Combined Cardioverting/defibrillating And Pacing Patents (Class 607/4)
  • Patent number: 7877138
    Abstract: An implantable cardioverter/defibrillator (ICD) includes an Anti-Tachycardia Pacing Before Charge (ATP-BC) mode according to which one or more high-voltage capacitors for storing defibrillation energy are charged in preparation of delivering a defibrillation shock only if a ventricular tachycardia (VT) sustains after an ATP delivery. Fast ATP delivery and effect verification methods are applied to avoid significant delay in delivering the defibrillation shock when found necessary to terminate the VT. A switch is provided such that a user decides whether to activate the ATP-BC mode or to deliver the defibrillation shock without delivering the ATP.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: January 25, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, Karin K. Roof, Rebecca Bloomfield
  • Publication number: 20110004262
    Abstract: The disclosure describes techniques for delivering vagal stimulation to decrease the ventricular rate response during an atrial tachyarrhythmia, such as atrial fibrillation. Decreasing the ventricular rate response during an atrial tachyarrhythmia may facilitate increased ventricular pacing for cardiac resynchronization therapy (CRT), and may also reduce the likelihood of inappropriately detecting a ventricular tachyarrhythmia during the atrial tachyarrhythmia. Furthermore, the vagal stimulation may augment vagal tone, which may facilitate long term left ventricular reverse remodeling and decrease atrial and ventricular arrhythmic burden in heart failure patients. An example system that delivers CRT comprises a processor that detects an atrial tachyarrhythmia in one or more atria of the heart, and monitors at least one of a ventricular rate or degree of ventricular pacing subsequent to the detected atrial arrhythmia.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 6, 2011
    Applicant: Medtronic, Inc.
    Inventors: Stefano Bianchi, Pietro Rossi
  • Publication number: 20100331659
    Abstract: An electrode arrangement for low artifact electrocardiogram (ECG) monitoring and defibrillation, comprises at least one conductor print line body having a large silver conductor print line area functioning as a defibrillation area and a small silver-silver chloride (Ag/AgCl) conductor print line area functioning as a sensing area, at least one non halide defibrillation gel layer and halide containing sensing gel layer configured to attach with the defibrillation area and sensing area respectively, and at least one insulated conductive ink line for connecting the conductor print line body to a cable that provides an electrical communication between the conductor print line body and an external equipment. When direct current runs through the conductor print line body, the large silver conductor print line area polarizes and the small Ag/AgCl conductor print line area does not polarize so that small Ag/AgCl conductor print line area senses ECG signal leading to low motion artifact.
    Type: Application
    Filed: June 29, 2009
    Publication date: December 30, 2010
    Inventors: DAVID A. SHERATON, SR., James Perrault
  • Patent number: 7860565
    Abstract: A defibrillator for providing both defibrillating energy and pacing energy to a patient is described. In delivering the defibrillating energy, electrical energy is stored by a charge capacitor and the stored energy is then coupled to the patient to provide a defibrillating pulse. To deliver pacing energy to a patient, an electrical energy circuit generates electrical energy that is filtered by the charge capacitor and delivered to the patient as pacing energy. The magnitude of the pacing energy delivered to the patient is monitored by a controller, which adjusts the generation of the electrical energy based on the magnitude of the pacing energy in order to provide adequate pacing energy to the patient.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: December 28, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Gregory D. Brink
  • Patent number: 7860566
    Abstract: A system (10) for achieving a desired cardiac rate and cardiac rhythm in response to atrial fibrillation in a heart includes an atrial fibrillation (AF) detector (40) for detecting AF. The system also includes an atrioventricular node vagal stimulator (AVN-VS) (30) for stimulating vagal nerves associated with an atrioventricular (AV) node of the heart. The system further includes an on-demand pace maker (40) for providing ventricular pacing stimulation to the heart. A control unit (20) is operatively connected with the AF detection device, the AVN-VS device, and the on-demand pacing device. The control unit is responsive to AF detection by the AF detector to cause the AVN-VS to stimulate the vagal nerves to help reduce the ventricular rate of the heart. The control unit is further responsive to AF detection by the AF detector to cause the on-demand pace maker to help regulate the ventricular rate of the heart.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: December 28, 2010
    Assignee: The Cleveland Clinic Foundation
    Inventors: Todor N. Mazgalev, Youhua Zhang
  • Publication number: 20100324612
    Abstract: System and method for monitoring and controlling, defibrillation and pacing which allows a victim of a cardiac rhythm abnormality immediate access to a medical professional at a central station, who will remotely monitor, diagnose and treat the victim at one of a plurality of remote sites in accordance with the following steps: (1) providing a plurality of contact electrodes for a victim at a remote site for the receipt of ECG signals and for the application of electrical pulses to the victim; (2) transmitting the signals from the remote site to a central station and displaying them for review by the medical professional; (3) the medical professional selecting from a menu of defibrillation and pacing pulses, if the application thereof is appropriate; (4) transmitting the selection results to the remote site; and (5) receiving the selection results at the remote site and applying the selected pulses to the victim.
    Type: Application
    Filed: August 2, 2010
    Publication date: December 23, 2010
    Inventor: JEFFREY A. MATOS
  • Patent number: 7852052
    Abstract: A supply circuit for an implantable medical device (IMD) is presented. The supply circuit includes a battery, a high current circuit, a current-modifying component, a low current circuit, and a capacitor. The low current circuit is connected to a first terminal of the battery. A current-modifying component is connected to the battery, a capacitor, and to a high current circuit.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: December 14, 2010
    Assignee: Medtronic, Inc.
    Inventor: Scott D. Vernon
  • Patent number: 7848804
    Abstract: An apparatus and related methods for reforming a capacitor. One method includes charging the capacitor to a first voltage value, allowing the capacitor to self discharge, measuring a time it takes for the capacitor to self discharge to a second voltage value, and determining whether to reform the capacitor depending upon the measured self-discharge time.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: December 7, 2010
    Assignee: Pacesetter, Inc.
    Inventors: Mark W. Kroll, Vince Kapral, Joseph Beauvais
  • Publication number: 20100298896
    Abstract: Systems and methods provide for selection of automatic capture verification modes. A number of capture verification modes are evaluated, wherein at least one of the capture verification modes has a distinct temporal relationship between delivery of a pacing pulse and detection of capture of heart tissue by the pacing pulse than the other capture verification modes. One or more capture verification modes are selected based on the evaluation. Capture verification is implemented using the selected one or more capture verification modes.
    Type: Application
    Filed: July 30, 2010
    Publication date: November 25, 2010
    Inventor: Alok Sathaye
  • Patent number: 7840265
    Abstract: A cardiac rhythm management (CRM) system includes an implantable cardioverter defibrillator (ICD) and an external system. The ICD detects a tachyarrhythmia episode and classifies the detected tachyarrhythmia episode using none, one, or more of detection enhancements selected according to a selection command including a classification mode. The detection enhancements are each an algorithm for detecting and analyzing one or more indications of a type of the detected tachyarrhythmia episode. The external system allows a user to select the classification mode from a plurality of available classification modes each using none, one, or more of the detection enhancements.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: November 23, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, James O. Gilkerson, James Kalgren
  • Patent number: 7840277
    Abstract: The present disclosure relates to systems and methods for: 1) displaying all vital central station (CS) information and controls on a single screen; 2) linking peripheral central stations (pCSs) to a master central station (mCS); 3) operating the system disclosed in U.S. Ser. No. 10/460,458, without medical professionals (MPs) in the mCS or without any mCS; 4) linking a remote controlled defibrillator (RCD™) unit to an arrest sensor; 5) operating an RCD unit in a motor vehicle and linking an RCD unit to a vehicle communications system; 6) linking an RCD unit to a CS through a network of: a) non-vehicle-based stationary units (SUs), b) vehicle-based SUs/vehicle communication systems, or c) non-vehicle-based SUs and vehicle-based SUs/vehicle communication systems; 7) using an RCD unit with a chest compression device; 8) using the network of RCD units and MPs for disaster monitoring; and 9) monitoring and treating hospital patients and motor vehicle passengers.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: November 23, 2010
    Inventor: Jeffrey A. Matos
  • Patent number: 7835788
    Abstract: An implantable cardiac stimulation device promotes intrinsic activity of a heart during demand pacing. The device increases the time and probability of an AV delay interval extension. The device may further increase the AV delay interval from a first extended AV delay interval to a longer second extended AV delay interval. The device may further encourage intrinsic AV conduction in patients with intact AV conduction by allowing multiple cycles during a search interval and multiple search times to further encourage intrinsic conduction from the atrium to the ventricle.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: November 16, 2010
    Assignee: Pacesetter, Inc.
    Inventors: Arndt Godau, Donald S. Cogan, Gene A. Bornzin, Sharon Standage, Kiersten Hathaway
  • Publication number: 20100268290
    Abstract: An implantable medical device delivers anti-tachyarrhythmia therapies including anti-tachyarrhythmia pacing (ATP). When a tachyarrhythmia episode is detected, the implantable medical device analyzes cardiac cycle length stability to determine whether and/or when to deliver an ATP. In one embodiment, the cardiac cycle length stability is measured by existence of stable ventricular tachyarrhythmia clusters (SVTCs) during the tachyarrhythmia episode. Each SVTC includes at least a specified minimum number of heart beats over which the cardiac cycle lengths meet a stability criterion.
    Type: Application
    Filed: July 1, 2010
    Publication date: October 21, 2010
    Inventor: Dan Li
  • Patent number: 7809438
    Abstract: Methods and apparatus for cardiac pacing, cardioversion and defibrillation rely on delivering ultrasonic or other vibrational energy in combination with electrical energy to the heart, usually after the onset of an arrhythmia. A vibrational transducer and suitable electrical contacts may be combined in a single housing or distributed among various housings, and will usually be implantable so that the vibrational transducer can be directed at a target portion of the heart. Alternatively, external systems comprising the vibrational transducer and electrical contacts are also described.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: October 5, 2010
    Assignee: EBR Systems, Inc.
    Inventors: Debra S. Echt, Axel F. Brisken, Richard E. Riley
  • Patent number: 7809439
    Abstract: A method and apparatus for treating an arrhythmia is provided. The method includes the steps of: (a) sensing at least one electrical signal from the patient's heart; (b) calculating a frequency spectrum of each electrical signal; (c) calculating a center frequency for each frequency spectrum; and (d) selecting an electro-therapy for delivery to the patient's heart based on the center frequency. The electro-therapy can be a pre-programmed anti-tachycardia pacing (ATP) therapy, a shock therapy, or no therapy at all. The method is performed through the use of an implantable cardioverter defibrillator (ICD). Also provided is a method of determining the optimal location to deliver the electro-therapy.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: October 5, 2010
    Assignee: Pacesetter, Inc.
    Inventors: Mark W. Kroll, Peter Boileau
  • Publication number: 20100249860
    Abstract: An external cardiac stimulation patch integrates a transcutaneous cardiac stimulation device and body-surface electrodes with a skin patch. The skin patch is to be attached onto a patient to provide for electrical contacts between the body-surface electrodes and a patient. The transcutaneous cardiac stimulation device delivers pacing pulses to the heart of the patient through pacing electrodes selected from the body-surface electrodes.
    Type: Application
    Filed: March 9, 2010
    Publication date: September 30, 2010
    Inventors: Allan C. Shuros, Eric A. Mokelke, James A. Esler
  • Publication number: 20100241180
    Abstract: A medical device and associated method for detecting arrhythmias that includes electrodes for sensing cardiac electrical signals and a hemodynamic sensor for sensing a hemodynamic signal. An episode of cardiac electrical event intervals meeting cardiac arrhythmia detection criteria is detected from the sensed electrical signals. Cardiac mechanical events and/or cardiac mechanical event intervals are measured from the hemodynamic signal and used to withhold or confirm a cardiac arrhythmia detection of the episode.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 23, 2010
    Inventors: Teresa A. Whitman, Arun Kumar, Karen J. Kleckner, Jeffrey M. Gillberg, Troy E. Jackson, Mark L. Brown, Maneesh Shrivastav
  • Patent number: 7801605
    Abstract: A disposable electrode assembly for a portable defibrillator (12) comprises defibrillator electrodes (14), batteries (24) for powering the defibrillator, and a connector (22) for connecting the electrodes and batteries to the defibrillator. The connector has power output terminals (20) for connecting the battery to the defibrillator and high voltage input terminals (20) for applying a defibrillation voltage to the electrodes. The batteries (24) are housed in the connector (22) or mounted on the rear of one electrode.
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: September 21, 2010
    Assignee: Heartsine Technologies Limited
    Inventors: William J. Smirles, Johnny Houston Anderson
  • Patent number: 7801613
    Abstract: The housing of an implantable medical device is made of a titanium alloy that provides improved electrical performance, mechanical strength, and reduced MRI heating. The titanium alloy housing includes portions formed by metal injection molding and welded together. Wall thickness of at least a portion of one major face of the housing is reduced by chemical etching a metal injected molded housing portion.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: September 21, 2010
    Assignee: Medtronic, Inc.
    Inventors: Bernard Li, Reginald D. Robinson, John E. Kast
  • Publication number: 20100222636
    Abstract: This invention relates to implantable heart sack that can be equipped with pacemaker leads and/or defibrillation leads for the treatment of cardiomyopathy, hypertrophic cardiomyopathy tachycardia, bradycardia, ventricular fibrillation, atrial fibrillation etc. The heart sack was prepared from biocompatible, biostable, implantable polyetherurethane, polycarbonateurethane, silicone, polysiloxaneurethane, polyfluoroethylene, or hydrogenated poly(styrene-butadiene) copolymer. The heart sack is equipped with attached sutures to make it easier to attach onto the heart. The heart sack can be made semipermeable or perforated to have numerous holes. The heart sack can be reinforce with fiber or filament. Ordinary pacemaker leads can be attached to the inner side of the heart sack.
    Type: Application
    Filed: April 26, 2010
    Publication date: September 2, 2010
    Applicant: ACORN CARDIOVASCULAR, INC.
    Inventor: Yuzi OKUZUMI
  • Publication number: 20100222832
    Abstract: According to some method embodiments, a left pulmonary artery electrode is positioned in a left pulmonary artery, and the left pulmonary artery electrode is used to sense atrial activity, or capture cardiac tissue, or deliver neural stimulation. According to some method embodiments, a right pulmonary artery electrode is positioned in a right pulmonary artery and a left pulmonary artery electrode is positioned in a left pulmonary artery, the right pulmonary artery electrode is used to sense atrial activity, or capture cardiac tissue, or deliver neural stimulation, and the left pulmonary artery electrode is used to sense atrial activity, or capture cardiac tissue, or deliver neural stimulation.
    Type: Application
    Filed: May 13, 2010
    Publication date: September 2, 2010
    Inventors: Yongxing Zhang, Yunlong Zhang
  • Publication number: 20100217342
    Abstract: The disclosure includes methods and systems for treating cardiac arrhythmias. Some methods for treating an abnormal heart rhythm include determining a change in a sinus node cycle length of a heart of a patient between a time prior to the abnormal heart rhythm and a time during the abnormal heart rhythm; when the change is within a first range, delivering a first therapy to the patient for treating the abnormal heart rhythm; and when the change is within a second range, delivering a second therapy to the patient for treating the abnormal heart rhythm, wherein the first therapy is different from the second therapy. In some embodiments, the first therapy may include shock therapy and the second therapy may include anti-tachycardia pacing.
    Type: Application
    Filed: February 19, 2010
    Publication date: August 26, 2010
    Applicant: University of Utah Research Foundation
    Inventor: Mohamed Hussein HAMDAN
  • Patent number: 7783349
    Abstract: Various system embodiments comprise a neural stimulator, a premature ventricular contraction (PVC) event detector, a heart rate detector, an analyzer, and a controller. The neural stimulator is adapted to generate a stimulation signal adapted to stimulate an autonomic neural target. The analyzer is adapted to, in response to a PVC event signal from the PVC event detector, generate an autonomic balance indicator (ABI) as a function of pre-PVC heart rate data and post-PVC heart rate data. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: August 24, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer
  • Patent number: 7783362
    Abstract: Methods of using unidirectionally propagating action potentials (UPAPs) for vagus nerve stimulation and for certain disorders are provided. Stimulators capable of creating such UPAPs include, but are not limited to, miniature implantable stimulators (i.e., microstimulators), possibly with programmably configurable electrodes.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: August 24, 2010
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Todd K. Whitehurst, James P. McGivern, Rafael Carbunaru, Matthew I. Haller, Tom Xiaohai He, Kerry Bradley
  • Publication number: 20100211126
    Abstract: Cardiac treatment methods and devices providing templates representative of past tachyarrhythmia events, each template associated with a therapy. A cardiac waveform is detected, and if it corresponds to a particular template associated with a previous therapy that was satisfactory in terminating a past event, the previous therapy is delivered again. If unsatisfactory, the previous therapy is eliminated as an option. If, for example, the previous therapy was an antitachycardia pacing therapy unsatisfactory in terminating the past tachyarrhythmia event, delivery of the antitachycardia pacing therapy is eliminated as an option. Instead of ATP therapy, one or more of a cardioversion, defibrillation, or alternate anti-tachycardia pacing therapy may be associated with the particular template.
    Type: Application
    Filed: April 30, 2010
    Publication date: August 19, 2010
    Inventor: Shelley Marie Cazares
  • Publication number: 20100211123
    Abstract: Systems and methods for arrhythmia therapy in MRI environments are disclosed. Various systems disclosed utilize ATP therapy rather than ventricular shocks when patients are subjected to electromagnetic fields in an MRI scanner bore and shock therapy is not available. As the patient is moved out from within the scanner bore and away from the MRI scanner, the magnetic fields diminish in strength eventually allowing a high voltage capacitor within the IMD to charge if necessary. The system may detect when the electromagnetic fields no longer interfere with the shock therapy and will transition the IMD back to a normal operational mode where shock therapy can be delivered. Then, if the arrhythmia still exists, the system will carry out all of the system's prescribed operations, including the delivery of electric shocks to treat the arrhythmia.
    Type: Application
    Filed: December 16, 2009
    Publication date: August 19, 2010
    Inventors: Scott R. Stubbs, James O. Gilkerson, Diane Schuster
  • Publication number: 20100211124
    Abstract: Systems and methods provide for coordinated cardiac pacing with delivery of cardiopulmonary resuscitation (CPR) to a patient. Managing cardiac pacing in a patient during a cardiac arrhythmia involves detecting a cardiac arrhythmia using a patient implantable medical device, prompting a cardiopulmonary resuscitation compression, and delivering, using the patient implantable medical device, a pacing pulse to a heart chamber in coordination with the compression prompt.
    Type: Application
    Filed: April 28, 2010
    Publication date: August 19, 2010
    Inventors: Quan Ni, Yanting Dong
  • Publication number: 20100211125
    Abstract: An implantable cardiac device is configured to classify cardiac arrhythmias using a plurality of arrhythmia discrimination algorithms. Data is provided that is associated with a plurality of cardiac arrhythmic episodes for which a cardiac electrical therapy was delivered or withheld by the implantable medical device based on the plurality of arrhythmia discrimination algorithms. A metric for each of the arrhythmic episodes is computed. The metric defines a measure by which the implantable cardiac device properly classified the arrhythmia. Potentially misclassified arrhythmic episodes of the plurality of cardiac arrhythmic episodes for which cardiac electrical therapy was inappropriately delivered or withheld are algorithmically identified using the metric.
    Type: Application
    Filed: April 29, 2010
    Publication date: August 19, 2010
    Inventors: Christopher Dale Johnson, Alok Sathaye, Shelley Cazares
  • Publication number: 20100204623
    Abstract: Methods, systems and computer program products determine and identify a favorable time to deliver cardiac compression to a subject to avoid a vulnerable period of a spontaneous intrinsic cardiac cycle.
    Type: Application
    Filed: April 23, 2010
    Publication date: August 12, 2010
    Inventors: Raymond E. Ideker, Gregory P. Walcott
  • Patent number: 7774059
    Abstract: A subcutaneous cardiac device includes a subcutaneous electrode and a housing coupled to the subcutaneous electrode by a lead with a lead wire. The subcutaneous electrode is adapted to be implanted in a frontal region of the patient so as to overlap a portion of the patient's heart.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: August 10, 2010
    Assignee: Cameron Health
    Inventors: Alan H. Ostroff, Paul Erlinger, Gust H. Bardy
  • Patent number: 7774058
    Abstract: A subcutaneous cardiac device includes a subcutaneous electrode and a housing coupled to the subcutaneous electrode by a lead with a lead wire. The subcutaneous electrode is adapted to be implanted in a frontal region of the patient so as to overlap a portion of the patient's heart.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: August 10, 2010
    Assignee: Cameron Health, Inc.
    Inventors: Alan H. Ostroff, Paul Erlinger, Gust H. Bardy
  • Publication number: 20100198283
    Abstract: Cardiac monitoring and/or stimulation methods and systems provide monitoring, defibrillation and/or pacing therapies. A signal processor receives a plurality of composite signals associated with a plurality of sources, separates a signal using a source separation algorithm, and identifies a cardiac signal using a selected vector. The signal processor may iteratively separate signals from the plurality of composite signals until the cardiac signal is identified. The selected vector may be updated if desired or necessary. A method of signal separation involves detecting a plurality of composite signals at a plurality of locations, separating a signal using source separation, and selecting a vector that provides a cardiac signal. The separation may include a principal component analysis and/or an independent component analysis.
    Type: Application
    Filed: January 27, 2010
    Publication date: August 5, 2010
    Inventors: Yi Zhang, Marina Brockway, Carlos Alberto Ricci, Ron Heil, Douglas R. Daum, Robert J. Sweeney, Aaron McCabe
  • Publication number: 20100198284
    Abstract: In some examples, an electromechanical disassociation state (EMD) of a heart of a patient can be treated by delivering electrical stimulation to a tissue site to at least one of modulate afferent nerve activity or inhibit efferent nerve activity upon determining that the heart is in an electromechanical dissociation state, where the tissue site comprises at least one of a nonmyocardial tissue site or a nonvascular cardiac tissue site. The delivery of electrical stimulation may effectively treat the EMD state of the heart, e.g., by enabling effective mechanical contraction of the heart. In another example, an electromechanical disassociation state of a heart of a patient can be treated by determining autonomic nervous system activity associated with a detected EMD state of the heart of a patient, and delivering electrical stimulation therapy to the patient based on the determined autonomic nervous system activity of the patient associated with the EMD state.
    Type: Application
    Filed: January 29, 2010
    Publication date: August 5, 2010
    Applicant: Medtronic, Inc.
    Inventors: Xiaohong Zhou, Paul G. Krause, William T. Donofrio
  • Publication number: 20100198097
    Abstract: A medical device monitors a level of fluid accumulation, e.g., pulmonary edema, and one or more respiratory parameters of the patient to detect worsening heart failure. The medical device may use intrathoracic impedance measurements to monitor both the fluid accumulation and the one or more respiratory parameters. Respiration rate and volume, also referred to as the tidal volume, are examples of respiratory parameters. The medical device examines the one or more respiratory parameters after determining that the fluid accumulation indicates worsening heart failure. In this manner, the medical device uses the one or more respiratory parameters to confirm a determination of worsening heart failure that was made based on the fluid accumulation.
    Type: Application
    Filed: January 30, 2009
    Publication date: August 5, 2010
    Applicant: Medtronic, Inc.
    Inventor: Sameh Sowelam
  • Patent number: 7769465
    Abstract: System and method for monitoring and controlling, defibrillation and pacing which allows a victim of a cardiac rhythm abnormality immediate access to a medical professional at a central station, who will remotely monitor, diagnose and treat the victim at one of a plurality of remote sites in accordance with the following steps: (1) providing a plurality of contact electrodes for a victim at a remote site for the receipt of ECG signals and for the application of electrical pulses to the victim; (2) transmitting the signals from the remote site to a central station and displaying them for review by the medical professional; (3) the medical professional selecting from a menu of defibrillation and pacing pulses, if the application thereof is appropriate; (4) transmitting the selection results to the remote site; and (5) receiving the selection results at the remote site and applying the selected pulses to the victim.
    Type: Grant
    Filed: August 18, 2007
    Date of Patent: August 3, 2010
    Inventor: Jeffrey A. Matos
  • Patent number: 7764997
    Abstract: A system and method which employs atrial discrimination algorithms to distinguish between different atrial arrhythmias occurring in a patient for selecting an optimal pacing therapy corresponding to the type of arrhythmia identified. In response to the detection of an atrial rate above the atrial tracking rate, discrimination criteria are applied to a detected atrial activity signal to distinguish between different types of supraventricular tachycardia, such as fast atrial flutter and other atrial flutter at a relatively slower rate, which may be occurring in the patient. The pacer is controlled to provide pacing therapy to a heart in a manner corresponding to the type of supraventricular tachycardia identified. The output of an atrial discrimination algorithm may be tracked and the trend thereof used to improve therapy timing. Various embodiments are disclosed herein.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: July 27, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Victor T. Chen, David S. Wood, Milton M. Morris
  • Patent number: 7764996
    Abstract: The health state of a subject is automatically evaluated or predicted using at least one implantable device. In varying examples, the health state is determined by sensing or receiving information about at least one physiological process having a circadian rhythm whose presence, absence, or baseline change is associated with impending disease, and comparing such rhythm to baseline circadian rhythm prediction criteria. Other chronobiological rhythms beside circadian may also be used. The baseline prediction criteria may be derived using one or more past physiological process observation of the subject or population of subjects in a non-disease health state. The prediction processing may be performed by the at least one implantable device or by an external device in communication with the implantable device. Systems and methods for invoking a therapy in response to the health state, such as to prevent or minimize the consequences of predicted impending heart failure, are also discussed.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: July 27, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yi Zhang, John D. Hatlestad, Gerrard M. Carlson, Yousufali Dalal, Marina V. Brockway, Kent Lee, Richard O. Kuenzler, Carlos Haro, Krzysztof Z. Siejko, Abhilash Patangay
  • Patent number: 7765005
    Abstract: A feedthrough terminal assembly for an active implantable medical device (AIMD) includes a plurality of leadwires extending from electronic circuitry of the AIMD, and a lossy ferrite inductor through which the leadwires extend in non-conductive relation for increasing the impedance of the leadwires at selected RF frequencies and reducing magnetic flux core saturation of the lossy ferrite inductor through phase cancellation of signals carried by the leadwires. A process is also provided for filtering electromagnetic interference (EMI) in an implanted leadwire extending from an AIMD into body fluids or tissue, wherein the leadwire is subjected to occasional high-power electromagnetic fields such as those produced by medical diagnostic equipment including magnetic resonance imaging.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: July 27, 2010
    Assignee: Greatbatch Ltd.
    Inventor: Robert A. Stevenson
  • Patent number: 7761150
    Abstract: A method of detecting a cardiac event in a medical device that includes determining a first characteristic in response to cardiac signals sensed along a first sensing vector over a predetermined sensing window and in response to cardiac signals sensed along a second sensing vector over the predetermined sensing window, determining a second characteristic in response to cardiac signals sensed along the first sensing vector over the predetermined sensing window and in response to cardiac signals sensed along the second sensing vector over the predetermined sensing window, and determining a third characteristic in response to cardiac signals sensed along the first sensing vector over the predetermined sensing window and in response to cardiac signals sensed along the second sensing vector over the predetermined sensing window.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: July 20, 2010
    Assignee: Medtronic, Inc.
    Inventors: Raja N. Ghanem, Robert W. Stadler, Xusheng Zhang
  • Patent number: 7761151
    Abstract: A device and method for delivering high-energy electrical stimulation to the heart in order to improve cardiac function in heart failure patients. The high-energy stimulation mimics the effects of exercise and improves symptoms even in patients who are exercise intolerant. The high-energy stimulation may be delivered on an intermittent basis either as pacing pulses in accordance with a programmed pacing mode and with a higher pacing pulse energy than used for conventional pacing or as low energy shock pulses.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: July 20, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph M. Pastore, Imad Libbus, Andrew P. Kramer, Julio C. Spinelli
  • Publication number: 20100179607
    Abstract: A method and an apparatus for treating cardiac arrhythmias are provided. An interval between first and second consecutive beats of a heart, having first and second chamber types, is determined. The heart is paced at a first rate if the first beat is from the first chamber type and the second beat is from the second chamber type and the interval is less than a predetermined amount of time or if the first and second beats are both from the second chamber type. The heart is paced at a second rate if the first beat is from the first chamber type and the second beat is from the second chamber type and the interval is more than the predetermined amount of time.
    Type: Application
    Filed: January 12, 2010
    Publication date: July 15, 2010
    Applicant: Medtronic, Inc.
    Inventors: H. Toby Markowitz, Matthew Harris, Trina Ann Brand
  • Patent number: 7756577
    Abstract: A device and methods for automatically evaluating one or more patient physiological parameters and, upon determination that certain therapies are indicated, delivering therapeutic mechanical stimulations to tissue of the patient. The mechanical stimulations generally include vibrations delivered at frequencies somewhat higher or lower than an intrinsic frequency and the therapeutic vibrations are delivered to drive the intrinsic frequency towards a desired value. The device and methods more closely emulate natural physiologic feedback mechanisms and can reduce undesired side effects of other known therapies. The device can include a small and efficient electrical motor which is interconnected with a crank and link mechanism to generate oscillatory motion which is conducted to a flexible wall of a bio-compatible housing of the device.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: July 13, 2010
    Assignee: Pacesetter, Inc.
    Inventors: Mark W. Kroll, Euljoon Park
  • Publication number: 20100168807
    Abstract: Described herein are terpolymer compositions, kits comprising the compositions, implant devices comprising the compositions, and methods of making and using same, including point of use methods.
    Type: Application
    Filed: December 22, 2009
    Publication date: July 1, 2010
    Inventors: Kevin W. Burton, Howard Bowman, Danielle Biggs, Peter Markland
  • Publication number: 20100160989
    Abstract: A generator for an implantable cardiac prosthesis, having a safekeeping mode of operation during an exposure to a magnetic field. The generator is connected to a lead including a first conductor (18) connected to a distal electrode (14), and a second conductor (20) connected to a proximal electrode (16). The generator to which the lead is connected includes a switch that temporarily switches to the potential of the metal housing of the generator (i.e., the ground potential) a first terminal connection (26) coupled to the external conductor (20) of the lead, and connects to the electronic circuit of detection/stimulation a second terminal connection (24) coupled to the internal conductor (18) of the lead.
    Type: Application
    Filed: December 21, 2009
    Publication date: June 24, 2010
    Inventor: Thierry LEGAY
  • Publication number: 20100160988
    Abstract: Devices, systems, and methods for leadlessly stimulating the heart. Through a magnetic signal generator positioned outside or inside the thoracic cavity, a magnetic signal is transmitted through the chest to stimulate electrical activity within the myocardial muscles. The magnetic signal may function as a pacemaker, cardioverter or defibrillator. Advantages of magnetic stimulation include, without limitation, non invasiveness, a reduction or even elimination in pain, and access to tissues covered by poorly conductive structures.
    Type: Application
    Filed: June 29, 2007
    Publication date: June 24, 2010
    Inventors: Ghassan S. Kassab, Jose A. Navia, SR., Yunlong Huo
  • Patent number: 7742812
    Abstract: A method of detecting a cardiac event that includes sensing cardiac signals from a plurality of electrodes, determining rates of change of the sensed cardiac signals, and determining a range of the sensed cardiac signals. The sensed cardiac signals are detected as being associated with the cardiac event in response to the determined rates of change and the determined range.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: June 22, 2010
    Assignee: Medtronic, Inc.
    Inventors: Raja N. Ghanem, Robert W. Stadler, Xusheng Zhang
  • Publication number: 20100152795
    Abstract: Implantable stimulation devices can provide intracardiac electrograms (EGMs) and impedance measurements to detect changes in electrical, mechanical, and electromechanical activation of the heart. Many patients with congestive heart failure have conventional intracardiac devices implanted that are not capable of resynchronization therapy and these patients could benefit from resynchronization, but are not candidates based on current criteria. These patient populations can be identified through analyses of intracardiac electrogram data that is available through implantable stimulation devices comprising at least one lead for providing electrical stimulation to the heart of a patient, at least one sensor that detects electrical signals indicative of the depolarization of the heart of the patient, and a controller that is adapted to be implanted within the patient.
    Type: Application
    Filed: December 11, 2008
    Publication date: June 17, 2010
    Applicant: PACESETTER, INC.
    Inventor: Stuart O. Schecter
  • Publication number: 20100152797
    Abstract: An active implantable medical device of the cardiac prosthesis type, including antitachycardia atrial pacing and antibradycardia ventricular pacing therapies. The device includes circuits and control logic for detecting electrical atrial and ventricular spontaneous events (R), delivering low energy antitachycardia atrial pacing, and antibradycardia ventricular pacing, and able to deliver a ventricular pacing (V) in the absence of a detected spontaneous ventricular event (R) after a calculated ventricular escape interval (IE). The device includes a sensor delivering an endocardiac acceleration signal (EA) representative of the movements produced by the contractions of the ventricle.
    Type: Application
    Filed: December 11, 2009
    Publication date: June 17, 2010
    Inventor: Elodie VINCENT
  • Publication number: 20100152796
    Abstract: A system with an implantable cardiac stimulation device having an implantable stimulation generator, at least one implantable lead adapted for connection to the implantable stimulation generator and further adapted for at least one of sensing physiologic activity and delivery of therapy, memory, and a controller in communication with the memory and with the at least one implantable lead and stimulation generator. The controller is configured to automatically evaluate a patient's physiologic status and selectively induce delivery of therapeutic stimulation under variable timing parameters. The system also has a measurement system adapted to measure at least one of strain and velocity of myocardial tissue and is adapted to evaluate strain and/or velocity measures and adjust the variable timing parameters of the implantable stimulation device to increase mechanical synchrony of the myocardial tissue.
    Type: Application
    Filed: December 11, 2008
    Publication date: June 17, 2010
    Applicant: PACESETTER, INC.
    Inventor: Stuart O. Schecter
  • Patent number: 7738948
    Abstract: Waveform analysis is used to identify and distinguish components of a sensed input signal, such as P-wave and Far Field R-wave signal components present in a sensed cardiac signal, even when the components are so closely spaced in time that the overlap to create a distorted input signal. A set of composite waveforms are generated by superimposing waveform templates of the signal components with different time delays or degree of overlap. Form parameters for each composite waveform are derived and mapped in a multidimensional map, from which form parameter boundaries are derived. Waveform data is collected from an input signal during a sensed event time window, and form parameters for the input signal waveform are derived. An output identifying the signal component of interest (e.g., a P-wave) and its location within the sensed event time window is produced based upon the set of form parameters of the input signal waveform and the form parameter boundaries.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: June 15, 2010
    Assignee: Medtronic, Inc.
    Inventors: Mattias Rouw, Patrick Scholten, Henricus W. M. De Bruyn