a patient with an implantable device in a cautery-safe mode of operation. In one embodiment, the invention provides an electronic implantable device programmer having a computer processor, and a display screen configured to display information based on signals from the computer processor. The programmer also includes an input device, and a wireless transmitter controlled by the computer processor. The programmer display and input give the operator the option of programming an implanted electronic device in a cautery-safe mode.
    Type: Application
    Filed: June 3, 2010
    Publication date: June 30, 2011
    Applicant: ResQCor
    Inventors: Keith Lurie, Barbara S. Gold, David Benditt, Andres Belalcazar
  • Patent number: 7970463
    Abstract: A cardiac rhythm management (CRM) system includes an implantable cardioverter defibrillator (ICD) and an external system. The ICD includes a plurality of functional modules performing tachyarrhythmia classification and therapy control functions using atrial tachyarrhythmia rate thresholds that are set to a unified value. In one embodiment, the CRM system allows a user to activate and deactivate each of the functional modules and program the unified value using the external system.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: June 28, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, James O. Gilkerson, James Kalgren
  • Patent number: 7970464
    Abstract: A system and method are disclosed for prompting emergency medical personnel who are attending to a patient. When the patient presents a heart rhythm that is a non-perfusing and non-shockable rhythm or perfusing but unstable, the attending personnel are prompted to administer therapy, such as reestablishing perfusion by performing CPR. The attending personnel may also be urged to defer taking the pulse of the patient.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: June 28, 2011
    Assignee: Physio-Control, Inc.
    Inventors: Robert G Walker, James M Owen
  • Publication number: 20110152956
    Abstract: According to various method embodiments for pacing a heart and avoiding unwanted stimulation of a phrenic nerve during cardiac pacing, a desired pacing time for delivering a cardiac pace is determined, and a desired nerve traffic inhibition time to inhibit nerve traffic in the phrenic nerve is determined using the desired pace time. The cardiac pace is delivered at the desired pacing time and nerve traffic in the phrenic nerve is inhibited at the desired nerve traffic inhibition time.
    Type: Application
    Filed: December 8, 2010
    Publication date: June 23, 2011
    Inventors: Juan Gabriel Hincapie Ordonez, Holly Rockweiler
  • Patent number: 7962207
    Abstract: An Automated External Defibrillator (AED) for delivering therapeutic electrical energy to a patient's heart comprising at least one variable capacitance capacitor having a large positive voltage coefficient such that a given amount of energy can be stored at a lower voltage than a traditional fixed capacitor having an equivalent capacitance. Due to the variable capacitance capacitor's ability to store energy at a lower voltage, initial defibrillation current levels are reduced effectively minimizing the risk of tissue damage caused by high initial current levels. In addition, the use of a variable capacitance capacitor reduces the amount of current decay throughout the discharge cycle as opposed to current AED designs utilizing fixed capacitance capacitors which experience an exponential decline in defibrillation current during the discharge cycle.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: June 14, 2011
    Assignee: Cardiac Science Corporation
    Inventor: Rabih C. Nassif
  • Patent number: 7962210
    Abstract: An implantable medical device such as a cardiac pacemaker or implantable cardioverter/defibrillator with the capability of receiving communications in the form of speech spoken by the patient. An acoustic transducer is incorporated within the device which along with associated filtering circuitry enables the voice communication to be used to affect the operation of the device or recorded for later playback.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: June 14, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Douglas R. Daum, Qingsheng Zhu, Bruce H. KenKnight
  • Publication number: 20110137359
    Abstract: An implantable medical device (IMD) includes a lead having one or more sensing electrodes and one or more therapy delivery electrodes, and a sensor configured to detect the presence of static and time-varying scan fields in a magnetic resonance imaging (MRI) environment. A controller, in electrical communication with the lead and the sensor, is configured to process signals related to tachycardia events sensed via the one or more sensing electrodes and to deliver pacing and shock therapy signals via the one or more therapy delivery electrodes. The controller compares the sensed static and time-varying scan fields to static and time-varying scan field thresholds. The controller controls delivery of anti-tachycardia pacing and shock therapy signals as a function of the detected tachycardia events, the comparison of the sensed static scan field to the static scan field threshold, and the comparison of the time-varying scan fields to the time-varying scan field thresholds.
    Type: Application
    Filed: October 19, 2010
    Publication date: June 9, 2011
    Inventors: Scott R. Stubbs, James O. Gilkerson, Hiten J. Doshi, Diane Schuster
  • Publication number: 20110137360
    Abstract: Various method embodiments detect a concurrent therapy, where the concurrent therapy includes a plurality of therapy pulses. Detecting the concurrent therapy includes detecting at least one electrical pulse, extracting at least one characteristic from the at least one electrical pulse, comparing the at least one characteristic of the detected pulse to at least one characteristic of therapy pulses, and detecting that the concurrent therapy is being applied if the at least one characteristic of the detected pulse favorably compares to the at least one characteristic of the therapy pulses.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 9, 2011
    Inventors: David J. Ternes, Stephen Ruble, Jason J. Hamann, Kenneth L. Baker
  • Patent number: 7957799
    Abstract: An external cardiac medical device for delivering Cardiac Potentiation Therapy (CPT). Techniques used with the device include initial diagnosis of the patient, delivery of the CPT, and configuration of the external device, so that CPT can be effectively and efficiently provided. In particular, these techniques include initially determining whether a patient should receive CPT, how to set the coupling interval for delivering CPT, how to configure the external medical device to deliver CPT stimulation pulses while not adversely affecting the device's ability to sense a patient's cardiac parameters and/or signals.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: June 7, 2011
    Assignee: Medtronic, Inc.
    Inventors: Joseph L. Sullivan, Fred W. Chapman, Robert G. Walker, William J. Havel, D. Curtis Deno
  • Patent number: 7953480
    Abstract: A method and apparatus are disclosed for treating mitral regurgitation with electrical stimulation. By providing pacing stimulation to the left atrium during ventricular systole, a beneficial effect is obtained which can prevent or reduce the extent of mitral regurgitation.
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: May 31, 2011
    Assignee: Cadiac Pacemakers, Inc.
    Inventor: Tamara Colette Baynham
  • Patent number: 7953483
    Abstract: An active implantable medical device, such as a pacemaker, cardioverter and/ or defibrillator of AAI or AAI/DDD type, with detection of ventricular tachycardiae. This device senses spontaneous ventricular and atrial events; delivers atrial pacing pulses; and is able to apply, after delivery of an atrial pacing pulse, concurrently with sensing ventricular events, a refractory period (PR) and a safety window (FS) of predetermined durations; and determining the beginning of a spontaneous ventricular cycle in response to sensing of a ventricular event out of the safety window (R0, R1, R2, R3).
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: May 31, 2011
    Assignee: ELA Medical S.A.S.
    Inventors: Benoit Hallier, Amel Amblard
  • Publication number: 20110118798
    Abstract: An implantable cardioverter/defibrillator (ICD) includes an Anti-Tachycardia Pacing Before Charge (ATP-BC) mode according to which one or more high-voltage capacitors for storing defibrillation energy are charged in preparation of delivering a defibrillation shock only if a ventricular tachycardia (VT) sustains after an ATP delivery. Fast ATP delivery and effect verification methods are applied to avoid significant delay in delivering the defibrillation shock when found necessary to terminate the VT. A switch is provided such that a user decides whether to activate the ATP-BC mode or to deliver the defibrillation shock without delivering the ATP.
    Type: Application
    Filed: January 17, 2011
    Publication date: May 19, 2011
    Inventors: David L. Perschbacher, Karin K. Roof, Rebecca Bloomfield
  • Patent number: 7945327
    Abstract: In one embodiment, an external programming device is operable to determine and graphically display power consumption of an implantable medical device (“IMD”). In accordance with this particular embodiment, the external programming device includes a graphical user interface display and a communication interface operable to receive information from an IMD. In this embodiment, the external programming device is operable to receive IMD parameter settings and/or battery parameter values from the IMD, calculate a power consumption rate for the IMD, and then display the power consumption on the graphical user interface display using a graphical visual indicator.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: May 17, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Rajesh Gandhi, Jonathan Kelly, Derek Bohn
  • Patent number: 7941214
    Abstract: A method and apparatus for detecting a cardiac event in a medical device that includes sensing cardiac signals from a plurality of electrodes, charging an energy storage device in response to the sensed cardiac signals, determining whether the charging of the energy storage device is completed, and determining whether the cardiac event is confirmed in response to an asynchronous look back.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: May 10, 2011
    Assignee: Medtronic, Inc.
    Inventors: Karen J. Kleckner, Robert W. Stadler
  • Publication number: 20110098763
    Abstract: A vented set screw is used to secure a connection between an implantable medical device and an implantable lead. The vented set screw includes one or more venting channels that allow liquid and/or gas to flow out of the implantable medical device when the implantable lead is being inserted into the implantable medical device and secured during an implantation procedure. This prevents pressure from building up at the connection, thereby ensuring proper performance of sensing and/or therapy delivery functions of the implantable medical device.
    Type: Application
    Filed: October 25, 2010
    Publication date: April 28, 2011
    Inventors: Lawrence D. Swanson, John M. Edgell, Nick A. Youker, Scott Dahl, Kevin P. Rodby
  • Patent number: 7930022
    Abstract: An implantable medical device detects a tachyarrhythmia of a heart. During the detected tachyarrhythmia, the device determines a local myocardial impedance. Using the local myocardial impedance, the device determines whether there is sufficient perfusion to the heart. The device can then either deliver a less aggressive device therapy in response to the detected tachyarrhythmia when there is sufficient perfusion to the heart, or deliver a more aggressive device therapy in response to the detected tachyarrhythmia when there is insufficient perfusion to the heart. The perfusion information can also be used to alter tachyarrhythmia detection or classification.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: April 19, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yi Zhang, Allan C. Shuros, Dan Li
  • Patent number: 7930024
    Abstract: An implantable medical device (IMD) identifies suspected non-lethal ventricular arrhythmia, and takes one or more actions in response to the identification to avoid or delay delivery of a defibrillation or cardioversion shock. The IMD employs number of intervals to detect (NID) thresholds for detection of ventricular arrhythmias. When a NID threshold is met, the IMD determines whether the ventricular rhythm is a suspected non-lethal rhythm despite satisfying a NID threshold. In some embodiments, the IMD increases the NID threshold, i.e., extends the time for detection, in response to identifying a rhythm as a suspected non-lethal rhythm, and monitors subsequent ventricular beats to determine if the increased NID threshold is met before detecting a ventricular arrhythmia and delivering therapy. The IMD can determine whether a rhythm is a suspected non-lethal arrhythmia by, for example, comparing the median ventricular cycle length (VCL) to the median atrial cycle length (ACL).
    Type: Grant
    Filed: January 8, 2004
    Date of Patent: April 19, 2011
    Assignee: Medtronic, Inc.
    Inventor: Kevin T. Ousdigian
  • Patent number: 7922663
    Abstract: An apparatus comprising an implantable acoustic transducer, an acoustic transducer interface circuit communicatively coupled to the acoustic transducer, and a controller circuit communicatively coupled to the acoustic transducer interface circuit. The controller is configured to, in response to receiving an indication of a patient condition associated with a development of a blood vessel obstruction, initiate delivery of acoustic energy that mitigates the blood vessel obstruction. Other systems and methods are described.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: April 12, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Binh C. Tran, Abhi Chavan, Rodney W. Salo, Jonathan Kwok
  • Publication number: 20110082377
    Abstract: In an example, a medical device includes a physiological data monitor (PDM), a memory, and a processor. The PDM is configured to monitor a physiological data parameter. The memory circuit is configured to store data collected by the PDM. The processor is configured to detect a data capture event and capture a first segment of physiological data associated with the data capture event. The processor is also configured to determine an amount of memory storage space available and determine a first priority level for the first segment of physiological data. The processor is further configured to determine a second priority level for a second segment of physiological data stored previously and select a processing scheme using the first and second priority levels. Finally, the processor is configured to process, using the processing scheme, the first and second segments of physiological data and store the first segment of physiological data.
    Type: Application
    Filed: September 22, 2010
    Publication date: April 7, 2011
    Inventors: Deepa Mahajan, Yanting Dong, David L. Perschbacher
  • Patent number: 7917216
    Abstract: Tachyarrhythmia is treated by applying anti-tachycardia pacing through at least one multi-site electrode set located on, in or around the heart. The electrode set is arranged and located such that an electrical activation pattern having a wave-front between substantially flat and concave is generated through a reentrant circuit associated with the tachyarrhythmia. The electrode set may be one of a plurality of predefined, multi-site electrode sets located on, in or around the atria. Alternatively, the electrode set may be formed using at least two selectable electrodes located on, in or around the atria.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: March 29, 2011
    Assignee: Pacesetter, Inc.
    Inventors: Kyungmoo Ryu, Jong Gill, Xiaoyi Min, Annapurna Karicherla, Gene A. Bornzin
  • Publication number: 20110071584
    Abstract: Pacing post-conditioning (PPC) therapy is applied to a patient to minimize ischemic injury associated with MI and/or reperfusion injury associated with a post-MI revascularization procedure. In various embodiments, a PPC therapy is delivered by executing a pacing protocol with pacing parameters determined and dynamically adjusted based on patient-specific factors to ensure efficacy and safety of the patient.
    Type: Application
    Filed: September 8, 2010
    Publication date: March 24, 2011
    Inventors: Eric A. Mokelke, James A. Esler
  • Publication number: 20110071585
    Abstract: Methods, systems and devices are provided for anchoring an intravascular implantable device within a vessel that is located superior to the heart, i.e. above the heart in a direction toward the head of a patient. Also provided is a method of providing an intravascular device and instructions for implanting the intravascular device, comprising providing an intravascular device having an elongate device body with a proximal end and a distal end that is adapted for chronic implantation within the vasculature of a patient and that includes a distal portion of the intravascular device proximate the distal end of the elongate device body, and providing instructions for chronically implanting the intravascular device substantially wholly within the vasculature of a patient in a target vessel superior to the heart of the patient.
    Type: Application
    Filed: December 1, 2010
    Publication date: March 24, 2011
    Inventors: Terrance Ransbury, Kevin Holbrook
  • Publication number: 20110071583
    Abstract: The present invention relates to materials and methods for monitoring and predicting a heart failure patient's physiological response to cardiac resynchronization therapy. More specifically, the present invention relates to the endogenous protein galectin-3 and its use in monitoring progression of disease in a patient undergoing cardiac resynchronization therapy, and as a predictor of response to cardiac resynchronization therapy.
    Type: Application
    Filed: August 25, 2010
    Publication date: March 24, 2011
    Applicant: BG MEDICINE, INC.
    Inventor: PIETER MUNTENDAM
  • Publication number: 20110066198
    Abstract: A method and device for delivering therapy that includes an electrode to sense cardiac signals and to deliver a therapy, a therapy delivery module coupled to the electrode to deliver a therapy via the electrode in response to the sensed cardiac signals, a sensor emitting light and detecting emitted light scattered by a tissue volume adjacent the optical sensor to generate a corresponding detected light intensity output signal, a control module coupled to the sensor to control light emission of the sensor in response to delivering the therapy, and a controller coupled to the therapy delivery module and the sensor, the controller configured to determine tissue oxygenation measurements in response to the output signal, determine a tissue oxygenation trend in response to the tissue oxygenation measurements, and determine whether the delivered therapy restored cardiac hemodynamic function in response to the determined tissue oxygenation trend.
    Type: Application
    Filed: July 29, 2010
    Publication date: March 17, 2011
    Inventors: Jonathan L. Kuhn, Can Cinbis, David A. Anderson, William J. Havel
  • Patent number: 7908001
    Abstract: Methods and systems for selecting tachyarrhythmia therapy based on the morphological organization level of the arrhythmia are described. Morphological organization levels of arrhythmias are associated with cardiac therapies. The morphological organization levels are related to cardiac signal morphologies of the arrhythmias. An arrhythmia episode is detected and the morphological organization level of the arrhythmia episode is determined. A cardiac therapy associated with the morphological organization level of the arrhythmia episode is delivered to treat the arrhythmia. For example, the morphological organization levels may be associated with the cardiac therapies based on one or more of retrospective database analysis, patient therapy tolerance, and physician input. The associations may be static or may be dynamically adjusted based on therapy efficacy.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: March 15, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Dan Li, Yayun Lin
  • Patent number: 7904151
    Abstract: Apparatus is provided including an implantable sensor, adapted to sense an electrical parameter of a heart of a subject, and a first control unit, adapted to apply pulses to the heart responsively to the sensed parameter, the pulses selected from the list consisting of: pacing pulses and anti-arrhythmic energy. The apparatus further includes an electrode device, adapted to be coupled to a site of the subject selected from the list consisting of: a vagus nerve of the subject, an epicardial fat pad of the subject, a pulmonary vein of the subject, a carotid artery of the subject, a carotid sinus of the subject, a coronary sinus of the subject, a vena cava vein of the subject, a right ventricle of the subject, and a jugular vein of the subject; and a second control unit, adapted to drive the electrode device to apply to the site a current that increases parasympathetic tone of the subject and affects a heart rate of the subject. The first and second control units are not under common control.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: March 8, 2011
    Assignee: Bio Control Medical (B.C.M.) Ltd.
    Inventors: Tamir Ben-David, Shai Ayal, Omry Ben-Ezra, Ehud Cohen
  • Publication number: 20110054552
    Abstract: The purpose is to provide an electrode layout method of a heart treatment apparatus, which is capable of improving the heart treatment efficiency by setting electrodes in the heart as well as reducing the invasion into the patient so as to effectively stimulate a site which needs to be stimulated. There is provided an electrode layout method of a heart treatment apparatus comprising: inserting at least two lines of leads which are provided to the heart treatment apparatus and which have electrodes on their distal ends, into a vein communicated to the interior of a right atrium and extending along a cardiac wall; and placing the electrodes provided on the respective leads in the vein located at approximately opposite positions across a heart.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 3, 2011
    Applicant: OLYMPUS CORPORATION
    Inventors: Shuichi Takayama, Toshiki Terayama, Hiroki Hibino
  • Patent number: 7894894
    Abstract: A method and apparatus for detecting a cardiac event in a medical device that includes sensing cardiac signals from a plurality of electrodes, the plurality of electrodes forming a first sensing vector and a second sensing vector different from the first sensing vector, determining a characteristic associated with cardiac signals sensed along the first sensing vector during a predetermined sensing window, determining the characteristic associated with cardiac signals sensed along the second sensing vector during the predetermined sensing window, comparing the determined characteristic associated with cardiac signals sensed along the first sensing vector and the determined characteristic associated with cardiac signals sensed along the second sensing vector, and delivering a therapy in response to the comparing.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: February 22, 2011
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Stadler, Raja N. Ghanem, Xusheng Zhang
  • Patent number: 7894895
    Abstract: Various system embodiments comprise a neural stimulator, a premature ventricular contraction (PVC) event detector, a heart rate detector, an analyzer, and a controller. The neural stimulator is adapted to generate a stimulation signal adapted to stimulate an autonomic neural target. The analyzer is adapted to, in response to a PVC event signal from the PVC event detector, generate an autonomic balance indicator (ABI) as a function of pre-PVC heart rate data and post-PVC heart rate data. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: February 22, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer
  • Patent number: 7894893
    Abstract: Different types of cardiac arrhythmia are classified based on the morphology of the arrhythmic beats. Cardiac beats associated with an arrhythmic episode are compared to a plurality of representative beat morphologies, each representative beat morphology characterizing a type of arrhythmia of the heart. An arrhythmic episode may be classified as a particular type of arrhythmia if the morphology of the arrhythmic cardiac beats matches a representative beat morphology characterizing the particular type of arrhythmia. An appropriate therapy for the particular type of arrhythmia may be selected based on the arrhythmia classification. A particular type of arrhythmia may be associated with one or more therapies used to treat the arrhythmia. The therapy used to treat the arrhythmia may comprise a therapy identified as a previously successful therapy.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: February 22, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jaeho Kim, Joseph Bocek, Eric G. Lovett
  • Patent number: 7891435
    Abstract: An Apparatus for remote inspection of emergency equipment at one or a system of emergency equipment stations includes, e.g., at each emergency equipment station: a detector for detection of the presence of an obstruction to viewing of or access to the emergency equipment station; and an electronic circuit in communication between the detector and a remote central station for issue of a signal to the remote central station upon detection of the obstruction to viewing of or access to the emergency equipment station.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: February 22, 2011
    Assignee: en-Gauge, Inc.
    Inventors: John J. McSheffrey, John J. McSheffrey, Jr., Brendan T. McSheffrey
  • Patent number: 7885711
    Abstract: Apparatus (20) for treating a subject (30) suffering from spontaneous atrial fibrillation includes an electrode device (22), adapted to be coupled to a site of the subject (30) selected from the list consisting of: a vagus nerve (24) of the subject (30), an epicardial fat pad of the subject (30), a pulmonary vein of the subject (30), a carotid artery of the subject (30), a carotid sinus of the subject (30), a vena cava vein of the subject (30), and an internal jugular vein of the subject (30), and a control unit (32), adapted to drive the electrode device (22) to apply an electrical current to the site, and to configure the current to maintain the spontaneous AF for at least about 24 hours, so as to modify blood flow within the atria and reduce risk of thromboembolic events.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: February 8, 2011
    Assignee: Bio Control Medical (B.C.M.) Ltd.
    Inventors: Omry Ben-Ezra, Ehud Cohen, Tamir Ben-David
  • Publication number: 20110022104
    Abstract: AV synchronous, dual chamber pacing systems are disclosed having improved sensing of ectopic ventricular depolarizations or PVCs coincidentally occurring at or shortly following delivery of an A-PACE pulse. A first ventricular sense amplifier that is blanked during and following delivery of an A-PACE pulse is coupled to active and indifferent ventricular pace/sense electrodes defining a ventricular sense vector for sensing natural ventricular depolarizations and declaring a V-EVENT. A far field PVC sense amplifier coupled to a far field PVC sense electrode pair defining a PVC sense vector detects such PVCs while the ventricular sense amplifier is blanked. A PVC declared during the ventricular blanking period by the far field PVC sense amplifier is employed to deliver a VSP pulse upon time-out of a VSP delay, if the VSP function is provided and programmed ON, and/or to halt time-out of an AV delay.
    Type: Application
    Filed: October 4, 2010
    Publication date: January 27, 2011
    Applicant: Medtronic, Inc.
    Inventors: Todd J. Sheldon, Jeffrey M. Gillberg