Control Signal Storage (e.g., Programming) Patents (Class 607/59)
  • Patent number: 8886332
    Abstract: A visualization of an area or volume of tissue activated during stimulation according to a set of stimulation parameters is generated. The area or volume of activation is modeled based on a non-uniform grid of model neurons. Select portions of the grid have the model neurons more closely spaced, resulting in finer resolution graphical representation, while less closely spaced model neurons in other portions of the grid may avoid additional computation time.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 11, 2014
    Assignee: Medtronic, Inc.
    Inventors: Gabriela C. Molnar, Maciej T. Lazarewicz
  • Patent number: 8886316
    Abstract: An apparatus comprises a medical device configured for implantation into a living organism. The medical device comprises processing circuitry, a memory and interface circuitry configured for communication with a monitoring device. The medical device is configured to receive a request for access from the monitoring device, to measure a physiological value of the living organism, to perform a pairing protocol with the monitoring device, the pairing protocol comprising a secure channel set-up phase followed by an authentication phase, and to permit access by the monitoring device responsive to a successful pairing in accordance with the pairing protocol, the successful pairing being based at least in part on a determination that a physiological value supplied by the monitoring device substantially matches the measured physiological value. The medical device performs the secure channel set-up phase before sending the measured physiological value to the monitoring device.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: November 11, 2014
    Assignee: EMC Corporation
    Inventor: Ari Juels
  • Patent number: 8886302
    Abstract: In general, the disclosure relates to the delivery of therapy according to a detected posture state of a patient. The disclosure contemplates a variety of techniques for managing therapy delivered to a patent. In one example, the disclosure relates to a technique including delivering therapy to a patient from a medical device, wherein the therapy is delivered to the patient according to a detected posture state of the patient; and automatically adjusting at least one aspect of the therapy delivered from a medical device based at least in part on one or more of time or patient posture state behavior, wherein automatically adjusting at least one aspect of therapy comprises suspending at least one aspect of the therapy or decreasing a posture state detection frequency.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: November 11, 2014
    Assignee: Medtronic, Inc.
    Inventors: Dennis M. Skelton, Jon P. Davis
  • Publication number: 20140330345
    Abstract: Stimulation treatments for various medical disorders, such as neurological disorders, comprise novel systems, strategies, and methods for providing TMS, electrical, magnetic, optical and other stimulation. Some stimulation methods comprise varying the stimulation parameters to improve the therapeutic efficacy of stimulation, and decrease risk of habituation and side-effects such as interference with normal brain, sensory, motor, and cognitive processes. The creation, and subsequent variation, of stimulation parameters can use sensed data in order to match, adjust, or avoid matching characteristics of the stimulation therapy relative to certain endogenous brain activities. Novel methods are described for choosing, creating and subsequently stimulating with partial signals which summate to produce therapeutic vector fields having unique temporal patterns and low- or high-frequency spectral content.
    Type: Application
    Filed: July 17, 2014
    Publication date: November 6, 2014
    Inventor: Michael Sasha John
  • Publication number: 20140324125
    Abstract: A programming-device user interface may include multiple levels of abstraction for programming treatment settings. A stimulation zone-programming interface may be at a highest level of abstraction and may include idealized stimulation zones. A field strength-programming interface may be at a middle level of abstraction and may include electromagnetic field-strength patterns generated by the stimulation zones, and/or electrode settings, and a depiction of how the electromagnetic fields interact with each other. An electrode-programming interface may be at a lowest level of abstraction and may depict treatment settings at an electrodes-view level. These interfaces may include a display of a stimulatable area of the patient's body. The display may include a depiction of leads and/or the underlying physiology, such as a depiction of a portion of a spine. Algorithms map treatment settings from one level of abstraction to settings at one or more other levels of abstraction.
    Type: Application
    Filed: July 11, 2014
    Publication date: October 30, 2014
    Inventor: Steven M. Goetz
  • Publication number: 20140324123
    Abstract: Method and apparatus for diagnosis of conductor anomalies, such as partial conductor failures, in an implantable lead for an implantable medical device are disclosed. In various embodiments, small changes in the lead impedance are identified by the use of a small circuit element that is incorporated as part of the distal end of the implantable lead. In various embodiments, the small circuit element is electrically connected to a lead conductor and/or electrode of the implantable lead. Methods of diagnosing conductor anomalies in accordance with these embodiments generate measured values that depend only on the impedance of the conductors and electrodes of the lead, and not on the behavior of the conductor-tissue interface and other body tissues.
    Type: Application
    Filed: March 25, 2014
    Publication date: October 30, 2014
    Inventors: Mark W. Kroll, Charles D. Swerdlow
  • Publication number: 20140324115
    Abstract: The disclosure herein relates generally to methods for treating heart conditions using vagal stimulation, and further to systems and devices for performing such treatment. Such methods may include monitoring physiological parameters of a patient, detecting cardiac conditions, and delivering vagal stimulation (e.g., electrical stimulation to the vagus nerve or neurons having parasympathetic function) to the patient to treat the detected cardiac conditions.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Inventors: Paul D. Ziegler, Lillian Kornet, Xiaohong Zhou, Richard N.M. Comelussen, Robert Stadler, Eduardo Warman, Karen J. Kleckner, Alberto Della Scala
  • Publication number: 20140324124
    Abstract: An implantable pulse generator includes a current steering capability that allows a clinician or patient to quickly determine a desired electrode stimulation pattern, including which electrodes of a group of electrodes within an electrode array should receive a stimulation current, including the amplitude, width and pulse repetition rate of such current. Movement of the selected group of electrodes is facilitated through the use of remotely generated directional signals, generated by a pointing device, such as a joystick. As movement of the selected group of electrodes occurs, current redistribution amongst the various electrode contacts takes place. The redistribution of stimulus amplitudes utilizes re-normalization of amplitudes so that the perceptual level remains fairly constant. This prevents the resulting paresthesia from falling below the perceptual threshold or above the comfort threshold.
    Type: Application
    Filed: July 8, 2014
    Publication date: October 30, 2014
    Inventors: Carla Mann Woods, David K.L. Peterson, Paul M. Meadows, Gerald E. Loeb
  • Publication number: 20140316486
    Abstract: The disclosure herein relates generally to methods for treating heart conditions using vagal stimulation, and further to systems and devices for performing such treatment. Such methods may include monitoring physiological parameters of a patient, detecting cardiac conditions, and delivering vagal stimulation (e.g., electrical stimulation to the vagus nerve or neurons having parasympathetic function) to the patient to treat the detected cardiac conditions.
    Type: Application
    Filed: April 22, 2014
    Publication date: October 23, 2014
    Applicant: Medtronic, Inc.
    Inventors: Xiaohong Zhou, Lilian Kornet, Richard N.M. Cornelussen, Paul D. Ziegler, Robert Stadler, Eduardo Warman, Karen J. Kleckner, Lucy Nichols, Alberto Della Scala
  • Publication number: 20140316489
    Abstract: A system for programming a plurality of different models, or generations, of neurostimulation devices includes a plurality of plug in software drivers stored on a hard drive of the system, wherein the plurality of plug-in software drivers are respectively configured for facilitating communication between the plurality of different models of neurostimulation devices and the system processor via a transceiver. In a method of programming a plurality of different models of neurostimulation devices, the system processor dynamically identifies the model of an interrogated neurostimulator and determines which plug-in software driver to use for programming the interrogated neurostimulator. The plug-in software drivers are cached into memory upon start-up of the system.
    Type: Application
    Filed: July 1, 2014
    Publication date: October 23, 2014
    Inventor: Dennis Allen Vansickle
  • Publication number: 20140316487
    Abstract: Various aspects of the present subject matter relate to an implantable device. Various device embodiments comprise at least one port to connect to at least one lead with at least electrode, stimulation circuitry connected to the at least one port and adapted to provide at least one neural stimulation therapy to at least one neural stimulation target using the at least one electrode, sensing circuitry connected to the at least one port and adapted to provide a sensed signal, and a controller connected to the stimulation circuitry to provide the at least one neural stimulation therapy and to the sensing circuitry to receive the sensed signal. In response to a triggering event, the controller is adapted to switch between at least two modes. Other aspects and embodiments are provided herein.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 23, 2014
    Inventors: Imad Libbus, Andrew P. Kramer, William J. Linder, Jeffrey E. Stahmann
  • Publication number: 20140316484
    Abstract: In one example embodiment, a neuromodulation system for inducing locomotor activity in a mammal, in cooperation with a signal generator and an electrode, delivers a signal with an overlapping high frequency pulse to a mammal
    Type: Application
    Filed: November 13, 2012
    Publication date: October 23, 2014
    Inventors: Victor Reggie Edgerton, Yuri P. Gerasimenko, Nicholas A. Terrafranca, Daniel C. Lu
  • Publication number: 20140316488
    Abstract: An aspect relates to a system for providing baroreflex stimulation. An embodiment of the system comprises a heart rate monitor to sense a heart rate and provide a signal indicative of the heart rate, and a baroreflex stimulator. The stimulator includes a pulse generator to intermittently generate a stimulation signal to provide baroreflex stimulation for a baroreflex therapy, and further includes a modulator to adjust the stimulation signal based on the signal indicative of the heart rate such that the stimulation signal provides a desired baroreflex stimulation corresponding to a desired heart rate.
    Type: Application
    Filed: July 1, 2014
    Publication date: October 23, 2014
    Inventor: Imad Libbus
  • Patent number: 8868198
    Abstract: A system and method using a plurality of electrodes. An immediate virtual multipole is defined, an immediate electrode configuration emulating the immediate virtual multipole is defined, electrical energy is conveyed to the electrodes in accordance with the immediate electrode configuration, a new virtual multipole is defined by changing a parameter of the immediate virtual multipole by a step size, a new electrode configuration that emulates the new virtual multipole is defined, a difference value as a function of the immediate virtual multipole and the new virtual multipole is computed, the different value is compared to a limit value, electrical energy is conveyed to the electrodes in accordance with the new electrode configuration if the difference value does not exceed the limit value, and the absolute value of the step size is decreased to create a new step size if the difference value does exceed the limit value.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: October 21, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dongchul Lee, Changfang Zhu
  • Patent number: 8868197
    Abstract: A system for an neurostimulator coupled to electrodes. The system comprises a input device configured for generating directional control signals, and memory storing ideal multipole configurations.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: October 21, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Dongchul Lee
  • Patent number: 8868199
    Abstract: The present disclosure involves a method of data-reducing and storing a sensation map. A sensation map associated with a patient is provided. The sensation map includes a graphical depiction of a sensation experienced by the patient. The sensation may be pain or paresthesia experienced by the patient in response to an electrical stimulation therapy. A data file is generated. The data file has a data size less than a data size of the sensation map. The data file contains digital information allowing a reconstruction of the sensation map. Electronic communication is then established with an implanted medical device located inside the patient's body. Thereafter, the data file is sent to the implanted medical device for storage. The stored data files are retrievable by another clinician programmer later to reconstruct the sensation map.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: October 21, 2014
    Assignee: Greatbatch Ltd.
    Inventors: Norbert Kaula, Yohannes Iyassu, Carl Mosley, Scott Drees
  • Patent number: 8868196
    Abstract: A system for an electrical neurostimulator coupled to a plurality of electrodes. The system comprises a user-controlled input device configured for generating directional control signals. The system further comprises control circuitry configured for sequentially defining a plurality of different ideal bipole/tripole configurations relative to the plurality of electrodes in response to the directional control signals, generating a plurality of stimulation parameter sets respectively corresponding to the plurality of ideal bipole/tripole configurations, each stimulation parameter set defining relative amplitude values for the plurality of electrodes that emulate the respective ideal bipole/tripole configuration, and instructing the electrical neurostimulator to convey electrical energy to the plurality of electrodes in accordance with the plurality of stimulation parameter sets.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: October 21, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dongchul Lee, Changfang Zhu
  • Publication number: 20140309713
    Abstract: An electrostimulation device includes an implantable internal unit, which includes an array of electrodes assembled on or in a housing, and affixing structure for affixing the unit with respect to a targeted anatomy of a patient, a microprocessor mounted in the housing and in communication with the electrodes, a transceiver mounted in the housing and in communication with the microprocessor, and a power supply for providing power to the electrodes, the microprocessor and the transceiver.
    Type: Application
    Filed: April 14, 2013
    Publication date: October 16, 2014
    Inventors: Ronnie Levy, Yiftach Beinart, Alon Shalev
  • Patent number: 8862240
    Abstract: In general, the disclosure is related to characterization of implanted electrical stimulation electrode arrays using post-implant imaging. The electrode arrays may be carried by implanted leads. Characterization of implanted electrode arrays may include identification of the type or types of leads implanted within a patient and/or determination of positions of the implanted leads or electrodes carried by the leads relative to one another or relative to anatomical structures within the patient. In addition, the disclosure relates to techniques for specifying or modifying patient therapy parameters based on the characterization of the implanted electrode arrays.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: October 14, 2014
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Wende L. Dewing
  • Publication number: 20140303682
    Abstract: A system and method of stimulating a nerve of a patient is provided. A electro-therapy device is used that includes a signal generator and two electrodes. The first electrode is positioned on an epidermis of the patient over the nerve to be stimulated. The second electrode is positioned on an epidermis of the patient at a second location. A The electro-therapy device is configured to alternately deliver to a first and second electrode a summation of first and second signals which result in a therapeutic signal encompassing the nerve of the patient. The intensity of the first and second signal is adjusted over time.
    Type: Application
    Filed: April 8, 2014
    Publication date: October 9, 2014
    Applicant: BIOWAVE CORP.
    Inventor: Bradford Siff
  • Publication number: 20140303689
    Abstract: An electrical stimulation system for use with a plurality of electrodes implanted within a tissue region comprises a neurostimulator configured for delivering electrical stimulation energy to the plurality of electrodes in accordance with a set of stimulation parameters, thereby injecting a charge into the tissue region, a control device configured for receiving user input to modify the set of stimulation parameters, and controller/processor circuitry configured for, in response to the user input computing a charge injection metric value as a function of a physical electrode parameter and an electrical source parameter for a first set of the electrodes, wherein the electrode set comprises at least two electrodes, comparing the computed charge injection metric value to a safety threshold value, and performing a corrective action based on the comparison.
    Type: Application
    Filed: April 3, 2014
    Publication date: October 9, 2014
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Gustav Karl Steinke, Michael A. Moffitt
  • Patent number: 8855773
    Abstract: A system and method for selection of stimulation parameters for Deep Brain Stimulation (DBS) may include a processor that displays in a display device and in relation to a displayed model of a leadwire including model electrodes, a current field corresponding to a first stimulation parameter set, provides a user interface for receipt of user input representing a shift of the current field, in response to the user input, moves, in the display device, the current field with respect to the displayed model, determines a second stimulation parameter set that results in the moved current field, and outputs the second stimulation parameter set and/or sets a stimulation device with the second stimulation parameter set, where the stimulation device is configured for performing a stimulation using the leadwire in accordance with the second stimulation parameter set.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: October 7, 2014
    Assignee: Intelect Medical, Inc.
    Inventors: Scott Kokones, David Arthur Blum, Keith Carlton, Troy Sparks
  • Patent number: 8855780
    Abstract: In the present disclosure, conservation of an implantable medical device power supply of is facilitated by controlling the power consumption of the device's processing component. The power supplied to the processing component is controlled to enable processing of received events as a function of predetermined criteria rather than the actual occurrence of the events which is frequent, but irregular. Accordingly, the need for the processing component to start and stop (and thereby be fully powered on each start) with receipt of each event is obviated thereby maintaining the power consumption of the processing component and increasing longevity of the device. Event data associated with received events is stored in an event queue and subsequently retrieved and transmitted for processing based on predetermined criteria. The power supplied during an idle state of the processing component may be reduced in relation to the power supplied during a wake up state.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: October 7, 2014
    Assignee: Medtronic, Inc.
    Inventors: Daniel L. Hansen, Robert M. Ecker, Paul R. Solheim
  • Publication number: 20140296938
    Abstract: A method for defining connections between a plurality of lead bodies and a plurality of output ports of a neurostimulator, and an external control device for performing the method are disclosed. The external control device includes a user interface and control circuitry. The method includes displaying the lead bodies and the output ports of the neurostimulator; selecting a first one of the lead bodies; dragging a connector from the first lead body to a first one of the output ports of the neurostimulator; and dropping the connector onto the first output port of the neurostimulator, thereby defining a connection between the first lead body and the first output port of the neurostimulator. In another embodiment, a method includes defining the connection between the first lead body and the first output port, and graphically displaying the connection between the first lead body and the first output port of the neurostimulator.
    Type: Application
    Filed: June 16, 2014
    Publication date: October 2, 2014
    Inventors: Sridhar Kothandaraman, Mun Pook Lui
  • Patent number: 8849411
    Abstract: A system for programming a neurostimulation device coupled to one or more electrodes. The system comprises a user interface configured for allowing a user to select a set of stimulation parameters and to define a graphical shape representative of an anatomical region of interest. The system further comprises memory configured for storing the graphical shape in registration with an anatomical reference, and output circuitry configured for communicating with the neurostimulation device. The system further comprises a controller configured for recalling the registered graphical shape and anatomical reference from the memory, generating display signals capable of prompting the user interface to concurrently display a representation of the electrode(s) relative to the recalled graphical shape and anatomical reference, and programming the neurostimulation device with the selected stimulation parameter set via the output circuitry.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: September 30, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Dennis Zottola, Jim Cassidy
  • Publication number: 20140288608
    Abstract: A method and device to enable a medical or surgical procedure using electro-cautery on a patient with an implantable device in a cautery-safe mode of operation. In one embodiment, the invention provides an electronic implantable device programmer having a computer processor, and a display screen configured to display information based on signals from the computer processor. The programmer also includes an input device, and a wireless transmitter controlled by the computer processor. The programmer display and input give the operator the option of programming an implanted electronic device in a cautery-safe mode.
    Type: Application
    Filed: June 4, 2014
    Publication date: September 25, 2014
    Inventors: Keith Lurie, Barbara S. Gold, David Benditt, Andres Belalcazar
  • Patent number: 8843207
    Abstract: A particular method of providing power to an implantable medical device includes providing a first signal to a primary coil that is inductively coupled to a secondary coil of an implantable medical device. The method also include determining a first alignment difference between a voltage corresponding to the first signal and at least one of a current corresponding to the first signal and a component voltage at a component of a primary coil circuit. The method further includes determining a frequency sweep range based on the first alignment difference. The method also includes performing a frequency sweep over the frequency sweep range.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: September 23, 2014
    Assignee: Cyberonics, Inc.
    Inventor: Himanshu Joshi
  • Publication number: 20140277280
    Abstract: A method and a system of phrenic nerve stimulation detection in conjunction with posture sensing is disclosed. In an embodiment, the method may include receiving a trigger for conducting a pace-induced phrenic nerve stimulation (PS) search using the IMD within the patient. On receiving the trigger, the IMD may be used for conducting the PS search. A procedure of conducting the PS search may include measuring a posture of the patient using an implantable posture sensor, searching for PS while the patient is in the measured posture and obtaining a PS result from the PS search for the measured posture. The method may include recording both the PS result and the measured posture in a memory of the IMD.
    Type: Application
    Filed: February 26, 2014
    Publication date: September 18, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Sunipa Saha, Holly Rockweiler, Aaron R. McCabe, Krzysztof Z. Siejko, John D. Hatlestad
  • Publication number: 20140277281
    Abstract: A neuromodulation system and method includes delivering first electrical modulation energy to a patient through a timing channel at a relatively high energy level (e.g., at a frequency in the range of 2 KHz-50 KHz) during a first time period in accordance with a stored modulation energy delivery schedule, delivering second electrical modulation energy to the patient through the same timing channel at a relatively low energy level (e.g., at a frequency in the range of 2 Hz to 1500 Hz) during a second time period in accordance with the stored modulation energy delivery schedule.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 18, 2014
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventor: Sarvani Grandhe
  • Publication number: 20140277268
    Abstract: A multiple output current stimulator circuit with fast turn on time is described. At least one pair of input side and output side transistors is arranged in a current mirror connected to a supply transistor by cascode coupling. The output side transistor supplies stimulation current to an electrode in contact with tissue. An operational amplifier connected to a reference voltage and to the output side transistor drives the supply transistor to maintain the voltage at the output side transistor equal to the reference voltage. The at least one pair of transistors includes multiple pairs of transistors whose output side transistors drive respective electrodes with stimulation currents. The stimulator determines the initiation and duration of stimulation current pulses supplied to each electrode. At circuit activation, large currents are generated which discharge capacitances in the output side transistors causing rapid output side transistor turn on.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Applicant: ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventor: EDWARD K. F. LEE
  • Publication number: 20140277282
    Abstract: A neurostimulation system and method of treating a patient. Electrical stimulation energy is delivered to a target tissue site in accordance with a stimulation parameter to treat the patient and evoke at least one compound action potential (CAP) in a population of neurons. A magnitude of the evoked CAP is measured. A function of the measured evoked CAP magnitude(s) is compared to a threshold value. The stimulation parameter is adjusted based on the comparison.
    Type: Application
    Filed: March 9, 2014
    Publication date: September 18, 2014
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventor: Kristen Jaax
  • Publication number: 20140277278
    Abstract: Techniques are provided for controlling spinal cord stimulation (SCS) or other forms of neurostimulation. Far-field cardiac electrical signals are sensed using a lead of the SCS device and neurostimulation is selectively delivering using a set of adjustable SCS control parameters. Parameters representative of cardiac rhythm are derived from the far-field cardiac electrical signals. The parameters representative of cardiac rhythm are correlated with SCS control parameters to thereby map neurostimulation control settings to cardiac rhythm parameters. The delivery of further neurostimulation is then controlled based on the mapping of neurostimulation control settings to cardiac rhythm parameters to, for example, address any cardiovascular disorders detected based on the far-field cardiac signals. In this manner, a closed loop control system is provided to automatically adjust SCS control parameters to respond to changes in cardiac rhythm such as changes associated with ischemia, arrhythmia or heart failure.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: ST. JUDE MEDICAL
    Inventors: Allen Keel, Stuart Rosenberg, Rupinder Bharmi, Kyungmoo Ryu, Edward Karst, Fujian Qu, Xiaoyi Min, Yelena Nabutovsky
  • Publication number: 20140277277
    Abstract: Apparatus and methods configured to perform power regulation for an implantable device are presented. In an aspect, an implantable device can include a substrate that forms at least part of a body of the implantable device and a circuit disposed on or within the substrate. The circuit can include a high load power regulator configured to provide a first current level to components of the implantable device and a low load power regulator configured to provide a second current level to components of the implantable device, wherein the second current level is lower that the first current level. The circuit can also include a regulator switch configured to enable or disable current draw from the high load power regulator and the low load power regulator as a function of power state and associated power requirement of the components of the implantable device.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: MEDTRONIC, INC.
    Inventors: Charles Gordon, Shohan Hossain, Weizheng Liang, James D. Reinke, William D Wildes
  • Publication number: 20140277279
    Abstract: Methods and associated devices and algorithms for programming a therapy for an implanted baroreflex activation system are described and may include determining one or more programmable operating parameters of the therapy which do not cause a patient to experience extraneous stimulation associated with the therapy and programming the implanted baroreflex stimulation system with programmable operating parameters.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Adam Cates, Eric Grant Lovett, Seth Wilks
  • Publication number: 20140277283
    Abstract: Techniques are disclosed for generating a plurality of output voltages from a single input power source. The techniques include implementing a switched capacitor voltage converter to provide at least two output voltages having different supply ratios. The supply ratio is defined as a function of the input voltage provided to the switched capacitor voltage converter by the power source. The switched capacitor voltage converter includes a plurality of capacitors selectively coupled to a plurality of switches to define at least a first and a second mode with each of the modes having a plurality of configurations. In accordance with aspects of the disclosure, the techniques include coupling the plurality of capacitors to define the first or second mode based on predetermined criteria.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: Medtronic, Inc.
    Inventors: James D. Reinke, Charles R. Gordon, Shohan T. Hossain, Weizheng Liang, Gregg T. Sarkinen
  • Publication number: 20140277284
    Abstract: A system and method include a processor that, based on at least a subset of stored data of clinical effects of one or more stimulations of anatomical tissue performed using electrodes of an implanted leadwire, generates and outputs at least one graphical marking representing the at least the subset of the stored data. Each of the at least one graphical marking represents a respective portion of the at least the subset of the stored data and is output in association with a respective set of values for each of at least two parameters by which one or more the stimulations were performed. The markings are plotted in a graph defined by axes corresponding to values of respective stimulation parameters. Alternative, the markings are arranged in a column of a tabular report. The markings are two-toned to provide respective information for both therapeutic and adverse side effects.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Dean CHEN, Brian James HOFFER, Sridhar KOTHANDARAMAN, David Ari LUBENSKY, Mun Pook LUI, Michael A. MOFFITT, Dennis Allen VANSICKLE
  • Publication number: 20140277267
    Abstract: An external control device and method for programming an implantable neuromodulator coupled to an electrode array implanted adjacent tissue of a patient having a medical condition. Electrical modulation energy is conveyed to tissue of the patient in accordance with a series of modulation parameter sets. The patient perceives paresthesia in response to the conveyance of the electrical modulation energy to the tissue in accordance with at least one of the modulation parameter sets. One of the modulation parameter set(s) is identified based on the perceived paresthesia. Another modulation parameter set is derived from the identified modulation parameter set. Electrical modulation energy is conveyed to the tissue of the patient in accordance with the other modulation parameter set without causing the patient to perceive paresthesia.
    Type: Application
    Filed: March 15, 2014
    Publication date: September 18, 2014
    Inventors: Dennis Allen Vansickle, Dongchul Lee, Sridhar Kothandaraman, Que T. Doan, Changfang Zhu, Jordi Parramon, Justin Holley, Bradley L. Hershey, Christopher E. Gillespie, Rafael Carbunaru, Nazim Wahab
  • Publication number: 20140277256
    Abstract: We report a method of automatically titrating an electrical therapy administered to a patient by an implanted medical device to a target dosage, comprising programming the medical device with a programmed electrical therapy comprising a first target value for a first therapy parameter; programming at least one titration parameter for automatically adjusting the first therapy parameter from a first value to the first target value over a titration time period initiating the electrical therapy, wherein the first therapy parameter comprises said first value; and automatically titrating the electrical therapy by making a plurality of adjustments to the value of the first therapy parameter, whereby the first electrical therapy parameter is changed from the first value to the first target value according to a titration function. We also report a medical device system configured to implement the method.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 18, 2014
    Applicant: Flint Hills Scientific, L.L.C.
    Inventor: Ivan Osorio
  • Publication number: 20140277269
    Abstract: A successive approximation ADC made of a low voltage configurable differential amplifier and low voltage logic circuits which can convert a high voltage analog input to a digital equivalent. The differential amplifier can be configured as either an op amp or a comparator depending upon the mode of operation. An input capacitor C1 is switchably coupled to an electrode selected for voltage sampling. A switched capacitor array C2 is coupled across the differential amplifier input and output. A SAR coupled to the switched capacitor array provides a digital output corresponding to the sampled analog voltage. During a sampling interval and a charge transfer interval, the differential amplifier is configured as an op amp. During the transfer interval, the voltage on the input capacitor multiplied by the ratio C1/C2 is transferred to the switched capacitor array. During an analog to digital conversion interval, the ADC converts the analog voltage to an equivalent digital output.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Applicant: ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventor: EDWARD K. F. LEE
  • Patent number: 8838254
    Abstract: This disclosure describes techniques for configuring an IMD into the exposure operating mode. Prior to a medical procedure that generates a disruptive energy field, such as an MRI scan, an electronic prescription is configured to indicate that the IMD is authorized for the medical procedure that includes a disruptive energy field. The electronic prescription includes one or more designated bits within a storage element of the IMD. When the patient in which the IMD is implanted arrives for the medical procedure, a user (such as an MRI operator) interacts with a telemetry device to determine whether the electronic prescription is configured. Upon determining that the electronic prescription is configured, the IMD transitions into the exposure operating mode designed for operation in the disruptive energy field. In this manner, the electronic prescription confirms to the user that that the IMD has been checked for suitability for operation during the medical procedure.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: September 16, 2014
    Assignee: Medtronic, Inc.
    Inventors: Lawrence C. McClure, Sandy K. Wixon, Sean S. Josephson, Michael L. Ellingson, Hyun J. Yoon
  • Patent number: 8838243
    Abstract: In one embodiment, a method of programming an IPG comprises providing one or several GUI screens on the programmer device, the GUI screens comprising a master amplitude GUI control for controlling amplitudes for stimsets of a stimulation program and one or several balancing GUI controls for controlling amplitudes of each stimset of the stimulation program; communicating one or several commands from the programmer device to the IPG to change the amplitude of all stimsets of the stimulation program in response to manipulation of the master amplitude GUI control, wherein the amplitude of each stimulation set is automatically calculated by a level selected through the master amplitude GUI control and one or several calibration parameters for the respective stimulation set; and automatically recalculating the one or several calibration parameters for a respective stimulation set in response to manipulation of one of the balancing GUI controls and storing the recalculated calibration parameters.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: September 16, 2014
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Thomas K. Hickman, Erik D. Engstrom, Matthew J. Brock, John H. Erickson
  • Publication number: 20140257432
    Abstract: Two LC circuits (each with its own coil) are used in either or both of an external controller or an implanted medical device to extend the range at which the two devices can communicate. Only one of the LC circuits (i.e., one of the coils) is used when the device is transmitting, while both LC circuits (i.e., both coils) are used when the device is receiving. When receiving, the LC circuits are preferably connected in series. The series connection of the LC circuits does not affect the resonant frequency, and thus this resonant frequency is the same for both transmission and reception despite the different LC circuits used. Switching circuitry is controlled to disconnect one of the LC circuits when the device is transmitting, and to connect the LC circuits in series during reception.
    Type: Application
    Filed: November 12, 2013
    Publication date: September 11, 2014
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Samuel Tahmasian, Tom Stouffer
  • Patent number: 8831731
    Abstract: A system and method for providing a volume of activation (VOA) of a stimulation electrode leadwire may include a processor that calculates a VOA for each of a plurality of sets of parameter settings of the leadwire, stores in a database each of the calculated VOAs in association with the respective set of parameter settings for which it was calculated, obtains a set of parameter settings of the leadwire for a stimulation, and determines a VOA for the obtained set of parameter settings based on the stored VOAs.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: September 9, 2014
    Assignee: Intelect Medical, Inc.
    Inventors: David Arthur Blum, Keith Carlton, Alan Greszler, Scott Kokones, Troy Sparks
  • Publication number: 20140249602
    Abstract: A system and method for estimating the longevity of an implantable medical device (IMD). In one embodiment of a method for estimating a life of a power source of an implantable medical device, a first life estimate of the power source is determined based on a first open-loop value corresponding to an open-loop parameter for open-loop therapy delivery, a first closed loop value corresponding to a closed-loop parameter for closed-loop therapy delivery, and prior usage data corresponding to prior therapy delivery. The first life estimate of the power source is displayed. The first life estimate displayed includes a first open-loop portion associated with open-loop therapy delivery and a first closed-loop portion associated with closed-loop therapy delivery.
    Type: Application
    Filed: May 13, 2014
    Publication date: September 4, 2014
    Applicant: CYBERONICS, INC.
    Inventor: John C. COLBORN
  • Publication number: 20140249601
    Abstract: Methods and devices for providing noninvasive electrotherapy and electrical stimulation are described herein. In one aspect, a device for noninvasive electrotherapy includes wireless communication circuitry configured to receive pulse generation control signals wirelessly transmitted from a computing device. The device can include pulse generation circuitry configured to deliver electrical waveforms according to instructions encoded in the pulse generation control signals. The computing device can include a cellular telephone device, a portable media player, a personal digital assistant, a tablet computer, or an internet access device.
    Type: Application
    Filed: February 26, 2014
    Publication date: September 4, 2014
    Applicant: EMPI, Inc.
    Inventors: Thomas Jerome Bachinski, Michael Moore, Joseph Winn, Jay Dave, David Orr, Dain Silvola
  • Publication number: 20140249466
    Abstract: A system for controlling and modulating a mammalian's body temperature and thermoregulation system includes: a. a display monitor; b. a pulse generator; c. at least one channel of electrical or electromagnetic stimuli connected to the pulse generator, and adapted for cutaneous application on the body's spinal cord; d. a control panel, and e. at least one Measurement Analysis and Command (MAC) unit. The control panel and the MAC units are adapted to implement the optimal stimulating procedure for blocking the afferent neural pathways, evoking the afferent neural pathways, attenuating the afferent neural pathways, blocking and evoking the efferent neural pathways, blocking and attenuating the efferent neural pathways, attenuating and evoking, or blocking, attenuating, and evoking the efferent neural pathways, involved in the thermoregulation system, thereby controlling and modulating the body's temperature and thermoregulation system.
    Type: Application
    Filed: June 14, 2012
    Publication date: September 4, 2014
    Applicant: THERMACON LTD.
    Inventor: Gil Hakim
  • Publication number: 20140249596
    Abstract: An electrical stimulation device configured to perform an electrical stimulation therapy on a patient includes a stimulation circuit, at least one electrode lead comprising one or more electrodes, a communication circuit and a controller. The controller is configured to execute a stimulation program received through the communication circuit. Electrical stimulation pulses are generated by the stimulation circuit and delivered to the at least one electrode lead in response to the execution of the stimulation program.
    Type: Application
    Filed: October 16, 2012
    Publication date: September 4, 2014
    Inventor: David J. Yonce
  • Patent number: 8825169
    Abstract: A method of providing therapy to a patient comprises (a) receiving input from a user, (b) selecting a first electrode configuration in response to receiving the user input, (c) predicting a neural response induced by electrical energy theoretically conveyed by the first electrode configuration at a specified amplitude, (d) deriving a metric value from the predicted neural response, (e) comparing the metric value to a reference threshold value, (f) adjusting the specified amplitude of the electrical energy if the metric value is not in a specified range relative to the reference threshold value, (g) repeating steps (c)-(f) using the adjusted amplitude as the specified amplitude until the metric value is in the specific range relative to the reference threshold value, and (h) instructing a neurostimulation device to deliver the electrical energy at the adjusted amplitude via the first electrode configuration to stimulate the patient.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: September 2, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Changfang Zhu, Dongchul Lee
  • Publication number: 20140243929
    Abstract: Described herein are methods and devices that utilize electrical neural stimulation to treat heart failure by modulating a patient's autonomic balance in a manner that inhibits sympathetic activity and/or augments parasympathetic activity. Because other therapies for treating heart failure may also affect a patient's autonomic balance, a device for delivering neural stimulation is configured to appropriately titrate such therapy in either an open-loop or closed-loop fashion.
    Type: Application
    Filed: May 2, 2014
    Publication date: August 28, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Marina V. Brockway, Imad Libbus, Krzysztof Z. Siejko, Robert J. Sweeney
  • Patent number: 8818502
    Abstract: A method and device for endocrine and exocrine gland control. The method comprises selecting neuro-electrical coded signals from a storage area that are representative of body organ function. The selected neuro-electrical coded signals are then transmitted to a treatment member, which is in direct contact with the body, and which then broadcasts the neuro-electrical coded signals to a specific endocrine and exocrine gland nerve or gland to modulate the gland functioning. A control module is provided for transmission to the treatment member. The control module contains the neuro-electrical coded signals which are selected and transmitted to the treatment member, and computer storage can be provided for greater storage capacity and manipulation of the neuro-electrical coded signals.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: August 26, 2014
    Assignee: Codes of Life, LLC
    Inventor: Eleanor L. Schuler