Output Controlled By Sensor Responsive To Body Or Interface Condition Patents (Class 607/62)
  • Patent number: 11065439
    Abstract: Disclosed herein are systems, devices, and methods for better conforming to biological tissue, reducing the temperature and irritation of tissue, modulating tissue, and/or wirelessly sending and receiving power through tissue. Devices can include panels movable with respect to each other to allow the body to move between a flattened and non-flattened state. Devices can include movable parts or structures that enable improved conformance to three-dimensional surfaces of tissue.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: July 20, 2021
    Assignee: Modular Bionics Inc.
    Inventor: Ian Loren Halpern
  • Patent number: 11045652
    Abstract: Techniques are described determining electrodes that are proximate or distal to location of an oscillatory signal source in a patient based on current source densities (CSDs). Processing circuitry may determine, for one or more electrodes of a plurality of electrodes, respective time-varying measurements of CSDs, aggregate, for the one or more electrodes of the plurality electrodes, the respective time-varying measurements of the CSDs to generate respective average level values for the one or more electrodes of the plurality of electrodes, determine, for one or more electrodes of the plurality of electrodes, respective phase-magnitude representations of the time-varying measurements of the CSDs. The respective phase-magnitude representations are indicative of respective magnitudes and phases of a particular frequency component of respective time-varying measurements of the CSDs.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: June 29, 2021
    Assignee: Medtronic, Inc.
    Inventors: Jadin C. Jackson, Yizi Xiao, Paula Andrea Elma Dassbach Green, Jianping Wu, Christopher L. Pulliam, Eric J. Panken, Robert S. Raike, Scott R. Stanslaski
  • Patent number: 11040192
    Abstract: An implantable pulse generator (IPG) is disclosed having a plurality of electrode nodes, each electrode node configured to be coupled to an electrode to provide stimulation pulses to a patient's tissue. The IPG includes a digital-to-analog converter configured to amplify a reference current to a first current specified by first control signals; a first resistance configured to receive the first current, wherein a voltage across the first resistance is held to a reference voltage at a first node; a plurality of branches each comprising a second resistance and configured to produce a branch current, wherein a voltage across each second resistance is held to the reference voltage at second nodes; and a switch matrix configurable to selectively couple any branch current to any of the electrode nodes via the second nodes.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: June 22, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Pujitha Weerakoon, Goran N. Marnfeldt, Philip L. Weiss
  • Patent number: 11040146
    Abstract: The dosing apparatus comprises a conveying device (5), which is driven by at least one conveying drive (4), for conveying fluid from the interior (3) of a container (2). The fluid by means of the conveying device (5) is conveyable from the container to a dispensing opening (6). The conveying device (5) comprises a cylinder (7) having at least one intake opening (11) and at least one outlet opening (12) on an inner cylinder wall (8), and a first piston (9) and a second piston (10). The first piston (9) and the second piston (10) are mounted within the cylinder (7) so as to be displaceable in the longitudinal direction. Furthermore, the first piston (9) and the second piston (10) between the end sides thereof and together with a portion of the inner cylinder wall (8) delimit a variable fluid volume (17).
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: June 22, 2021
    Assignee: SHL MEDICAL AG
    Inventors: Ludwig Daniel Weibel, Samuel Wyler
  • Patent number: 11004556
    Abstract: The disclosure describes techniques for associating therapy adjustments with posture states using a timer. The techniques may include detecting a patient adjustment to electrical stimulation therapy delivered to the patient, sensing a posture state of the patient, and associating the detected adjustment with the sensed posture state if the sensed posture state is sensed within a first period following the detection of the adjustment and if the sensed posture state does not change during a second period following the sensing of the sensed posture state.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: May 11, 2021
    Assignee: Medtronic, Inc.
    Inventor: Dennis M. Skelton
  • Patent number: 10994132
    Abstract: The present invention relates to a system and methods for noninvasively providing therapy for movement disorder symptoms. The present invention provides such a therapy system which provides trans-cranial direct current stimulation (tDCS) in order to treat those symptoms and the disorders. The present invention further provides such tDCS therapy while the subject sleeps in order to minimize the time required and impact of the therapy on the subject's waking life. The system, methods, and devices of the present invention are intended to provide a low-dose electrical current, trans-cranially, to a specific area of the subject's brain while he or she sleeps in order to decrease the occurrence, severity, and duration of the symptoms of movement disorders. The present invention aims to reduce the amount of medication necessary, counteract the effects of medication wearing off during sleep, and to overall improve the quality of life of subjects suffering from movement disorders.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: May 4, 2021
    Assignee: Great Lakes NeuroTechnologies Inc.
    Inventors: Dustin A Heldman, Joseph P Giuffrida
  • Patent number: 10940317
    Abstract: A therapeutic neuromodulation system configured for providing therapy to a patient. The therapeutic neuromodulation system comprises a plurality of electrical terminals configured for being respectively coupled to a plurality of electrodes implanted within tissue, analog output circuitry configured for delivering therapeutic electrical energy between the plurality of electrical terminals in accordance with a set of modulation parameters that includes a defined current value, a voltage regulator configured for supplying an adjustable compliance voltage to the analog output circuitry, and control/processing circuitry configured for automatically performing a compliance voltage calibration process at a compliance voltage adjustment interval by periodically computing an adjusted compliance voltage value as a function of a compliance voltage margin.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: March 9, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jess Weiqian Shi, Jordi Parramon, Goran N. Marnfeldt
  • Patent number: 10912877
    Abstract: The present invention relates to an apparatus for the extracorporeal removal of protein-bound toxins from blood comprising at least one blood purification apparatus, in particular at least one dialysis machine, hemofilter or adsorber, as well as at least one means for generating a field in the blood purification apparatus and/or in an element in flow communication with the blood purification apparatus, in particular in a line section connected to the blood purification apparatus, wherein the means comprises at least two strip conductors which are arranged on at least two preferably oppositely disposed sides of the blood purification apparatus or of the element such that the field is preferably predominantly generated within the blood purification apparatus or preferably predominantly within the element.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: February 9, 2021
    Assignee: FRESENIUS MEDICAL CARE DEUTSCHLAND GMBH
    Inventors: Anselm Fabig, Ulrich Tschulena, Sonja Steppan
  • Patent number: 10850100
    Abstract: A blood glucose level decreasing system that decreases blood glucose level of a patient by blocking the sympathetic innervation to liver and pancreas and smooth muscles of the arteries reaching to liver and pancreas with noninvasive electrostimulation of the skin which have the sympathetic nerves originating from the same spinal cord segments. The blood glucose level decreasing system has at least one sensor for measuring the blood glucose level of the patient; at least two electrodes that are placed to skin dermatomal of the patient; at least one stimulator that sends electrical signals to the electrodes to block the sympathetic nerve innervation to smooth muscles of hepatic artery proper and liver, and expand liver artery of the patient; and at least one control unit, which receives the blood glucose level from the sensor, compares received level with a predetermined threshold value and controls the stimulator according to the result.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: December 1, 2020
    Inventor: Yusuf Ozgur Cakmak
  • Patent number: 10773074
    Abstract: In certain embodiments an electrode array for epidural stimulation of the spinal cord is provided where the array comprises a plurality of electrodes disposed on a flexible polymer substrate; said electrodes being electrically connected to one or more lead wires and/or connection points on an electrical connector; where the electrodes of said array are bonded to said polymer so that the electrodes can carry an electrical stimulation signal having a voltage, frequency, and current sufficient to provide epidural stimulation of a spinal cord and/or brain in vivo or in a physiological saline solution, without separation of all or a part of an electrode from the polymer substrate.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: September 15, 2020
    Assignee: The Regents of the University of California
    Inventors: Wentai Liu, Victor Reggie Edgerton, Chih-Wei Chang, Parag Gad
  • Patent number: 10765863
    Abstract: The disclosed electrical stimulation system generates interventions to assist patients in complying with a diet. The wearable device includes a microprocessor, electrical stimulator and at least one electrode configured to deliver electrical stimulation to the epidermis, through a range of 0.1 mm to 10 mm or a range of 0.1 mm to 20 mm of the dermis, of a T2 dermatome to a T12 dermatome or meridian of the patient, a C5 to a T1 dermatome across the hand and/or arm, and/or the upper chest regions. The device is adapted to provide electrical stimulation as per stimulation protocols and to communicate wirelessly with a companion control device configured to monitor and record appetite patterns of the patient and deliver titrated therapy. The control device is also configured to monitor, record, and modify stimulation parameters of the stimulation protocols.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: September 8, 2020
    Assignee: Elira, Inc.
    Inventors: Raul E. Perez, Peter I. Hong, Steven Diianni, Luis Jose Malave, Brad Stengel
  • Patent number: 10750996
    Abstract: An apparatus comprises plurality of physiologic sensors and a processor circuit. The sensors provide sensor signals having physiological information and include a heart sound sensor and an impedance sensor. The processor circuit includes a volume index module configured to determine a value of at least one heart sound parameter using the heart sound signal and determine a value of at least one physiological impedance parameter value using the impedance signal, calculate a volume index representative of fluid volume status of the subject using the at least one heart sound parameter value and the at least one physiological impedance parameter value, compare a determined metric of the calculated volume index to one or more high threshold metric values and one or more low threshold metric values, and generate an indication of a fluid volume status of the subject according to the comparison.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: August 25, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Ramesh Wariar
  • Patent number: 10722711
    Abstract: A device is provided for the stimulation of neurons that includes a non-invasive stimulation unit to generate stimuli in multiple stimulation channels, where the stimulation unit stimulates a neuron population in the brain and/or spinal cord of a patient in different locations for each of the stimulation channels. Moreover, the device includes a control unit that controls the stimulation unit to generate repetitive bursts in each of the stimulation channels, where each of the bursts includes multiple stimuli and is designed so that they do not reset the phase of the neuronal activity of the respective stimulated neurons.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: July 28, 2020
    Inventor: Peter Alexander Tass
  • Patent number: 10668293
    Abstract: A method and external control device for performing a medical procedure on a patient in which at least one stimulation lead is implanted. An electrical signal is conveyed from the stimulation lead into tissue of the patient. An electrical parameter indicative of tissue impedance is measured in response to the conveyance of the electrical signal. One of a plurality of different anatomical regions in which the stimulation lead is implanted is selected and/or a depth in which the stimulation is implanted is determined based on the measured electrical parameter. A stimulation parameter is defined based on the selected one anatomical region and/or implantation depth. Electrical stimulation energy from the stimulation lead is conveyed into the one determined anatomical region in accordance with the defined stimulation parameter.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: June 2, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Changfang Zhu, Kerry Bradley
  • Patent number: 10625075
    Abstract: The present invention reduces pain and improves function long-term in persons with back pain using electrical stimulation in the back. This approach involves an electrical stimulation device including at least one electrode adapted for insertion within an animal body with back pain and at least one pulse generator operatively coupled with the at least one electrode, wherein the pulse generator delivers electrical stimulation activating at least one muscle in a back of the animal body for pain relief.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 21, 2020
    Assignee: SPR THERAPEUTICS, INC.
    Inventors: Amorn Wongsarnpigoon, Maria Bennett, Joseph W. Boggs, John Chae, Michael F. Saulino
  • Patent number: 10610686
    Abstract: An electrical brain stimulation system includes at least two electrodes configured to be adhered to a subject, a power supply configured to supply electric power to the electrodes, and a control unit configured to control the electric power to be supplied to the electrodes by limiting at least one of a variation and a maximum of energy of the electric power.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: April 7, 2020
    Assignee: YBRAIN INC.
    Inventor: Kiwon Lee
  • Patent number: 10595789
    Abstract: A meal time estimation method includes: acquiring time series data of heart rate, by a processor; calculating a feature amount obtained by indexing a degree of similarity with a feature of heart rate change that appears at end of a meal from the time series data of the heart rate, by the processor; and estimating a meal time from the feature amount, by the processor.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: March 24, 2020
    Assignee: FUJITSU LIMITED
    Inventors: Tatsuya Mori, Akihiro Inomata
  • Patent number: 10598710
    Abstract: Cognitive analysis using applied analog circuits including receiving, by a circuit, a first set of data results and a second set of data results; charging a first capacitor on the circuit with a first unit of charge for each of the first set of data results that indicates a positive data point; charging a second capacitor on the circuit with a second unit of charge for each of the second set of data results that indicates a positive data point; applying a charge from the first capacitor and a charge from the second capacitor to an analog unit of the circuit; and generating a signal on a circuit output indicating that a ratio of the positive data points in the first set of data results to the positive data points in the second set of data results is greater than a statistical significance.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: March 24, 2020
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, George F. Paulik, David P. Paulsen, Raymond A. Richetta, John E. Sheets, II, Gregory J. Uhlmann
  • Patent number: 10600417
    Abstract: The present disclosure generally relates to the field of wearable human interface devices. In one aspect, a human interface device may comprise at least one housing configured to be worn by a user, comprising a transmitter configured to generate a wireless signal and a sensor configured to detect the wireless signal generated by the transmitter, a processing unit, communicatively linked to the sensor and configured to analyze the wireless signal detected by the sensor and calculate the position of a portion of the user wearing the at least one housing based on the wireless signal and a control unit, configured to perform an operation based upon the position of the portion of the user wearing the at least one housing.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: March 24, 2020
    Assignee: Acronis International GmbH
    Inventors: Alexander Tormasov, Serguei Beloussov, Stanislav Protasov
  • Patent number: 10562819
    Abstract: A ceramic material for a multilayer ceramic capacitor has a capacitance variation from ?17 percent to +15 percent at a temperature ranging from ?55° C. to 200° C., and has a dielectric loss less than 1% at a temperature ranging from 90° C. to 200° C. The ceramic material includes a base component consisting of a barium titanate and a sodium bismuth titanate, and a manganese dopant in an amount not greater than 0.05 mole percent based on total moles of the base component.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: February 18, 2020
    Assignee: NATIONAL TAIPEI UNIVERSITY OF TECHNOLOGY
    Inventors: Sea-Fue Wang, Yi-Xin Liu, Yen-Sheng Chen
  • Patent number: 10532204
    Abstract: A method for treating hydrocephalus is provided, including disposing midplane treatment electrodes over a superior sagittal sinus of a brain, outside and in electrical contact with a skull of a head of a subject identified as suffering from hydrocephalus, and disposing lateral treatment electrodes between 1 and 12 cm of a sagittal midplane of the skull. The subject is treated by electroosmotically driving cerebrospinal fluid (CSF) out of a ventricular system of the brain via a subarachnoid space of the brain to the superior sagittal sinus, by activating control circuitry to apply one or more treatment currents between (a) one or more of the midplane treatment electrodes and (b) one or more of the lateral treatment electrodes. Other embodiments are also described.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: January 14, 2020
    Assignee: RAINBOW MEDICAL LTD.
    Inventor: Yossi Gross
  • Patent number: 10525268
    Abstract: The techniques of the disclosure describe example medical devices, systems, and methods for interleaving a plurality of low-frequency electrical stimulation pulse trains delivered by a plurality of sets of electrodes of an implantable medical device (IMD) to effectively deliver a combined high-frequency electrical pulse train to a target tissue area. In one example, each set of the plurality of sets of electrodes has a unique anode and cathode. In another example, a clinician adjusts the size or shape of the target tissue area receiving the combined high-frequency electrical pulse train by selecting different combinations of the plurality of sets of electrodes.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: January 7, 2020
    Assignee: MEDTRONIC, INC.
    Inventor: Nathan A. Torgerson
  • Patent number: 10525264
    Abstract: A stimulator and a method of controlling the stimulator are provided. The method includes determining a waveform of a stimulus signal for a target, based on biological feedback of the target responding to a first stimulus signal, calculating a bioimpedance of the target based on a voltage waveform measured by applying the stimulus signal with the determined waveform to the target, and determining an operating voltage of the stimulator based on the determined waveform and the calculated bioimpedance.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: January 7, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyungwoo Lee, JongPal Kim, Seungchul Jung
  • Patent number: 10525252
    Abstract: An architecture is disclosed for an Implantable Pulse Generator having improved compliance voltage monitoring and adjustment software and hardware. Software specifies which stimulation pulses are to be measured as relevant to monitoring and adjusting the compliance voltage. Preferably, specifying such pulses occurs by setting a compliance monitoring instruction (e.g., a bit) in the program that defines the pulse, and the compliance monitor bit instruction may be set at a memory location defining a particular pulse phase during which the compliance voltage should be monitored. When a compliance monitor instruction issues, the active electrode node voltages are monitored and compared to desired ranges to determine whether they are high or low. Compliance logic operates on these high/low signals and processes them to decide whether to issue a compliance voltage interrupt to the microcontroller, which can then command the compliance voltage generator to increase or decrease the compliance voltage.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: January 7, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Goran N. Marnfeldt, Kenneth Hermann
  • Patent number: 10518080
    Abstract: A motion sickness mitigation device includes a textile material having a first surface, a second surface disposed opposite the first surface, and a first raised portion extending from the first surface and configured for contacting a skin of a user. The textile material defines a first pocket and a second pocket therein between the first surface and the second surface, and the second pocket is spaced apart from the first pocket. The device further includes a controller disposed within the first pocket and configured for transmitting an electrical signal. The device also includes a first electrical excitation pad disposed within the second pocket, covered by the first raised portion, and disposed in electrical communication with the controller. The first electrical excitation pad is configured for receiving the electrical signal and electrically stimulating the skin of the user through the textile material to thereby mitigate motion sickness.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: December 31, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Paul W. Alexander, Olivia Stoneman
  • Patent number: 10493279
    Abstract: An integrated circuit includes: a radio-frequency (RF) to direct current (DC) rectifying circuit coupled to one or more antenna on an implantable wirelessly powered device, the rectifying circuit configured to: rectify an input RF signal received at the one or more antennas and from an external controller through electric radiative coupling; and extract DC electric power and configuration data from the input RF signal; a logic control circuit connected to the rectifying circuit and a driving circuit, the logic control circuit configured to: generate a current for the driving circuit solely using the extracted DC electrical power; in accordance with the extracted configuration data, set polarity state information for each electrode; and a driving circuit coupled to one or more electrode, the driving circuit comprising current mirrors and being configured to: steer, to each electrode and via the current mirrors, a stimulating current solely from the generated current.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: December 3, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Chad David Andresen, Bertan Bakkaloglu
  • Patent number: 10493276
    Abstract: An example of a system may include electrodes on at least one lead configured to be operationally positioned for use in modulating a volume of neural tissue, where the neural tissue has an activation function. The system may further include a neural modulation generator configured to deliver energy using at least some electrodes to generate a modulation field within the volume of neural tissue. The neural modulation generator may be configured to use a programmed modulation parameter set to generate the modulation field. The programmed modulation parameter set having values selected to control energy delivery using the at least some electrodes to achieve an objective function specific to the activation function of the volume of neural tissue to promote uniformity of a response to the modulation field in the volume of neural tissue along a span of the at least one lead.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: December 3, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Changfang Zhu
  • Patent number: 10456584
    Abstract: Systems and methods for determining a parameter set and programming a neuromodulation system with the parameter set are disclosed. The system includes a user interface having a display screen to display simplified graphical representations (SGRs) of the lead with at least one virtual electrode (VE) that represents one or more electrodes, and control elements. The SGRs of the lead can provide longitudinal and circumferential representations of the VE, respectively representing longitudinal or circumferential position, size, shape, or spread of the VE. The control elements may include longitudinal and circumferential control elements to enable the user to respectively adjust the longitudinal or circumferential position, size, shape, or spread of the VE. The system may generate the neuromodulation parameter set using the longitudinal and circumferential representations of the VE, and program the neuromodulation system with the neuromodulation parameter set.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: October 29, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Joshua Dale Howard, G. Karl Steinke, Richard Mustakos
  • Patent number: 10357657
    Abstract: An electrical stimulation system includes a control module that provides electrical stimulation signals to an electrical stimulation lead coupled to the control module for stimulation of patient tissue. The system also includes a sensor to be disposed on or within the body of the patient and to measure a biosignal; and a processor to communicate with the sensor to receive the biosignal and to generate an adjustment to one or more of the stimulation parameters based on the biosignal. The adjustment can be configured and arranged to steer the electrical stimulation signals to stimulate a region of the patient tissue that is different, at least in part, from a region of the patient tissue stimulated prior to the adjustment. Alternatively or additionally, the biosignal is indicative of a particular patient activity and the adjustment is a pre-determined adjustment selected for the particular patient activity.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: July 23, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Michael A. Moffitt, Sridhar Kothandaraman
  • Patent number: 10342977
    Abstract: Restless Leg Syndrome (RLS) or Periodic Limb Movement Disorder (PLMD) can be treated using high frequency (HF) electrostimulation. This can include selecting or receiving a subject presenting with RLS or PLMD. At least one electrostimulation electrode can be located at a location associated with at least one of, or at least one branch of, a sural nerve, a peroneal nerve, or a femoral nerve. HF electrostimulation can be delivered to the subject, which can include delivering subsensory, subthreshold, AC electrostimulation at a frequency that exceeds 500 Hz and is less than 15,000 Hz to the location to help reduce or alleviate the one or more symptoms associated with RLS or PLMD. A charge-balanced controlled-current HF electrostimulation waveform can be used.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: July 9, 2019
    Assignee: NOCTRIX HEALTH, INC.
    Inventor: Shriram Raghunathan
  • Patent number: 10335241
    Abstract: Electronic devices that detect their position and/or orientation with respect to earth's frame of reference are described. A coupler can removeably maintain the electronic devices in physical proximity of one another. Each electronic device can have a housing and the coupler can be included on the housing and arranged to physically connect the housing of the electronic device to the housing of at least one other electronic device. Alternatively, the coupler can be a packaging that maintains the electronic devices in physical proximity of one another. Each electronic device can be calibrated using the orientation or position information obtained by other electronic devices maintained by the coupler. Further, each electronic device can include a power source that remains inactive until the device is ready for use.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: July 2, 2019
    Assignee: DePuy Synthes Products, Inc.
    Inventors: William Frasier, John Riley Hawkins, Roman Lomeli, Mark Hall, Dennis Chien
  • Patent number: 10317427
    Abstract: A method and system for calibrating a wireless sensor device are disclosed. In a first aspect, the method comprises determining a vertical calibration vector and determining a rotation matrix using the vertical calibration vector to line up native axes of the wireless sensor device with body axes. In a second aspect, a wireless sensor device comprises a processor and a memory device coupled to the processor, wherein the memory device includes an application that, when executed by the processor, causes the processor to determine a vertical calibration vector and to determine a rotation matrix using the vertical calibration vector to line up native axes of the wireless sensor device with body axes.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: June 11, 2019
    Assignee: VITAL CONNECT, INC.
    Inventors: Alexander Chan, Nima Ferdosi, Ravi Narasimhan
  • Patent number: 10307595
    Abstract: A therapeutic neuromodulation system configured for providing therapy to a patient. The therapeutic neuromodulation system comprises a plurality of electrical terminals configured for being respectively coupled to a plurality of electrodes implanted within tissue, analog output circuitry configured for delivering therapeutic electrical energy between the plurality of electrical terminals in accordance with a set of modulation parameters that includes a defined current value, a voltage regulator configured for supplying an adjustable compliance voltage to the analog output circuitry, and control/processing circuitry configured for automatically performing a compliance voltage calibration process at a compliance voltage adjustment interval by periodically computing an adjusted compliance voltage value as a function of a compliance voltage margin.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: June 4, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jess Weiqian Shi, Jordi Parramon, Goran N. Marnfeldt
  • Patent number: 10293161
    Abstract: Portable transdermal electrical stimulation (TES) applicators for modifying a subject's cognitive state by applying stimulation to the subject's skin. One or more electrode may be on the subject's mastoid, and/or on or near the back of the subject's neck. The portable applicators are configured and adapted to be lightweight and may be wearable, and to deliver a high-intensity TES able to evoke or enhance a predetermined cognitive effect to stimulate either the trigeminal, facial and/or cervical plexus. These TES applicators may include a pair of electrodes and a TES control module comprising a processor, a timer and a waveform generator.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: May 21, 2019
    Assignee: Thync Global, Inc.
    Inventors: Jonathan D. Charlesworth, Sumon K. Pal, William J. Tyler, Daniel Z. Wetmore, Isy Goldwasser, Alyssa M. Boasso, Hailey M. Mortimore, Rafal Piersiak
  • Patent number: 10245432
    Abstract: A method and apparatus for using low levels of electrical stimulation to treat focal dystonia by stimulating the afferent nervous system and/or altering the function of the gamma motor neurons innervating muscles which experience symptomatic spasms.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: April 2, 2019
    Assignee: MED-EL Elektromedizinische Geraete GmbH
    Inventor: Michael J. Pitman
  • Patent number: 10231650
    Abstract: This disclosure describes techniques for generation of sleep quality information based on posture state data. The techniques may include obtaining posture state data sensed by a medical device for a patient, generating sleep quality information based on lying posture state changes indicated by the posture state data, and presenting the sleep quality information to a user via a user interface.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: March 19, 2019
    Assignee: Medtronic, Inc.
    Inventors: Dennis M. Skelton, Jon P. Davis, Rajeev M. Sahasrabudhe, Shyam Gokaldas
  • Patent number: 10220183
    Abstract: A system is configured to provide sensory stimuli to a subject at a first intensity level, determine the effectiveness of the provided sensory stimuli, and incrementally increase the intensity level of the sensory stimuli based on the determined effectiveness. The effectiveness determination and the corresponding intensity increase are repeated one or more times during a given slow wave sleep episode. The system is configured to continue the effectiveness determinations and the corresponding intensity increases during the slow wave sleep episode until the intensity level reaches a maximum level, until an arousal level of the subject breaches an arousal level threshold, and/or until expiration of the period of slow wave sleep.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: March 5, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Gary Nelson Garcia Molina, Michele Bellesi, Brady Alexander Riedner, Giulio Tononi
  • Patent number: 10213153
    Abstract: A device and method for monitoring pain of a user (50) are presented. The device (10) comprises a receiving unit (12) for receiving an accelerometer signal (38) from an accelerometer sensor (30) worn by the user (50), wherein the accelerometer signal (38) comprises components of a pulse signal (20) and a respiration signal (22); and a processing unit (14) configured to: derive the pulse signal (20) and the respiration signal (22) from the accelerometer signal (38); adapt the pulse signal (20) based on the respiration signal (22) in order to obtain a corrected pulse signal (40); and derive a pain descriptor based on the corrected pulse signal (40).
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: February 26, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: Louis Nicolas Atallah, Kiran Hamilton J. Dellimore, Marcel Cornelis Dirkes, Jens Mühlsteff
  • Patent number: 10195438
    Abstract: Systems and methods are provided for delivering neurostimulation therapies to patients for treating chronic heart failure. A neural fulcrum zone is identified and ongoing neurostimulation therapy is delivered within the neural fulcrum zone. The implanted stimulation device includes a physiological sensor for recording the patient's response to the neurostimulation therapy on an ambulatory basis over extended periods of time.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: February 5, 2019
    Assignees: Cyberonics, Inc., East Tennessee State University
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight, Jeffrey L. Ardell
  • Patent number: 10173064
    Abstract: An implantable medical device (IMD) is disclosed having measurement circuitry for measuring one or more currents in the IMD, such as the currents drawn from various power supply voltages. Such currents are measured without disrupting normal IMD operation, and can be telemetered from the IMD for review. Switching circuitry in line with the current being measured is temporarily opened for a time period to disconnect the power supply voltage from the circuitry being powered. A voltage across a capacitance in parallel with the circuitry is measured when the switching circuitry is opened and again closed at the end of the time period, with the circuitry drawing power from the charged capacitance during this time period. The average current drawn by the power supply voltage is determined using the difference in the measured voltages, the known capacitance, and the time period between the measurements.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: January 8, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Robert Graham Lamont, Damon Moazen, Robert D. Ozawa, Thomas W. Stouffer
  • Patent number: 10143520
    Abstract: An antenna guide assembly including a guide body having a proximal end defining at least one proximal entry, a distal end defining at least one distal port, and at least one guide passage extending between the proximal and distal ends. The at least one guide passage is configured to receive at least a portion of an antenna therethrough via the at least one proximal entry such that a distal portion of the antenna extends through and distally from the at least one distal port for insertion into tissue. A locking assembly disposed at the distal end of the guide body is configured to receive the distal portion of the antenna therethrough. The locking assembly is configured to selectively engage the distal portion of the antenna to prevent translation of the antenna within the at least one guide passage.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: December 4, 2018
    Assignee: Covidien LP
    Inventors: Mani N. Prakash, Francesca Rossetto, Steven Kim, Brian Shiu, Thomas J. Fogarty, Sascha Zarins
  • Patent number: 10118040
    Abstract: A neuromodulation system comprises a plurality of electrical terminals configured for being respectively coupled to a plurality of electrodes, a user interface configured for receiving input from a user that selects one of a plurality of different shapes of a modulating signal and/or selects one of a plurality of different electrical pulse parameters of an electrical pulse train, neuromodulation output circuitry configured for outputting an electrical pulse train to the plurality of electrical terminals, and pulse train modulation circuitry configured for modulating the electrical pulse train in accordance with the selected shape of the modulating signal and/or selected electrical pulse parameter of the electrical pulse train.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: November 6, 2018
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Changfang Zhu
  • Patent number: 10071248
    Abstract: Systems and methods are provided for determining optimized settings for a closed-loop stimulation system based on analyzing a phase response curve measured from electrophysiological activity, such as electrical nerve activity or electrical muscle activity. The slope of the phase response curve is computed and used to determine a phase window during which phasic burst stimulation should be provided to achieve a desired effect on oscillations in the subject. When the slope of the phase response curve is positive, a phasic burst stimulation applied during the phase window will decrease synchrony of the oscillations. When the slope of the phase response curve is negative, a phasic burst stimulation applied during the phase window will increase synchrony of the oscillations.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: September 11, 2018
    Assignees: Regents of the University of Minnesota, The Regents of the University of California
    Inventors: Theoden Netoff, Dan Wilson, Jeff Moehlis, Abbey Holt Becker
  • Patent number: 10065038
    Abstract: One aspect of the present disclosure relates to a system for treating obstructive sleep apnea in a subject. The system can include a power source and a neuromuscular stimulator in electrical communications with the power source. The neuromuscular stimulator can include a controller and at least one electrode. The controller can be configured to receive certain power and stimulation parameters associated with a therapy signal from the power source. The at least one electrode can be configured to deliver the therapy signal to a target tissue associated with control of a posterior base of the tongue of the subject.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: September 4, 2018
    Assignee: The Cleveland Clinic Foundation
    Inventor: Francis A. Papay
  • Patent number: 10058387
    Abstract: A device for directing energy to a target volume of tissue includes a monopole antenna assembly that includes a monopole antenna radiating section having a monopole antenna element surrounded by a dielectric material. The monopole antenna assembly also includes a ground plane disposed at a proximal end of the monopole antenna radiating section, wherein the ground plane is configured to direct energy into the target volume of tissue.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: August 28, 2018
    Assignee: Covidien LP
    Inventors: Francesca Rossetto, Joseph D. Brannan, Joseph A. Paulus
  • Patent number: 10039602
    Abstract: An electrosurgical energy channel splitter apparatus includes a channel input a plurality of channel outputs, and a controller. The channel input is configured to receive electrosurgical energy from an electrosurgical energy source. Each channel output is configured to couple to a respective electrosurgical device. The controller is coupled to the channel input and the plurality of channel outputs. The controller is configured to selectively direct the electrosurgical energy from the channel input to one of the plurality of channel outputs.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: August 7, 2018
    Assignee: Covidien LP
    Inventors: Mani Prakash, Francesca Rossetto, Steven Kim, Brian Shiu, Thomas J. Fogarty, Sascha Zarins
  • Patent number: 10004900
    Abstract: The present disclosure provides systems and methods for correlating measurement in neurostimulation systems. A neurostimulation system includes a first sensor configured to acquire movement measurements for a subject, a second sensor configured to acquire neural measurements for the subject, and a computing device communicatively coupled to the first and second sensors. The computing device is configured to receive a movement signal from the first sensor, and receive a neural signal from the second sensor, wherein one of the movement signal and the neural signal is a trigger signal and the other of the movement signal and the neural signal is a signal of interest. The computing device is further configured to detect at least one trigger event in the trigger signal, and use the signal of interest based on the at least one trigger event.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: June 26, 2018
    Assignee: Pacesetter, Inc.
    Inventors: Alexander Kent, Gene Bornzin, Edward Karst
  • Patent number: 9974953
    Abstract: An apparatus for controlling the stimulation of neural tissue which includes a neural stimulator, an input device for providing input to the neural stimulator for neural stimulation, at least one electrode electrically connected to and driven by the neural stimulator and suitable to stimulate neural tissue, a device capable of determining a charge per phase by calculating a discrete integral of the wave form of the input for the at least one electrode, a calculating device for comparing the charge per phase to a predetermined maximum and determining a reduced stimulation for the at least one electrode by the amount necessary not to exceed the predetermined maximum for the at least one electrode, and a current pulse generator for stimulating the neural tissue according to the reduced stimulation level.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: May 22, 2018
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Jay Greenberg, Kelly Hobart McClure, James Singleton Little, Rongqing Dai, Arup Roy, Richard Agustin Castro, John Reinhold, Kea-Tiong Tang, Sumit Yadav, Chunhong Zhou, Dao Min Zhou, Pishoy Maksy
  • Patent number: 9950169
    Abstract: Systems and methods are provided for delivering neurostimulation therapies to patients for treating chronic heart failure. A computer-implemented control system is operated to automatically identify a neural fulcrum zone based on a monitored patient physiological response. Ongoing neurostimulation therapy is delivered within the neural fulcrum zone.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: April 24, 2018
    Assignees: Cyberonics, Inc., East Tennessee State University
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight, Jeffrey L. Ardell
  • Patent number: 9901299
    Abstract: A system for assisted coughing includes a first sensor for measuring a parameter which can indicate a closed glottis and producing a first signal, a processor for receiving the first signal, determining a state indicating the closed glottis and generating an instruction for a Functional Electric Stimulation (FES) controller based, at least in part, on the determining, and a FES controller for generating an electric stimulation signal.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: February 27, 2018
    Assignees: Yeda Research and Development Co. Ltd., Mor Research Applications Ltd.
    Inventors: Lior Haviv, Noam Sobel, Amiram Catz, Itzhak Glass, Anton Plotkin, Aharon Weissbrod, Sagit Shushan