Control Signal Storage (e.g., Programming) Patents (Class 607/59)
  • Patent number: 8019416
    Abstract: An implantable pacing device for delivering ventricular pacing may be configured to intermittently reduce the AVD interval for beneficial effect in patients with compromised ventricular function (e.g., HF patients and post-MI patients). The AVD interval may be reduced in an AVD reduction mode, by shortening the AVD in an atrial triggered ventricular pacing mode or by switching to a non-atrial triggered ventricular pacing mode (e.g., VVI) and delivering paces at a rate above the intrinsic rate. The physiological effects of AVD reduction may be either positive or negative on cardiac output, depending upon the individual patient.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: September 13, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph M. Pastore, Rodney W. Salo, Julio C. Spinelli, Allan C. Shuros, Andres Belalcazar
  • Publication number: 20110218587
    Abstract: A biostimulator system comprises one or more implantable devices and an external programmer configured for communicating with the implantable device or devices via bidirectional communication pathways comprising a receiving pathway that decodes information encoded on stimulation pulses generated by ones of the implantable device or devices and conducted through body tissue to the external programmer.
    Type: Application
    Filed: May 17, 2011
    Publication date: September 8, 2011
    Applicant: Nanostim, Inc.
    Inventor: Peter M. Jacobson
  • Patent number: 8010190
    Abstract: The present invention comprises a cardiopulmonary resuscitation (CPR) feedback device and a method for performing CPR. A chest compression detector device is provided that measures chest compression during the administration of CPR. The chest compression detector device comprises a signal transmitter operably positioned on the chest of the patient and adapted to broadcast a signal, and a signal receiver adapted to receive the signal. The chest compression detector device also comprises a processor, operably connected to the signal transmitter and the signal receiver. The processor repeatedly analyzes the signal received to determine from the signal a series of measurements of compression of the chest, and feedback is provided to the rescuer based on the series of measurements.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: August 30, 2011
    Assignee: Cardiac Science Corporation
    Inventors: Kenneth F. Olson, Peter Peterson
  • Patent number: 8010204
    Abstract: A system comprising: at least one electrode adapted to be placed on a vagus nerve below a vagal innervation of the heart; an implantable controller comprising an induction coil, at least one circuit for generating a neural conduction blocking signal connected to the at least one electrode, a battery, and a central processing unit comprising program storage and memory; and an external programmer configured to: communicate at least one parameter for the neural conduction blocking signal to the implantable controller, wherein the parameter is selected for the neural conduction blocking signal to i) at least partially downregulate the vagus nerve, ii) allow at least partial recovery of the nerve activity following discontinuation of the neural conduction blocking signal, and iii) reduce pancreatic and biliary output via inhibition of pancreo-biliary output; and an external coil adapted to be worn by the patient, wherein the external coil is connected to the external programmer, and is adapted to inductively coupl
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: August 30, 2011
    Assignee: EnteroMedics Inc.
    Inventors: Mark B. Knudson, Richard R. Wilson, Katherine S. Tweden, Timothy R. Conrad
  • Patent number: 8010203
    Abstract: Techniques that involve generating test stimulation programs based upon specific patient feedback to guide the programming process for stimulation therapy are described. The patient describes positive effects and adverse effects of the test stimulation by listing and/or rating specific types of effects, both positive and adverse, and the location of each effect. In this manner, a programming device, i.e. a programmer, uses the feedback to generate subsequent test stimulation programs. Initially, programs with unipolar electrode configurations are tested, but the programmer may generate bipolar electrode configurations to test if the patient rates the unipolar electrode combinations poorly. After the stimulation programs are tested and rated, the programmer sorts the tested programs based upon the feedback and presents the tested programs to the user. The user selects the best tested program to use for chronic stimulation therapy.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: August 30, 2011
    Assignee: Medtronic, Inc.
    Inventors: Delight D. DeMulling, Debbie A. McConnell, Steven M. Goetz, Cari C. Herman, Wende L. Dewing
  • Publication number: 20110196448
    Abstract: An ISG that includes a housing, a connector block having a first surface and a second surface, a lumen extending through the connector block from the first surface to the second surface, wherein the lumen is configured to receive at least one lead, wherein said lead comprises at least one electrode connector, a plurality of contacts housed within the lumen, electronic circuitry that is operably coupled to the ISG, wherein the plurality of contacts are operably coupled to the electronic circuitry, a computer readable medium containing instructions for carrying out a process to determine at least one piece of information regarding a lead that is received within the lumen, the process includes the steps of measuring at least one characteristic of at least one of the plurality of contacts, and determining which of two ranges the measured characteristic fits, wherein the two ranges of characteristics correspond to an electrode connector being electrically connected with the at least one of the plurality of contact
    Type: Application
    Filed: April 18, 2011
    Publication date: August 11, 2011
    Applicant: Medtronic, Inc.
    Inventors: William C. Phillips, Raymond F. McMullen
  • Publication number: 20110196447
    Abstract: This disclosure describes techniques for configuring an IMD into the exposure operating mode. Prior to a medical procedure that generates a disruptive energy field, such as an MRI scan, an electronic prescription is configured to indicate that the IMD is authorized for the medical procedure that includes a disruptive energy field. The electronic prescription includes one or more designated bits within a storage element of the IMD. When the patient in which the IMD is implanted arrives for the medical procedure, a user (such as an MRI operator) interacts with a telemetry device to determine whether the electronic prescription is configured. Upon determining that the electronic prescription is configured, the IMD transitions into the exposure operating mode designed for operation in the disruptive energy field. In this manner, the electronic prescription confirms to the user that that the IMD has been checked for suitability for operation during the medical procedure.
    Type: Application
    Filed: August 31, 2010
    Publication date: August 11, 2011
    Inventors: Lawrence C. McClure, Sandy K. Wixon, Sean S. Josephson, Michael L. Ellingson, Hyun J. Yoon
  • Publication number: 20110172737
    Abstract: This disclosure describes techniques for programming stimulation therapy programs according to therapy targets (e.g., symptoms or areas of pain) in a patient to which they are applied. Several programs can be programmed for each therapy target, stored on an implantable medical device, and retrieved later by a programmer to modify, edit, delete, create, and/or select a therapy program for each of the therapy targets. Each therapy target is independent from the other therapy targets, and a user can select or change a program under one therapy target without affecting programs under the other therapy targets. During programming, a user can specify parameters for each program applicable to only that program, and can specify parameters for each therapy target applicable to every program associated with that therapy target. The organization of programs into slots and the selection of a program in each slot may be manual or automated.
    Type: Application
    Filed: January 6, 2011
    Publication date: July 14, 2011
    Applicant: Medtronic, Inc.
    Inventors: Jon P. Davis, Steven M. Goetz, Nathan A. Torgerson, Wende L. Dewing, Ashish Singal, Lynn A. Davenport, Rajeev M. Sahasrabudhe
  • Publication number: 20110172738
    Abstract: The disclosure provides a system that displays graphical representations of posture zones associated with posture states of a patient, on a display device communicatively coupled to a medical device. The medical device is configured to deliver therapy to the patient based on detected posture states of the patient, where the detected posture state is based on the posture zones. The display device may allow a user to manipulate the graphical representations of the posture zones, including changing the size of the posture zones. Additionally, the display device may allow a user to change transition times associated with transitions between posture states, and displaying an indication of the changed transition time by highlighting the two graphical representations of the posture zones corresponding to the posture states associated with the changed transition time.
    Type: Application
    Filed: January 6, 2011
    Publication date: July 14, 2011
    Applicant: Medtronic, Inc.
    Inventors: Jon P. Davis, Rajeev M. Sahasrabudhe, David Simons
  • Publication number: 20110172730
    Abstract: A method comprising providing a programmable non-volatile memory (PNVM) circuit fabricated together with a processor on an integrated circuit chip (IC) in an implantable medical device (IMD), partitioning the PNVM circuit into a plurality of portions based on how often that the processor accesses a portion, and selectively providing power or selectively restricting power to one or more of the portions according to how often that the processor accesses a portion.
    Type: Application
    Filed: March 21, 2011
    Publication date: July 14, 2011
    Inventors: Jeremy Maniak, William L. Zimmer, Ron A. Balczewski, William J. Linder
  • Publication number: 20110172739
    Abstract: An implantable stimulator includes a tube assembly that is configured to house a number of components that are configured to apply at least one stimulus to at least one stimulation site within a patient. The tube assembly has a shape that allows the stimulator to be implanted within said patient in a pre-determined orientation. Exemplary methods of stimulating a stimulation site within a patient include applying an electrical stimulation current to a stimulation site via one or more electrodes extending along one or more sides of a stimulator. The stimulator has a shape allowing the stimulator to be implanted within the patient in a pre-determined orientation.
    Type: Application
    Filed: March 21, 2011
    Publication date: July 14, 2011
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Alfred E. Mann, Tom Xiaohai He
  • Patent number: 7974701
    Abstract: A method for limiting patient-initiated electrical signal therapy to a cranial nerve of a patient is provided. An electrical signal therapy limit is selected from the group consisting of; a maximum number of patient-initiated signals, a maximum dose of electrical signals, a maximum duration of electrical signal, a maximum rate of change of the number of patient-initiated signals, a maximum rate of change of the dose of electrical signals, and a maximum rate of change of the duration of the electrical signals all per unit of time. If the electrical signal therapy limit is exceeded a therapy is delivered to the cranial nerve selected from the group consisting of; providing therapy, providing reduced therapy, providing enhanced therapy, inhibiting therapy, providing background therapy, and inhibiting background therapy.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: July 5, 2011
    Assignee: Cyberonics, Inc.
    Inventor: Randolph K. Armstrong
  • Publication number: 20110160796
    Abstract: Neurostimulation systems and methods for providing therapy to a patient suffering from a symptom of a disease that latently responds to electrical stimulation therapy are provided. First electrical stimulation energy is conveyed to or from a tissue region of the patient in accordance with a first set of stimulation parameters, thereby affecting the symptom. A predetermined period of time estimated for the symptom to resolve in response to electrical stimulation therapy is allowed to elapse. Second electrical stimulation energy is conveyed to or from the tissue region in accordance with a second set of stimulation parameters different from the first set of stimulation parameters.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 30, 2011
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Courtney Lane, Rafael Carbunaru, David K.L. Peterson, Andrew DiGiore
  • Publication number: 20110160782
    Abstract: A method and device to enable a medical or surgical procedure using electro-cautery on a patient with an implantable device in a cautery-safe mode of operation. In one embodiment, the invention provides an electronic implantable device programmer having a computer processor, and a display screen configured to display information based on signals from the computer processor. The programmer also includes an input device, and a wireless transmitter controlled by the computer processor. The programmer display and input give the operator the option of programming an implanted electronic device in a cautery-safe mode.
    Type: Application
    Filed: June 3, 2010
    Publication date: June 30, 2011
    Applicant: ResQCor
    Inventors: Keith Lurie, Barbara S. Gold, David Benditt, Andres Belalcazar
  • Publication number: 20110160799
    Abstract: An exemplary method includes generating, by an external control device selectively and communicatively coupled to an implantable stimulator, a calibration table indicating transmit power levels required to achieve a plurality of distinct combinations of compliance voltages and maximum stimulation current levels by the implantable stimulator, determining, by the external control device, a maximum stimulation current level to be delivered by the implantable stimulator via one or more electrodes to one or more stimulation sites within a patient during a stimulation frame, determining, by the external control device, an optimal compliance voltage that allows the implantable stimulator to deliver the determined maximum stimulation current level, and selecting, by the external control device in accordance with the calibration table, a transmit power level that results in the implantable stimulator operating at substantially the optimal compliance voltage during the stimulation frame.
    Type: Application
    Filed: December 29, 2009
    Publication date: June 30, 2011
    Applicant: Advanced Bionics, LLC
    Inventors: Lakshmi N. Mishra, Logan P. Palmer, Manohar Joshi
  • Publication number: 20110160800
    Abstract: A method for programming a deep brain stimulator implanted in a target region of a brain of a living subject for optimal stimulation, wherein the deep brain stimulator comprises at least one electrode having a plurality of electrode contacts spaced apart from each other, and any portion of the brain of the living subject is identifiable by a set of corresponding spatial coordinates.
    Type: Application
    Filed: March 10, 2011
    Publication date: June 30, 2011
    Applicant: VANDERBILT UNIVERSITY
    Inventors: Benoit M. Dawant, Pierre-Francois Dominique D'haese, Peter E. Konrad
  • Patent number: 7966069
    Abstract: An external programming system and method for implantable medical devices (IMDs) is disclosed. The external programming system includes a communication circuit, a display device, an input device, and a processor. The communication circuit is configured to link to an IMD to transmit or monitor IMD timing parameter settings. The display device is configured to display a textual representation of an IMD timing parameter setting and a specified IMD timing parameter limit, a graphical slide control comprising a movable feature indicating the IMD timing parameter setting, a graphical slide-control limit corresponding to the specified IMD timing parameter limit, and a graphical representation of physiologic information including a portion of said graphical representation aligned with the slide control movable feature. The input device is configured to adjust the movable feature in response to user input. The processor is configured to monitor or store an IMD timing parameter setting.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: June 21, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Les Norman Peterson, Paula Dieterle, Par Lindh, James Kalgren, James O. Gilkerson, Allan T. Koshiol, Tala L Bynum, David Callahan
  • Publication number: 20110144721
    Abstract: In one embodiment, a method of programming an IPG comprises providing one or several GUI screens on the programmer device, the GUI screens comprising a master amplitude GUI control for controlling amplitudes for stimsets of a stimulation program and one or several balancing GUI controls for controlling amplitudes of each stimset of the stimulation program; communicating one or several commands from the programmer device to the IPG to change the amplitude of all stimsets of the stimulation program in response to manipulation of the master amplitude GUI control, wherein the amplitude of each stimulation set is automatically calculated by a level selected through the master amplitude GUI control and one or several calibration parameters for the respective stimulation set; and automatically recalculating the one or several calibration parameters for a respective stimulation set in response to manipulation of one of the balancing GUI controls and storing the recalculated calibration parameters.
    Type: Application
    Filed: June 14, 2010
    Publication date: June 16, 2011
    Inventors: Thomas K Hickman, Erick D. Engstrom, Matthew J. Brock, John H. Erickson
  • Patent number: 7962214
    Abstract: A method and apparatus for providing trans-esophageal electrical signal therapy to a portion of a vagus nerve of a patient to treat a medical condition. An implantable medical device comprising at least one electrode is implanted in an inner lumen of the esophagus of the patient. At least one electrode is electrically coupled to the inner lumen of the esophagus. An electrical signal from the IMD is provided to a target portion of the vagus nerve through at least a portion of the wall of the esophagus for treating the medical condition.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: June 14, 2011
    Assignee: Cyberonics, Inc.
    Inventors: Bryan P. Byerman, Steven E. Maschino, Timothy L. Scott
  • Publication number: 20110130808
    Abstract: A swallowing stimulation system has a swallowing stimulator for use in triggering an act of swallowing in a patient. The swallowing system has an operating unit including operating elements for receiving user inputs, whereby the operating elements are allocated to different possible physical properties of a food, such that a user can allocate a particular food by means of the operating elements to at least one of at least two categories. The operating unit is designed to generate a control signal corresponding to a user input for the swallowing stimulator, and the swallowing stimulator is designed so that a stimulus for triggering an act of swallowing is formed in response to the control signal.
    Type: Application
    Filed: November 24, 2010
    Publication date: June 2, 2011
    Applicant: BIOTRONIK CRM Patent AG
    Inventor: Jens Philipp
  • Publication number: 20110125220
    Abstract: In one embodiment, an implantable pulse generator (IPG) for generating electrical pulses for stimulation of tissue of a patient, comprises: a controller for controlling operations of the IPG; pulse generating circuitry for generating electrical pulses; and conversion circuitry for converting a received logic signal generated by a first voltage domain for provision to a second voltage domain, the conversion circuitry comprising a first stage and a second stage, wherein (i) the first stage receives first signals at first and second logic levels; (ii) the second stage receives second signals at third and fourth logic levels, (iii) the second stage comprising two sets of cross-coupled transistors for generating a rail-to-rail output at the third and fourth logic levels according to whether the received logic signal is at the first or second logic level.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 26, 2011
    Inventor: Daniel J. Black
  • Publication number: 20110125219
    Abstract: In one embodiment, a method, of operating an IPG, comprises: generating a variable anode voltage by first circuitry to drive current during pulse generation, the first circuitry being programmable to generate the anode voltage from a plurality of voltages in response to a control signal; providing the anode voltage to a first circuit node; operating a transistor to control current flow between the first circuit node and an output of the IPG, wherein the transistor possesses a gate-to-source breakdown voltage; generating a first supply signal that is maintained at a voltage level equal to the anode voltage plus or minus a predetermined amount; and selectively applying the first supply signal and a second supply signal to a gate of the transistor to connect or disconnect the first circuit node in a circuit path with the output of the IPG.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 26, 2011
    Inventors: N. Sateesh Pillai, Daniel J. Black
  • Patent number: 7945333
    Abstract: A biostimulator system comprises one or more implantable devices and an external programmer configured for communicating with the implantable device or devices via bidirectional communication pathways comprising a receiving pathway that decodes information encoded on stimulation pulses generated by ones of the implantable device or devices and conducted through body tissue to the external programmer.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: May 17, 2011
    Assignee: Nanostim, Inc.
    Inventor: Peter M. Jacobson
  • Publication number: 20110112609
    Abstract: A method, programmer for a neurostimulator, and neurostimulation kit are provided. The kit comprises a neurostimulator, and a plurality of elongated lead bodies configured for being coupled to the neurostimulator, each having a plurality of proximal contacts and a plurality of distal electrodes respectively electrically coupled to the proximal contacts, wherein an in-line connectivity between the electrodes and proximal contacts carried by the different lead bodies differs from each other. Electrical energy is conveyed between the electrodes of the selected lead body and the tissue, an electrical fingerprint is measured at the proximal contacts of the selected lead body in response to the conveyed electrical energy, and the selected lead body is identified based on the measured electrical fingerprint. These steps can be performed by the programmer.
    Type: Application
    Filed: November 8, 2010
    Publication date: May 12, 2011
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventor: David K.L. Peterson
  • Patent number: 7941216
    Abstract: A method and device for treating myocardial ischemia are described in which the stress experienced by a myocardial region identified as vulnerable to becoming ischemic is varied with pre-excitation pacing. In an unloading mode, pacing is applied in proximity to the vulnerable region to reduce stress and the metabolic demand of the region. In a loading mode, pacing is applied to a region remote from the vulnerable region in order to produce a conditioning effect.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: May 10, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Rodney W. Salo, Allan C. Shuros, Tamara Colette Baynham
  • Publication number: 20110106209
    Abstract: An exemplary cochlear system includes a sound processing unit configured to process an audio signal, an implantable cochlear stimulator communicatively coupled to the sound processing unit and configured to apply stimulation representative of the audio signal to a patient via one or more electrodes in accordance with the processing of the audio signal, and a user input facility communicatively coupled to the sound processing unit. The sound processing unit and the implantable cochlear stimulator are configured to operate in accordance with a plurality of control parameters, which may be selectively associated and disassociated with the user input facility in order to facilitate manual adjustment of one or more of the control parameters. Corresponding systems and methods are also disclosed.
    Type: Application
    Filed: January 28, 2010
    Publication date: May 5, 2011
    Applicant: Advanced Bionics, LLC
    Inventor: Aniket Saoji
  • Publication number: 20110106213
    Abstract: In one aspect, a programmer for an implantable medical device comprises a user interface that receives user input corresponding to one or more selected stimulation therapy parameters for delivering stimulation therapy to a patient with the implantable medical device and presents an energy consumption estimate of a power source based on the selected stimulation therapy parameters; and a processor that determines one or more programming options that, if selected, would alter the selected stimulation therapy parameters and reduce the energy consumption estimate. The user interface presents at least one of the programming options to reduce the energy consumption estimate to the user with an indication that user selection of one or more of the presented programming options would alter the selected stimulation therapy parameters to reduce energy consumption of the implantable medical device.
    Type: Application
    Filed: April 30, 2010
    Publication date: May 5, 2011
    Applicant: Medtronic, Inc.
    Inventors: Jon P. Davis, Steven M. Goetz, Nathan A. Torgerson, Ashish Singal, Lynn A. Davenport, Rajeev M. Sahasrabudhe, Shyam Gokaldas, Joel A. Anderson, Leroy L. Perz, Scott E. Straka
  • Publication number: 20110106204
    Abstract: An implantable medical device (IMD) configures one or more operating parameters of the IMD based on a type of source of a disruptive energy field to which the IMD is exposed. The disruptive energy field may, in one example, include magnetic and/or radio frequency (RF) fields generated by an MRI scanner. In one aspect, the IMD may distinguish between different types of MRI scanners and select an exposure operating mode tailored to reduce the effects of the particular type of MRI scanner. In another aspect, the IMD may adjust one or more operating parameters that will be used when the IMD returns to a normal operating mode after exposure to the MRI scanner based on the type of MRI scanner to which the IMD is exposed.
    Type: Application
    Filed: December 29, 2009
    Publication date: May 5, 2011
    Inventors: Hyun J. Yoon, Michael L. Ellingson, Piotr J. Przybyszewski, Patrick L. Parish
  • Publication number: 20110106212
    Abstract: An implantable medical device (IMD) configures one or more operating parameters of the IMD based on a type of source of a disruptive energy field to which the IMD is exposed. The disruptive energy field may, in one example, include magnetic and/or radio frequency (RF) fields generated by an MRI scanner. In one aspect, the IMD may distinguish between different types of MRI scanners and select an exposure operating mode tailored to reduce the effects of the particular type of MRI scanner. In another aspect, the IMD may adjust one or more operating parameters that will be used when the IMD returns to a normal operating mode after exposure to the MRI scanner based on the type of MRI scanner to which the IMD is exposed.
    Type: Application
    Filed: December 29, 2009
    Publication date: May 5, 2011
    Inventors: Michael L. Ellingson, Hyun J. Yoon, Piotr J. Przybyszewski, Patrick L. Parish
  • Patent number: 7937158
    Abstract: Disclosed are systems and methods which provide trial stimulators suited for use interoperatively and during patient trial. Trial stimulator embodiments provide a patient interface and/or clinician interface which appears and functions substantially the same as an interface of a pulse generator controller which will be used after a trial period. A compliance monitor feature may be provided to facilitate verifying the proper use of the trial stimulator during a trial period. A diagnostic feature may be provided to facilitate verifying proper operation of various aspects of a trial stimulator, such as electrode impedance analysis. Trial stimulators of embodiments provide stimulation to a plurality of tissues and/or areas of the body, such as spinal cord stimulation, deep brain stimulation, etcetera. Embodiments provide for multi-electrode stimulation and multi-stimulation programs.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: May 3, 2011
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: John H Erickson, George Van Campen, Patrick M Cullen, Thomas K Hickman
  • Patent number: 7937151
    Abstract: A system comprising an implantable medical device (IMD). The IMD includes a processor fabricated on an integrated circuit chip (IC), a random access memory (RAM) circuit fabricated on the same IC, and a programmable non-volatile memory (PNVM) circuit also fabricated on the same IC.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: May 3, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeremy Maniak, William L. Zimmer, Ron A. Balczewski, William J. Linder
  • Patent number: 7933655
    Abstract: A user, such as a clinician or the patient, uses a control device to manipulate at least one neurostimulation parameter. A mapping system uses a calibrated map to map the directional output of the control device to values of at least one stimulation parameter to allow the user to intuitively control the value of the parameter. In some embodiments, where a stimulation device is used to deliver spinal cord stimulation (SCS) therapy for example, the user manipulates a parameter to effect the location and/or strength of paresthesia experienced by the patient. In exemplary embodiments, the parameter values are combinations of electrodes, and the mapping system selects electrode combinations based on the output of the control device such that a direction of movement of paresthesia experienced by the patient corresponds to a direction of manipulation of a directional controller of the control device. The mapping system may calibrate the map based on patient paresthesia information received from a user.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: April 26, 2011
    Assignee: Medtronic, Inc.
    Inventors: Jeffrey M. Sieracki, Richard B. North
  • Publication number: 20110093045
    Abstract: A system for a neurostimulation device comprises at least one processor configured for estimating at a plurality of spatial points a respective plurality of electrical field vectors resulting from a stimulation lead operating in accordance with the set of stimulation parameters, determining an amplitude of each electrical field vector and an angle between each electrical field vector and a vector aligned with an axis of the stimulation lead, and estimating a tissue of volume activation about the stimulation lead based on the determined amplitude and angle of each electrical field vector.
    Type: Application
    Filed: October 14, 2010
    Publication date: April 21, 2011
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventor: Michael Moffitt
  • Publication number: 20110093036
    Abstract: An implantable stimulator for stimulating muscles or nerves, including, an array of electrodes for electrically stimulating muscles or nerves, a controller for controlling the activity of the electrodes, and wherein the controller is adapted to dynamically select the electrodes that are used to participate in stimulating the muscles or nerves.
    Type: Application
    Filed: October 20, 2009
    Publication date: April 21, 2011
    Applicant: Nyxoah SA
    Inventor: Adi MASHIACH
  • Publication number: 20110093042
    Abstract: This disclosure describes techniques that support delivering electrical stimulation via an electrode on a housing of an implantable medical device (IMD) while substantially simultaneously delivering electrical stimulation via one or more electrodes, having the same polarity as the electrode on the housing, on one or more leads engaged to the IMD. The stimulation may be constant current-based or constant voltage-based stimulation in the form of pulses or continuous waveforms. Delivery of stimulation via both a housing anode and one or more lead anodes, for example, may allow a user to control current paths between the housing electrode and the lead electrode(s) in a relative manner to achieve different electric or stimulation field shapes.
    Type: Application
    Filed: January 29, 2010
    Publication date: April 21, 2011
    Applicant: Medtronic, Inc.
    Inventors: Nathan A. Torgerson, Steven M. Goetz
  • Publication number: 20110093040
    Abstract: An IMD is selectively configurable to support a plurality of programming options for enabling and disabling an exposure operating mode of the device. In one example, the IMD may support at least two of a manual exposure mode programming option in which the exposure operating mode is manually enabled and manually disabled, an automatic exposure mode programming option in which the exposure operating mode is automatically enabled and automatically disabled, or a semi-automatic exposure mode programming option in which the exposure operating mode is either automatically enabled and manually disabled or manually enabled and automatically disabled. In this manner, the IMD may support more than one way for enabling and disabling the exposure operating mode to provide flexibility in the clinical workflows associated with programming the IMD into an exposure operating mode for a medical procedure, such as an MRI scan.
    Type: Application
    Filed: October 19, 2009
    Publication date: April 21, 2011
    Inventors: Michael L. Ellingson, Hyun J. Yoon
  • Publication number: 20110093044
    Abstract: A system for a neurostimulation device comprises a user input device configured for receiving an electrode morphology having at least one electrode, memory storing at least one basis electrode model, and at least one processor configured for modeling at least one electrode by recalling the at least one basis electrode model from the memory, and using the recalled at least one basis electrode model multiple times to construct a model of the at least one electrode.
    Type: Application
    Filed: October 14, 2010
    Publication date: April 21, 2011
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventor: Michael A. Moffitt
  • Publication number: 20110093041
    Abstract: This disclosure describes generation of electrical stimulation pulses for electrical stimulation therapy. The stimulation pulses have a pulse current level and pulse width, and may be generated by a current regulator. The pulse voltage level may be a voltage level delivered by the current regulator while maintaining regulation of the pulse current level. During delivery of a pulse, a supply voltage level may decrease due to discharging of a supply capacitance, and the pulse voltage level may increase due to charging of a load capacitance. The pulse current level may be controlled to decrease during the pulse width such that a sum of the pulse voltage level and a headroom voltage of the current regulator does not exceed the supply voltage level. In some examples, the pulse may include sub-pulses with different sub-pulse current levels, where an earlier sub-pulse has a higher pulse current level than a later sub-pulse.
    Type: Application
    Filed: October 21, 2009
    Publication date: April 21, 2011
    Applicant: Medtronic, Inc.
    Inventors: Scott E. Straka, Nathan A. Torgerson
  • Publication number: 20110093043
    Abstract: This disclosure describes techniques that support delivering electrical stimulation via an electrode on a housing of an implantable medical device (IMD) while substantially simultaneously delivering electrical stimulation via one or more electrodes, having the same polarity as the electrode on the housing, on one or more leads engaged to the IMD. The stimulation may be constant current-based or constant voltage-based stimulation in the form of pulses or continuous waveforms. Delivery of stimulation via both a housing anode and one or more lead anodes, for example, may allow a user to control current paths between the housing electrode and the lead electrode(s) in a relative manner to achieve different electric or stimulation field shapes.
    Type: Application
    Filed: January 29, 2010
    Publication date: April 21, 2011
    Applicant: Medtronic, Inc.
    Inventors: Nathan A. Torgerson, Steven M. Goetz
  • Publication number: 20110087305
    Abstract: A medical electrical lead system includes an electrical signal generator providing a plurality of discrete electrical signal channels and an electrical signal channel router electrically coupled between the electrical signal generator and a first lead body and a second lead body. The electrical signal channel router diverts one of the discrete electrical signal channels to the second lead body and not to the first lead body.
    Type: Application
    Filed: October 8, 2010
    Publication date: April 14, 2011
    Applicant: Medtronic, Inc.
    Inventors: James A. Zimmerman, Jason D. Rahn
  • Patent number: 7925350
    Abstract: Methods of detecting an error associated with an implantable device include powering up the implantable device with an external device, disabling a back-telemetry transmitter within the implanted device after the implanted device is powered up, detecting an error with the implanted device, generating a fault signal corresponding to the error with the implanted device, turning on the back-telemetry transmitter after the fault signal has been generated, and transmitting the fault signal to the external device with the back-telemetry transmitter.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: April 12, 2011
    Assignee: Advanced Bionics, LLC
    Inventor: Logan P. Palmer
  • Publication number: 20110082522
    Abstract: Techniques for detecting a value of a sensed patient parameter, and automatically delivering therapy to a patient according to therapy information previously associated with the detected value, are described. In exemplary embodiments, a medical device receives a therapy adjustment from the patient. In response to the adjustment, the medical device associates a sensed value of a patient parameter with therapy information determined based on the adjustment. Whenever the parameter value is subsequently detected, the medical device delivers therapy according to the associated therapy information. In this manner, the medical device may “learn” to automatically adjust therapy in the manner desired by the patient as the sensed parameter of the patient changes. Exemplary patient parameters that may be sensed for performance of the described techniques include posture, activity, heart rate, electromyography (EMG), an electroencephalogram (EEG), an electrocardiogram (ECG), temperature, respiration rate, and pH.
    Type: Application
    Filed: December 13, 2010
    Publication date: April 7, 2011
    Applicant: Medtronic, Inc.
    Inventors: Duane Bourget, Keith A. Miesel
  • Publication number: 20110077706
    Abstract: An implantable medical device (IMD) automatically determines at least a portion of the parameters and, in some instances all of the parameters, of an exposure operating mode based on stored information regarding sensed physiological events or therapy provided over a predetermined period of time. The IMD may configure itself to operate in accordance with the automatically determined parameters of the exposure operating mode in response to detecting a disruptive energy field. Alternatively, the IMD may provide the automatically determined parameters of the exposure operating mode to a physician as suggested or recommended parameters for the exposure operating mode. In other instances, the automatically determined parameters may be compared to parameters received manually via telemetry and, if differences exist or occur, a physician or patient may be notified and/or the manual parameters may be overridden by the automatically determined parameters.
    Type: Application
    Filed: September 29, 2009
    Publication date: March 31, 2011
    Inventors: Michael L. Ellingson, Hyun J. Yoon
  • Patent number: 7908011
    Abstract: Methods and devices for fitting a visual prosthesis are described. In one of the methods, threshold levels and maximum levels for the electrodes of the prosthesis are determined and a map of brightness to electrode stimulation levels is later formed. A fitting system for a visual prosthesis is also discussed, together with a computer-operated system having a graphical user interface showing visual prosthesis diagnostic screens and visual prosthesis configuration screens.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: March 15, 2011
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Matthew J. McMahon, Arup Roy, Scott Greenwald, Ione Fine, Alan Matthew Horsager, Avraham I. Caspi, Kelly Hobart McClure, Robert Jay Greenberg
  • Patent number: 7908012
    Abstract: A method comprises adjusting baseline auditory stimulation parameters of a cochlear implant on a living body and providing auditory electrical stimulation to a living body via electrodes of the cochlear implant in combination with adjusting the auditory stimulation parameters of the cochlear implant to the living body in real time, retaining a database of used auditory stimulation parameters for a patient and selecting, in real time, from the database a desired one of the stimulation parameters that produces desired hearing percepts in a patient.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: March 15, 2011
    Assignee: New York University
    Inventor: Mario A. Svirsky
  • Patent number: 7908013
    Abstract: A medical device delivers a therapy to a patient. The medical device may periodically determine an activity level of the patient, and associate each determined activity level with a current therapy parameter set. A value of at least one activity metric is determined for each of a plurality of therapy parameter sets based on the activity levels associated with that therapy parameter set. A list of the therapy parameter sets is presented to a user, such as a clinician, for evaluation of the relative efficacy of the therapy parameter sets. The list may be ordered according to the one or more activity metric values to aid in evaluation of the therapy parameter sets. Where values are determined for a plurality of activity metrics, the list may be ordered according to the one of the activity metrics selected by the user.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: March 15, 2011
    Assignee: Medtronic, Inc.
    Inventors: Keith A. Miesel, Kenneth T. Heruth
  • Patent number: 7908007
    Abstract: A system and method of enabling detection enhancements selected from a plurality of detection enhancements. In a system having a plurality of clinical rhythms, including a first clinical rhythm, where each of the detection enhancements is associated with the clinical rhythms, the first clinical rhythm is selected. The first clinical rhythm is associated with first and second detection enhancements. When the first clinical rhythm is selected, parameters of the first and second detection enhancements are set automatically. A determination is made as to whether changes are to be made to the parameters. If so, one or more of the parameters are modified under user control.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: March 15, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: James O. Gilkerson, Vickie L. Conley, Scott R. Stubbs, Douglas J. Lang
  • Patent number: 7904175
    Abstract: Devices and methods of non-surgically providing vagus nerve therapy trans-esophageally to treat a variety of medical conditions are disclosed herein. In an embodiment, an implantable medical device comprises a support member having an outer surface. The support member is adapted to engage the inner wall of an esophagus. The IMD also comprises at least one electrode disposed on the outer surface of the support member. The at least one electrode is capable of applying a trans-esophageal electrical signal to the vagus nerve through the wall of the esophagus from the inner lumen thereof. The implantable medical device further comprises a signal generator coupled to the support member and to the at least one electrode. The signal generator causes the at least one electrode to apply an electrical signal to the vagus nerve to treat a medical condition.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: March 8, 2011
    Assignee: Cyberonics, Inc.
    Inventors: Timothy L. Scott, Steven E. Maschino
  • Patent number: 7904166
    Abstract: The invention relates to a configuration and a method for the management of data of a plurality of programmable personal medical devices. The configuration comprises a first plurality of personal devices, a second plurality of patient devices each calibrated to at least one personal device, a third plurality of programming devices each calibrated to at least one personal device, a central management unit, a service center, and a management database. The patient devices and/or the programming devices are controlled using management data, upon establishment of the existence of a communication between the management unit and the patient device and/or a programming device, on the basis of this establishment and on the basis of stored management data, specific management data being transmitted to the patient device and/or programming device.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: March 8, 2011
    Assignee: Biotronik CRM Patent AG
    Inventors: Michael Diebold, Hans-Juergen Wildau
  • Patent number: RE42489
    Abstract: A modality of twitch obtaining intramuscular stimulation (IMS) pain relief therapy employs an EMG needle having a Teflon coated shaft and exposed conductive tip to apply micro-electrical stimulation locally and focally to muscle motor end plate zones or regions of adjacent motor end plate zones. The electrical stimulation facilitates the elicitation of strong twitch responses from muscle fibers associated with the stimulated motor end plates, generally without requiring physical needle manipulation following the initial pin insertion. Less skill is required to effectively elicit pain relieving twitch responses, thus facilitating training of medical personnel to carry the procedure. Rapid movement between multiple treatment sites is possible allowing treatment of a larger number of afflicted muscles and muscle areas in a single treatment session. The strength and number of twitches obtained at the treatment sites can provide substantial relief from regional and diffuse myofacsial pain of radiculopathic origin.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: June 28, 2011
    Assignees: JusJas LLC, Oxford Instruments Medical Limited
    Inventors: Jennifer Chu, Peter Styles