Telemetry Or Communications Circuits Patents (Class 607/60)
  • Publication number: 20140324126
    Abstract: The disclosed technique for charging a battery in an implantable medical device using an external charger indirectly determines the total power dissipated as heat in the IPG (P_IPG) by accounting for the various powers in the external charger/IPG system which are either known or can be measured, such as the input power provided to the amplifier that drives the coil in the external charger (Psys), the power stored in the IPG's battery (Pstored), and the power dissipated in the external charger's charging coil as heat (P_EC) (which is measured). Determining P_IPG at the external charger in this manner allows the heat flux from the IPG to be calculated (F_IPG), and compared to a safe heat flux limit (F_IPG?) to allow for adjustment to the power of the magnetic charging field in a closed loop fashion.
    Type: Application
    Filed: February 17, 2014
    Publication date: October 30, 2014
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventor: Robert Ozawa
  • Publication number: 20140323902
    Abstract: An interactive implantable medical device system includes an implantable medical device and a network-enabled external device capable of bi-directional communication and interaction with the implantable medical device. The external device is programmed to interact with other similarly-enabled devices. The system facilitates improved patient care by eliminating unnecessary geographic limitations on implantable medical device interrogation and programming, and by allowing patients, physicians, and other users to access medical records, history, and information and to receive status and care-related alerts and messages anywhere there is access to a communications network.
    Type: Application
    Filed: July 7, 2014
    Publication date: October 30, 2014
    Inventors: Benjamin D. PLESS, David R. FISCHELL, Barbara GIBB, Lisa GUZZO, Adrain R.M. UPTON
  • Publication number: 20140324127
    Abstract: A combination charging and telemetry circuit for use within an implantable device, such as a microstimulator, uses a single coil for both charging and telemetry. In accordance with one aspect of the invention, one or more capacitors are used to tune the single coil to different frequencies, wherein the coil is used for multiple purposes, e.g., for receiving power from an external source and also for the telemetry of information to and from an external source.
    Type: Application
    Filed: July 9, 2014
    Publication date: October 30, 2014
    Inventors: Daniel Aghassian, Jordi Parramon, Joey Chen
  • Publication number: 20140316486
    Abstract: The disclosure herein relates generally to methods for treating heart conditions using vagal stimulation, and further to systems and devices for performing such treatment. Such methods may include monitoring physiological parameters of a patient, detecting cardiac conditions, and delivering vagal stimulation (e.g., electrical stimulation to the vagus nerve or neurons having parasympathetic function) to the patient to treat the detected cardiac conditions.
    Type: Application
    Filed: April 22, 2014
    Publication date: October 23, 2014
    Applicant: Medtronic, Inc.
    Inventors: Xiaohong Zhou, Lilian Kornet, Richard N.M. Cornelussen, Paul D. Ziegler, Robert Stadler, Eduardo Warman, Karen J. Kleckner, Lucy Nichols, Alberto Della Scala
  • Publication number: 20140316478
    Abstract: A method and apparatus for treating a condition associated with impaired blood pressure and/or heart rate in a subject comprising applying an electrical treatment signal, wherein the electrical treatment signal is selected to at least partially block nerve impulses, or in some embodiments, to augment nerve impulses.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 23, 2014
    Inventors: Katherine S. Tweden, Richard R. Wilson, Mark B. Knudson, Dennis Dong-Won Kim, Deepak Bhole
  • Patent number: 8868201
    Abstract: Methods, devices and systems are disclosed that provide for dynamically adjusting the valid lifespan of a session key for wireless communication sessions established between at least two medical devices. Adjusting the session key lifetime balances protecting the communications link so that it is not unnecessarily susceptible to eavesdropping by third parties or other interference while obviating the need for a user to repeatedly perform access control steps.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: October 21, 2014
    Assignee: Medtronic, Inc.
    Inventors: Earle T. Roberts, Irfan Z. Ali, Donald L. Villalta
  • Patent number: 8868200
    Abstract: An implantable medical device has a housing having a first housing surface side, a second housing surface side opposing the first housing surface side, and an intermediate surface side extending between the first and second housing surface sides. The implantable medical device has an antenna device arranged at the first housing surface side, continuing at the intermediate surface side and further at the second housing surface side. Improved radiation characteristics are obtained in a desired direction.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: October 21, 2014
    Assignee: St. Jude Medical AB
    Inventors: Hans Abrahamson, Viktor Skoog
  • Publication number: 20140309713
    Abstract: An electrostimulation device includes an implantable internal unit, which includes an array of electrodes assembled on or in a housing, and affixing structure for affixing the unit with respect to a targeted anatomy of a patient, a microprocessor mounted in the housing and in communication with the electrodes, a transceiver mounted in the housing and in communication with the microprocessor, and a power supply for providing power to the electrodes, the microprocessor and the transceiver.
    Type: Application
    Filed: April 14, 2013
    Publication date: October 16, 2014
    Inventors: Ronnie Levy, Yiftach Beinart, Alon Shalev
  • Patent number: 8862240
    Abstract: In general, the disclosure is related to characterization of implanted electrical stimulation electrode arrays using post-implant imaging. The electrode arrays may be carried by implanted leads. Characterization of implanted electrode arrays may include identification of the type or types of leads implanted within a patient and/or determination of positions of the implanted leads or electrodes carried by the leads relative to one another or relative to anatomical structures within the patient. In addition, the disclosure relates to techniques for specifying or modifying patient therapy parameters based on the characterization of the implanted electrode arrays.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: October 14, 2014
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Wende L. Dewing
  • Patent number: 8862233
    Abstract: At least one of a plurality of disorders of a patient characterized at least in part by vagal activity innervating at least one of a plurality of organs of the patient is treated by a method that includes positioning an electrode on a vagus nerve. An electrical signal is applied to the electrode to modulate vagal activity by an amount selected to treat the disorder. In some embodiments, the disorder is obesity. The signal may be a blocking or a stimulation signal. In some embodiments, the signal is selected to, at least in part, downregulate neural activity on the vagus nerve.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: October 14, 2014
    Assignee: EnteroMedics Inc.
    Inventors: Mark B. Knudson, Richard R. Wilson, Katherine S. Tweden, Timothy R. Conrad
  • Patent number: 8862241
    Abstract: An implanted coil supplies energy or control signals to, or provides information from, a medical device implanted in a human or animal patient. Preferably, the coil is implanted subcutaneously in the patient at a location suitable for easy access to the coil. The implanted coil is wound from a wire that is formed into a plurality of smaller diameter coils connected in series and positioned perpendicular to the larger implanted coil. Preferably, the wire used to form the implanted coil is a helically-shaped wire that is very resilient, and, thus, capable of handling even extreme movements of a patient in whom it is implanted without the risk of breaking.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: October 14, 2014
    Inventor: Peter Forsell
  • Patent number: 8855781
    Abstract: A remotely programmable personal device, in particular a programmable implantable medical device, e.g., a cardiac pacemaker, a defibrillator, a cardioverter or the like. A system for remote programming of such a personal medical device and a method for remote programming of a programmable personal device.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: October 7, 2014
    Assignee: BIOTRONIK CRM Patent AG
    Inventor: Thomas Doerr
  • Patent number: 8855782
    Abstract: Disclosed is a system having an implanted component and external component which are configured to provide a test of wireless communication in order to assess the success or failure of such communication and to store attributes related to such test in a memory log. To provide the communication test the implantable and external components can attempt wireless communication according to communication test parameters which relate to number of times to retry communication, duration of sending communication test signals, durations of waiting for communication test signals and the schedule of the communication tests. The schedule of tests may be periodic or may change over time in order to become more or less frequent according to a programmable schedule that may also decrease if the communication tests are successful and indicate patient compliance in keeping the external components close by.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: October 7, 2014
    Assignee: Angel Medical Systems, Inc.
    Inventors: David Keenan, Michael Sasha John
  • Publication number: 20140296939
    Abstract: A nerve stimulation system for a biological subject includes a stimulator to be disposed in the biological subject, sensing units to be disposed on the biological subject for obtaining biological information thereof, and an evaluation device. The evaluation device adjusts a parameter according to the biological information received from the sensing units, and generates a control signal indicating the parameter adjusted thereby. The stimulator wirelessly receives the control signal from the evaluation device, and generates a stimulation signal to stimulate the biological subject according to the parameter adjusted by the evaluation device.
    Type: Application
    Filed: March 18, 2014
    Publication date: October 2, 2014
    Applicant: Taiwan Advanced Sterilization Technology, Inc.
    Inventors: Peng-Chieh Wu, Wen-Hsuan Liao, Wei-Hsuan Liao, Yung-Ting Kuo
  • Patent number: 8849402
    Abstract: A system and method for contactless power transfer in implantable devices for charging rechargeable batteries disposed within the implantable devices are provided. The system includes a first coil electrically couplable to a power source, wherein the first coil is configured to produce a magnetic field. The system further includes a second coil electrically coupled to the rechargeable battery disposed within the implantable device and configured to receive power from the first coil via the magnetic field and to transfer the power to the rechargeable battery. The system also includes a field focusing element disposed between the first coil and the second coil and configured as a self resonant coil having a standing wave current distribution to focus the magnetic field onto the second coil and enhance the coupling between the first coil and the second coil.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: September 30, 2014
    Assignee: General Electric Company
    Inventors: Adnan Kutubuddin Bohori, Somakumar Ramachandrapanicker, Suma Memana Narayana Bhat
  • Patent number: 8849412
    Abstract: A system includes a controller module, which includes a storage device, a controller, a modulator, and one or more antennas. The storage device is stored with parameters defining a stimulation waveform. The controller is configured to generate, based on the stored parameters, an output signal that includes the stimulation waveform, wherein the output signal additionally includes polarity assignments for electrodes in an implantable, passive stimulation device. The modulator modulates a stimulus carrier signal with the output signal to generate a transmission signal.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: September 30, 2014
    Assignee: Micron Devices LLC
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Publication number: 20140288667
    Abstract: An intravascular device for placement within an animal vessel, the intravascular device being adapted to at least one of sense and stimulate activity of neural tissue located outside the vessel proximate the intravascular device.
    Type: Application
    Filed: October 3, 2012
    Publication date: September 25, 2014
    Inventor: Thomas James Oxley
  • Publication number: 20140288393
    Abstract: This disclosure describes a chopper mixer telemetry circuit for use in a wireless receiver. The receiver may be located in an implantable medical device (IMD) or external programmer. The chopper mixer telemetry circuit may include a mixer amplifier that operates as a synchronous demodulator to provide selective extraction of wireless signals received from a transmitter while suppressing out-of-band noise that can undermine the reliability of the telemetry link between an IMD or programmer and another device. The mixer amplifier may utilize parallel signal paths to convert the received telemetry signal into an in-phase (I) signal component and a quadrature (Q) signal component and recombine the I and Q signal components to reconstruct the total signal independently of the phase mismatch between the transmitter and receiver. Each signal path may include a chopper-stabilized mixer amplifier that amplifies telemetry signals within a desired band while suppressing out-of-band noise.
    Type: Application
    Filed: June 4, 2014
    Publication date: September 25, 2014
    Inventors: John J. Grevious, Timothy J. Denison
  • Publication number: 20140288619
    Abstract: An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one non-linear circuit element switch for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. In alternate configurations, the switch may be disposed between the implanted lead or the leadwire and the diversion circuit, or disposed so that it electrically opens the implanted lead or the leadwire when diverting energy through the diversion circuit to the energy dissipating surface. The non-linear circuit element switch is typically a PIN diode. The diversion circuit may be either a high pass filter or a low pass filter.
    Type: Application
    Filed: June 10, 2014
    Publication date: September 25, 2014
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard, Daniel Robert Kaiser, Henry R. Halperin, Albert C. Lardo, Scott W. Kelley
  • Publication number: 20140288617
    Abstract: The present invention relates a method of treating heart failure in patients with coincident atrial fibrillation, the method comprising: screening of patients for selection of potential responders to neurostimulation based on heart rate variability; implanting a neurostimulator device around a vagus nerve in the selected patients followed by stimulating the vagus nerve at an electrical stimulus intensity below threshold for heart rate reduction; and remotely monitoring and controlling the neurostimulator based on cardiac health parameters of the patient subjected to vagal nerve stimulation.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 25, 2014
    Applicant: REMOTE BIOMEDICAL LLC
    Inventor: Will Rosellini
  • Publication number: 20140288618
    Abstract: An implantable biological electrode, including a wire (2), wherein two ends of the wire (2) are connected with a contact (1) and a connector (3) respectively. The contact (1) comprises a conductive non-magnetic nanofiber with a specific resistivity or a conductive film with a specific centre resistivity. A medical assembly comprises the implantable biological electrode. A contact prepared by the winding of a nanofiber or film material with a relatively high resistivity can effectively suppress turbulence and improve the safety of the electrode during magnetic resonance imaging.
    Type: Application
    Filed: October 17, 2011
    Publication date: September 25, 2014
    Applicant: TSINGHUA UNIVERSITY
    Inventors: Luming Li, Changqing Jiang, Hongwei Hao
  • Patent number: 8843207
    Abstract: A particular method of providing power to an implantable medical device includes providing a first signal to a primary coil that is inductively coupled to a secondary coil of an implantable medical device. The method also include determining a first alignment difference between a voltage corresponding to the first signal and at least one of a current corresponding to the first signal and a component voltage at a component of a primary coil circuit. The method further includes determining a frequency sweep range based on the first alignment difference. The method also includes performing a frequency sweep over the frequency sweep range.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: September 23, 2014
    Assignee: Cyberonics, Inc.
    Inventor: Himanshu Joshi
  • Patent number: 8843206
    Abstract: In an embodiment, an antenna for a medical device, e.g., an implantable medical device (IMD), comprises an electrically conductive wire that spirals to form a three-dimensional shape of a rectangular cuboid. In another embodiment, the antenna comprises an electrically conductive wire that spirals to form a three-dimensional shape of an elliptical cylinder, an oval cylinder, an elongated pentagonal prism, an elongated hexagonal prism, or some other shape where the longitudinal diameter of the antenna is greater than the lateral diameter of the antenna. The antennas are sized to fit within a portion of a header of the medical device. Such antennas are designed to provide increased antenna gain and antenna bandwidth.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: September 23, 2014
    Assignee: Spinal Modulation, Inc.
    Inventor: James G. Judkins
  • Publication number: 20140277286
    Abstract: Systems, apparatus and methods for extension of longevity of implantable medical devices (IMDs) are provided. An apparatus includes a battery, a first communication component configured to provide a first communication type and to be powered by the battery, a second communication component configured to provide a second communication type, and a processor configured to switch on the first communication component or the second communication component to perform communication based, at least, on a defined condition being satisfied. In one embodiment, the first component is a radio frequency (RF) component and the second component is a component that requires less battery power than the RF component. The second component can include a component configured to perform communication based on inductive coupling or based on tissue conductance communication.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: MEDTRONIC, INC.
    Inventor: Can Cinbis
  • Publication number: 20140275847
    Abstract: A method and system is presented for an implantable wireless power receiver for use with a medical stimulation or monitoring device. The receiver receives transmitted energy through one or more non-inductive antenna(s), utilizes microelectronics to perform rectification of the received signal for generation of a DC power supply to power an implantable device, and may also utilize microelectronics to provide parameter settings to the device, or stimulating or other waveforms to a tissue.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventors: Laura Tyler Perryman, Chad Andresen
  • Publication number: 20140277231
    Abstract: The invention relates to electrodes of a novel type in a heart stimulator functioning on energy produced by a piezoelectric effect. A variant of the electrodes is formed by the presence of a ferromagnetic material. The device constituting the heart stimulator has a small overall volume, weighs less than traditional stimulators, poses less risk of infection and clotting and much less risk of mechanical failure. Use of the device containing electrodes composed of materials capable of producing a piezoelectric effect and, if appropriate, also containing a ferromagnetic material, and also a directional probe comprising an electromagnet.
    Type: Application
    Filed: November 24, 2011
    Publication date: September 18, 2014
    Inventor: Laurent Berneman
  • Publication number: 20140277285
    Abstract: A subthreshold lead impedance technique is described for an implantable medical device. The lead impedance technique may be applicable to a subcutaneous implantable cardioversion defibrillator device and utilizes an output circuit of the device coupled between a first diode and a second diode to define a current path through two electrodes coupled to the output circuit. The second diode is further coupled to a switch to provide a current pathway from the first diode to circuit ground. A control circuit is coupled to the output circuit, the first diode, the second diode, and the switch to bias a leg of the output circuit in a conducting state while biasing the other legs of the output circuit in a non-conducting state.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: MEDTRONIC, INC.
    Inventors: Marshall J. Rasmussen, Forrest C.M. Pape, Lonny V. Cabelka
  • Patent number: 8838251
    Abstract: An implantable medical device (“IMD”) as described herein includes adjustable power characteristics such as variable transmitter output power and variable receiver front end gain. These power characteristics can be adjusted in a dynamic manner based upon various operating aspects of the intended or actual IMD telemetry environment. These operating aspects may include the external telemetry device type, the IMD device type, and/or the type, context, or meaning of the telemetry data transmitted by the IMD. The IMD may process information related to these operating aspects to generate power scaling instructions or control signals that are interpreted by the IMD transmitter and/or the IMD receiver. Such adjustability enables the IMD to satisfy minimum telemetry requirements in a manner that does not waste power, thus extending the IMD battery life.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: September 16, 2014
    Assignee: Medtronic, Inc.
    Inventors: Gregory J. Haubrich, Javaid Masoud, Charles H. Dudding
  • Patent number: 8838243
    Abstract: In one embodiment, a method of programming an IPG comprises providing one or several GUI screens on the programmer device, the GUI screens comprising a master amplitude GUI control for controlling amplitudes for stimsets of a stimulation program and one or several balancing GUI controls for controlling amplitudes of each stimset of the stimulation program; communicating one or several commands from the programmer device to the IPG to change the amplitude of all stimsets of the stimulation program in response to manipulation of the master amplitude GUI control, wherein the amplitude of each stimulation set is automatically calculated by a level selected through the master amplitude GUI control and one or several calibration parameters for the respective stimulation set; and automatically recalculating the one or several calibration parameters for a respective stimulation set in response to manipulation of one of the balancing GUI controls and storing the recalculated calibration parameters.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: September 16, 2014
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Thomas K. Hickman, Erik D. Engstrom, Matthew J. Brock, John H. Erickson
  • Patent number: 8838458
    Abstract: A system for the control of an implant (32) in a body (11), comprising first (10, 20) and second parts (12) which communicate with each other. The first part (10, 20) is adapted for implantation and for control of and communication with the medical implant (32), and the second part (12) is adapted to be worn on the outside of the body (11) in contact with the body and to receive control commands from a user and to transmit them to the first part (10, 20). The body (11) is used as a conductor for communication between the first (10, 20) and the second (12) parts. The second part (12) is adapted to receive and recognize voice control commands from a user and to transform them into signals which are transmitted to the first part (10, 20) via the body (11).
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: September 16, 2014
    Inventor: Peter Forsell
  • Publication number: 20140257433
    Abstract: Described here are devices, systems, and methods for treating a condition in an animal. Generally the systems include a stimulator that is implantable in the animal and a controller system configured to transmit one or more signals to the implanted stimulator. The controller system may have a controller configured to generate the one or more signals. The controller system may include one or more collars, bridles, horse hoods, cages, animal beds, and/or food bowls. The systems may be used to treat one or more conditions such as dry eye, and may treat the conditions in an animal such as a horse, dog, or cat.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 11, 2014
    Applicant: OCULEVE, INC.
    Inventors: Douglas Michael ACKERMANN, James Donald LOUDIN
  • Publication number: 20140257432
    Abstract: Two LC circuits (each with its own coil) are used in either or both of an external controller or an implanted medical device to extend the range at which the two devices can communicate. Only one of the LC circuits (i.e., one of the coils) is used when the device is transmitting, while both LC circuits (i.e., both coils) are used when the device is receiving. When receiving, the LC circuits are preferably connected in series. The series connection of the LC circuits does not affect the resonant frequency, and thus this resonant frequency is the same for both transmission and reception despite the different LC circuits used. Switching circuitry is controlled to disconnect one of the LC circuits when the device is transmitting, and to connect the LC circuits in series during reception.
    Type: Application
    Filed: November 12, 2013
    Publication date: September 11, 2014
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Samuel Tahmasian, Tom Stouffer
  • Patent number: 8827904
    Abstract: A method and apparatus for providing status of a parameter that includes detecting an alert level of a parameter monitored by an implanted medical device, transmitting data corresponding to the detected alert level from the implanted medical device to an external monitor, scheduling a follow-up interrogation session after receiving transmitted data corresponding to the detected alert level, and retrieving updated data from the implanted medical device corresponding to the monitored parameter during the follow-up interrogation session.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: September 9, 2014
    Assignee: Medtronic, Inc.
    Inventors: James J. Ball, Sean B. McAdams, Chris T. House
  • Patent number: 8831736
    Abstract: The invention relates to a therapy system and a therapy device having at least one data communication interface which can operate in various data transmission modes and cooperates with a data communication control unit. The data communication interface can change from one data transmission mode to another without interruption of an existing data link. The change is controlled by the data communication control unit as a function of predefined selection criteria.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: September 9, 2014
    Assignee: Biotronik CRM Patent AG
    Inventors: Carsten Hennig, Joachim Elsner, Bernhard Gromotka
  • Patent number: 8831735
    Abstract: Systems and methods are described for adjusting the operation of implantable stimulation devices used to provide medical monitoring and treatment. Several hierarchical algorithms are described which operate according to conditionally obtaining a patient response to an alert signal. In one such strategy semi-automatic therapy adjustment occurs by automatically issuing patient alert messages when selected operations are to occur, and using a patient's response to the alert message that is provided within a selected time limit in order to contingently adjust therapy. Methods are also described for resolving conflicts which may occur when time information and sensed data information each indicate different patient states are occurring. Although treatment of neural and cardiac disorders is emphasized, the techniques can be applied to the monitoring and treatment of any medical disorder with an implanted device.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: September 9, 2014
    Inventor: Michael Sasha John
  • Publication number: 20140249596
    Abstract: An electrical stimulation device configured to perform an electrical stimulation therapy on a patient includes a stimulation circuit, at least one electrode lead comprising one or more electrodes, a communication circuit and a controller. The controller is configured to execute a stimulation program received through the communication circuit. Electrical stimulation pulses are generated by the stimulation circuit and delivered to the at least one electrode lead in response to the execution of the stimulation program.
    Type: Application
    Filed: October 16, 2012
    Publication date: September 4, 2014
    Inventor: David J. Yonce
  • Publication number: 20140249601
    Abstract: Methods and devices for providing noninvasive electrotherapy and electrical stimulation are described herein. In one aspect, a device for noninvasive electrotherapy includes wireless communication circuitry configured to receive pulse generation control signals wirelessly transmitted from a computing device. The device can include pulse generation circuitry configured to deliver electrical waveforms according to instructions encoded in the pulse generation control signals. The computing device can include a cellular telephone device, a portable media player, a personal digital assistant, a tablet computer, or an internet access device.
    Type: Application
    Filed: February 26, 2014
    Publication date: September 4, 2014
    Applicant: EMPI, Inc.
    Inventors: Thomas Jerome Bachinski, Michael Moore, Joseph Winn, Jay Dave, David Orr, Dain Silvola
  • Patent number: 8825170
    Abstract: Various techniques are described for periodically performing a calibration routine to calibrate a low-power system clock within an implantable medical device (IMD) based on a high accuracy reference clock also included in the IMD. The system clock is powered continuously, and the reference clock is only powered on during the calibration routine. The techniques include determining a clock error of the system clock based on a difference between frequencies of the system clock and the reference clock over a fixed number of clock cycles, and adjusting a trim value of the system clock to compensate for the clock error. Calibrating the system clock with a delta-sigma loop, for example, reduces the clock error over time. This allows accurate adjustment of the system clock to compensate for errors due to trim resolution, circuit noise and temperature.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: September 2, 2014
    Assignee: Medtronic, Inc.
    Inventors: Matthew Bond, Charles R. Gordon, Weizheng Liang, James D. Reinke, Jonathan P. Roberts
  • Patent number: 8823547
    Abstract: An apparatus and method for searching and selecting an RF telemetry channel to establish a link between an active medical device and a remote device is disclosed. In the absence of any communication request, the available communication channels are scanned periodically to perform a long-term analysis. For each channel, a long-term indicator (iCLT) that is representative of a long-term availability is generated. Upon receipt of a communication request from the remote device, the communication channels are scanned to perform a short-term analysis, a short-term indicator (iCCT) that is representative of the short-term availability is generated. The short-term indicator is weighted by the long-term indicator, to generate a weighted short-term indicator (iCP). Based on the weighted short-term indicator, a communication channel is selected as the communication channel for the communication request.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: September 2, 2014
    Assignee: Sorin CRM S.A.S.
    Inventor: Thierry Scordilis
  • Patent number: 8825171
    Abstract: An impact resistant implantable antenna coil assembly comprising a flat antenna coil having a plurality of laterally separated turns of wire encapsulated with a non-orthogonal force absorbing coil reinforcement in a flexible biocompatible polymer and axially anchored with the reinforcement to a feedthrough case. Thus configured, non-orthogonal impact forces applied to the antenna coil assembly are absorbed and lateral components thereof that would otherwise be reflected as tensile forces in the plane of the coil are prevented from forming or from fracturing wire within the antenna coil.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: September 2, 2014
    Assignee: Advanced Bionics, LLC
    Inventors: Chuladatta Thenuwara, William A. Morgan, Janusz A. Kuzma
  • Patent number: 8825172
    Abstract: A neurostimulation system and method of operating an implantable neurostimulation device configured for outputting electrical stimulation energy to at least one electrode in accordance with a set of stimulation parameters. The implantable neurostimulation device may be switched from a normal operating mode to a Magnetic Resonance Imaging (MRI) operating mode. Electrical parameter measurements may be repeatedly acquired at each of the electrode(s) in response to the placement of the implantable stimulation system in the MRI mode. A corrective action may be performed based on at least one of the repeatedly acquired electrical parameter measurements.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: September 2, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Changfang Zhu, Kerry Bradley
  • Publication number: 20140243930
    Abstract: In an example, an apparatus can include an implantable medical device comprising a housing, an implantable telemetry circuit carried within the housing, a dielectric compartment mechanically coupled to the housing, the dielectric compartment including first and second substantially parallel face portions and a third face portion extending between the first and second face portions, and an implantable telemetry antenna, located at least partially within the dielectric compartment. The implantable telemetry circuit can be electrically coupled to the implantable telemetry antenna and configured to wirelessly transfer information electromagnetically using the implantable telemetry antenna. In an example the implantable telemetry antenna comprises a spiral conductor portion extending along the first, second, and third face portions. In an example the spiral conductor includes a cross section having a lateral width that can be greater than a sidewall height of the cross section.
    Type: Application
    Filed: May 5, 2014
    Publication date: August 28, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Sasidhar Vajha, Keith R. Maile, Dennis E. Larson, David A. Chizek, John M. Edgell
  • Patent number: 8818521
    Abstract: Implantable medical device (10) having control unit (20) connected to bidirectional wireless interface (18) and magnetic interface (16). Bidirectional wireless interface configured for bidirectional wireless data transmission via alternating electric field between medical device and an external device and may assume at least one OFF and one ON state, whereby wireless data transmission is possible only in ON state and function interface requires little or no energy in OFF state. Magnetic interface configured to constantly receive control signals transmitted via an alternating magnetic field from the external device. Magnetic interface configured to receive/process a data transmission start signal, such that magnetic interface or control unit generates a wireless interface activation. The bidirectional wireless interface is at least indirectly connected to the magnetic interface and is configured to switch from OFF to ON state in response to the wireless interface activation signal.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: August 26, 2014
    Assignee: Biotronik CRM Patent AG
    Inventor: Thomas Doerr
  • Patent number: 8818504
    Abstract: Systems and methods involve an intrathoracic cardiac stimulation device operable to provide autonomous cardiac sensing and energy delivery. The cardiac stimulation device includes a housing configured for intrathoracic placement relative to a patient's heart. A fixation arrangement of the housing is configured to affix the housing at an implant location within cardiac tissue or cardiac vasculature. An electrode arrangement supported by the housing is configured to sense cardiac activity and deliver stimulation energy to the cardiac tissue or cardiac vasculature. Energy delivery circuitry in the housing is coupled to the electrode arrangement. Detection circuitry is provided in the housing and coupled to the electrode arrangement. Communications circuitry may optionally be supported by the housing. A controller in the housing coordinates delivery of energy to the cardiac tissue or cardiac vasculature in accordance with an energy delivery protocol appropriate for the implant location.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: August 26, 2014
    Assignee: Cardiac Pacemakers Inc
    Inventors: Jeff Bodner, Randy Bierwerth
  • Patent number: 8818522
    Abstract: A portable housing supports a processor coupled to memory for storing medical firmware and wireless radio firmware, first and second radios, a processor, and a power source. Communications are effected between an implantable medical device and the first radio in accordance with program instructions of the medical firmware, and between the second radio and the wireless network in accordance with program instructions of the wireless radio firmware. The first and second radios are configured to operate cooperatively in a first testing configuration, by which the first radio operates as a transmitter and the second radio operates as a receiver, and cooperatively in a second testing configuration, by which the second radio operates as a transmitter and the first radio operates as a receiver. Functional testing of the first and second radios is implemented using one or both of the first and second testing configurations.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: August 26, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: William R. Mass, John LaLonde, Michael W. Barton
  • Publication number: 20140236262
    Abstract: According to one embodiment of the present invention, an apparatus for measuring and treating dysphagia may comprise: one or more dysphagia measuring sensor units attached to the neck of a patient; one or more electrical stimulation electrode units attached to the neck of the patient to provide electrical stimulation to the neck of the patient in accordance with the dysphagia signal sensed by the dysphagia measuring sensor units so as to resolve the dysphagia; and a control unit which controls the dysphagia measuring sensor units and the electrical stimulation electrode units.
    Type: Application
    Filed: August 1, 2012
    Publication date: August 21, 2014
    Applicants: SAMSUNG LIFE WELFARE FOUNDATION, POSTECH ACADEMY-INDUSTRY FOUNDATION
    Inventors: Heecheon You, Baekhee Lee, Kihyo Jung, Giltae Yang, Saewon Hong, Duk Lyul Na, Youngho Lee
  • Publication number: 20140236263
    Abstract: An implantable microstimulator configured to be implanted beneath a patient's skin for tissue stimulation employs a bi-directional RF telemetry link for allowing data-containing signals to be sent to and from the implantable microstimulator from at least two external devices. Further, a separate electromagnetic inductive telemetry link allows data containing signals to be sent to the implantable microstimulator from at least one of the two external devices. The RF bidirectional telemetry link allows the microstimulator to inform the patient or clinician regarding the status of the microstimulator device, including the charge level of a power source, and stimulation parameter states. The microstimulator has a cylindrical hermetically sealed case having a length no greater than about 27 mm and a diameter no greater than about 3.3 mm. A reference electrode is located on one end of the case and an active electrode is located on the other end of the case.
    Type: Application
    Filed: February 17, 2014
    Publication date: August 21, 2014
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel J. Klosterman, Matthew I. Haller, Jordi Parramon, Kelly H. McClure, Goran N. Marnfeldt, Rudolph V. Park
  • Patent number: 8812129
    Abstract: Disclosed is a remote controller for an implantable medical device having stored contraindication information, which includes information which a patient or clinician might wish to review when assessing the compatibility of a given therapeutic or diagnostic technique or activity with the patient's implant. The stored contraindication information is available through a display of the remote controller or via a wired, wireless, or portable drive connection with an external device. By storing contraindication information with the implant's remote controller, patient and clinician can more easily determine the safety of a particular therapeutic or diagnostic technique or physical activity with the patient's implant, perhaps without the need to contact the manufacturer's service representative.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: August 19, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Que Doan
  • Patent number: 8812127
    Abstract: A system comprises an implantable medical device (IMD), a external user interface device, and a radio frequency link quality assessment (LQA) device. The external user interface device and the IMD are adapted to potentially use one or more of a plurality of available wireless communication channels to communicate. The LQA device is positioned to receive a radio frequency communication between the IMD and the external user interface device. At least one of the IMD, the external user interface device, and the LQA device is adapted to evaluate signal and noise strength of the available channels to determine respective signal and noise levels for each channel by using the noise level for the target channel and interference potential for corresponding adjacent channels to the target channel as inputs to a function to provide a value for a LQA for the target channel, and select a preferred communication channel based on the LQA value for each of the available wireless communication channels.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: August 19, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Scott Freeberg
  • Patent number: 8812110
    Abstract: An implantable medical device (IMD) that can be wirelessly connected to user interface by which a patient can enter values of selected control parameters for controlling the IMD whereas other control parameters are not accessible via said user interface and can only be modified by a physician or other authorized personnel.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: August 19, 2014
    Assignee: Biotronik CRM Patent AG
    Inventor: Benoit Veillette