Output Controlled By Sensor Responsive To Body Or Interface Condition Patents (Class 607/62)
  • Patent number: 9352155
    Abstract: A method is provided for finding an energy-optimal stimulus which gives a positive Lyapunov exponent, and hence desynchronization, for a neural population. The method is illustrated for three different neural models. Not only does it achieve desynchronization for each model, but it also does so using less energy than recently proposed methods, suggesting a powerful alternative to pulsatile stimuli for deep brain stimulation. Furthermore, we calculate error bounds on the optimal stimulus which will guarantee a minimum Lyapunov exponent. Also, a related control strategy is developed for desynchronizing neurons based on the population's phase distribution.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: May 31, 2016
    Assignees: The Regents of the University of California, Regents of the University of Minnesota
    Inventors: Jeffrey Michael Moehlis, Daniel David Wilson, Theoden Ivan Netoff
  • Patent number: 9333348
    Abstract: A diagnostic device in an electrical interferential treatment regime applies different pulse frequencies in one selection of electrode placement and determines the change of blood flow in response to the change in pulse frequency in an attempt to determine an optimum or workable set of parameters. The device includes electronic storage to record a series of tests and their results and a communication link. The communication link enables a professional caregiver to determine whether the parameter determinations, made at a location remote from the professional's office, such as at the residence of the patient, were conducted and were conducted correctly. The communication link also enables the professional to determine whether the treatments were conducted and conducted correctly.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: May 10, 2016
    Inventor: Donald Alan Rhodes
  • Patent number: 9327128
    Abstract: A therapeutic neurostimulation system configured for providing therapy to a patient. The neurostimulation system comprises a neurostimulation lead having an array of electrodes arranged along a longitudinal axis configured for being implanted along a spinal cord of a patient, a neurostimulation device configured for delivering electrical stimulation energy to active ones of the electrode array, and control/processing circuitry for instructing the neurostimulation device to configure an active electrode as a cathode, and two active electrodes longitudinally flanking and laterally offset from the cathode as anodes, selecting a ratio of stimulation amplitude values for the two anodes based on a known longitudinal location of the implanted neurostimulation lead relative to the spinal cord, and instructing the neurostimulation device to distribute the electrical stimulation energy between the two anodes in accordance with the selected stimulation amplitude value ratio.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: May 3, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Emarit A. S. Ranu
  • Patent number: 9301373
    Abstract: A control unit (9) for controlling luminance in a space (3), wherein the control unit is configured to estimate a three-dimensional location of at least one target (8) as a function of time, and control the luminance in the space based on the estimated three-dimensional location of the at least one target.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: March 29, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ashish Vijay Pandharipande, David Ricardo Caicedo Fernández
  • Patent number: 9272143
    Abstract: Systems and methods are provided for delivering neurostimulation therapies to patients for treating chronic heart failure. A neural fulcrum zone is identified and ongoing neurostimulation therapy is delivered within the neural fulcrum zone. The implanted stimulation device includes a physiological sensor for monitoring the patient's response to the neurostimulation therapy on an ambulatory basis over extended periods of time, and a control system for adjusting stimulation parameters to maintain stimulation in the neural fulcrum zone based on detected changes in the physiological response to stimulation.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: March 1, 2016
    Assignees: CYBERONICS, INC., East Tennessee State University
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight, Jeffrey L. Ardell
  • Patent number: 9271066
    Abstract: A device for supplementing a voice includes: a sensing unit sensing a bio-signal corresponding to a first vibration of vocalization and generating a first signal corresponding to the bio-signal; a vibration unit generating a second vibration using the first signal; and a power unit supplying a power to the sensing unit and the vibration unit.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: February 23, 2016
    Assignee: INHA-INDUSTRY PARTNERSHIP INSTITUTE
    Inventors: Woo-Key Lee, Young-Mo Kim, Jaehwan Kim
  • Patent number: 9242094
    Abstract: An implantable nerve stimulation device has a sensor system, a data processor in communication with the sensor system, and a nerve stimulation system in communication with the data processor and constructed to provide electrical stimulation to at least one branch of at least one vestibulocochlear nerve. The nerve stimulation system includes an electrode array that has a first plurality of electrodes structured to be surgically implanted in electrical communication with a superior branch of the vestibular nerve, a second plurality of electrodes structured to be surgically implanted in electrical communication with a horizontal branch of the vestibular nerve, a third plurality of electrodes structured to be surgically implanted in electrical communication with a posterior branch of the vestibular nerve, and a common crus reference electrode structured to be surgically implanted into a common crus of the vestibular labyrinth.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: January 26, 2016
    Assignee: The Johns Hopkins University
    Inventors: Charles C. Della Santina, Gene Yevgeny Fridman, Bryce Chiang
  • Patent number: 9242097
    Abstract: An example of a method embodiment may place a set of stimulation electrodes on tissue containing the baroreceptor region, and may test bipolar configurations of the electrodes. Each of the bipolar configurations of the electrodes includes at least one of the electrodes configured to function as an anode and at least one other of the electrodes configured to function as a cathode. Testing the bipolar configurations may include stimulating the tissue using each of the bipolar configurations. For each of the tested bipolar configurations at least one physiological parameter may be monitored for a baroreflex response to stimulation of the tissue, and the baroreflex response may be recorded for each of the tested bipolar configurations.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: January 26, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Eric A. Mokelke, Eric Falbe Hammill
  • Patent number: 9238135
    Abstract: Method, controller and system for an implantable medical device having a plurality of electrodes, the implantable medical device capable of delivering therapeutic stimulation to a patient, comprising a control module, a user interface operatively coupled to the control module, the user interface providing control of the control module by a medical professional or other user, and an electrode interface operatively coupled between the plurality of electrodes and the control module. The control module uses the electrode interface to obtain a plurality of measurements of impedance values for a plurality of selected pairs of individual ones of the plurality of electrodes. The control module flags electrodes using the plurality of measurements of impedance values of the selected pairs of individual ones of the plurality of electrodes comparative to a range, and the delivery of therapy on flagged electrodes is inhibited.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: January 19, 2016
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Todd V. Smith, Nathan A. Torgerson, Warren W. Ball
  • Patent number: 9238141
    Abstract: Devices and methods compensate for perturbations in a stimulation signal caused by external conditions such as a magnetic field of an MRI machine so that stimulation therapy may continue in the presence of the external condition. Compensation for the perturbations during a stimulation pulse of a stimulation phase may be provided by using feedback within a stimulation current source. Perturbations during a recharge phase may be addressed by utilizing an active recharge at least when the external condition is present. Furthermore, compensation for perturbations during a recharge pulse of the active recharge phase may be provided by using feedback within a recharge current source. Passive recharge may be used instead of active recharge when the external condition is not present to preserve battery life of the stimulation device. The stimulation device may include a sensor to detect the external condition so that an appropriate mode of recharge may be chosen.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: January 19, 2016
    Assignee: MEDTRONIC, INC.
    Inventors: Robert Hocken, Heather Orser, Wesley Santa, Larry E. Tyler
  • Patent number: 9204822
    Abstract: A controller is provided for a functional electrical stimulator for attachment to a leg comprising, a connector for a foot switch for sensing foot rise or foot strike, a circuit for responding to said foot switch for generating stimulation pulses and a connector for first and second electrodes for attachment to the leg for supplying stimulation pulses from said circuit The circuit includes a voltage divider of which the foot switch when connected comprises one element, a second element being provided by a digital potentiometer forming part of the controller. A micro controller is configured to make adaptive adjustment of the resistance of said digital potentiometer to take account of the resistance characteristics of the foot switch to provide an output or reference voltage permitting an open/closed state of the switch to be monitored.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: December 8, 2015
    Assignee: Salisbury NHS Foundation Trust
    Inventors: Rodney Paul Lane, Darren John Hart, Stacey Michael Finn, Paul Nicholas Taylor, Steven Eric Crook, Ian Douglas Swain
  • Patent number: 9199083
    Abstract: Therapy systems for treating a patient are disclosed. Representative therapy systems include an implantable pulse generator, a signal delivery device electrically coupled to the pulse generator, and a remote control in electrical communication with the implantable pulse generator. The pulse generator can have a computer-readable medium containing instructions for performing a process that comprises collecting the patient status and stimulation parameter; analyzing the collected patient status and stimulation parameter; and establishing a preference baseline containing a preferred stimulation parameter corresponding to a particular patient status.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: December 1, 2015
    Assignee: Nevro Corporation
    Inventors: Anthony V. Caparso, Jon Parker, Andre B. Walker, Yougandh Chitre
  • Patent number: 9199090
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: December 1, 2015
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
  • Patent number: 9199089
    Abstract: An implantable neural stimulator includes one or more electrodes, at least one antenna, and one or more circuits connected to the at least one antenna. The one or more electrodes are configured to apply one or more electrical pulses to excitable tissue. The antenna is configured to receive one or more input signals containing polarity assignment information and electrical energy, the polarity assignment information designating polarities for the electrodes. The one or more circuits are configured to control an electrode interface such that the electrodes have the polarities designated by the polarity assignment information; create one or more electrical pulses using the electrical energy contained in the input signal; and supply the one or more electrical pulses to the one or more electrodes through the electrode interface so that the one or more electrical pulses are applied according to the polarities designated by the polarity assignment information.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: December 1, 2015
    Assignee: Micron Devices LLC
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Patent number: 9168381
    Abstract: Apparatus and method for treating an arrhythmia in a patient using an electrotherapy device. The device applies a series of electrotherapy pulses in response to the presence of the arrhythmia. In one aspect, indicia of movement by the patient is sensed, and an inference is made whether the movement is an evoked response to the administration of the electrotherapy pulses. Application of subsequent electrotherapy pulses is adjusted in response to an inference of the evoked response constituting discomfort of the patient.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: October 27, 2015
    Assignee: Galvani, Ltd.
    Inventors: Byron L. Gilman, Mark W. Kroll
  • Patent number: 9149210
    Abstract: Techniques relate to operating a medical device by classifying a detected posture state of a patient. This classification may be performed by comparing the detected posture state to posture state definitions available within the system. Each definition may be described in terms of a parameter (e.g., vector) indicative of a direction in three-dimensional space. The posture state definitions may be calibrated by automatically estimating values for these parameters, thereby eliminating the need for the patient to assume each posture state during the calibration process to capture actual parameter values. According to another aspect, the estimated parameter values may be updated as the patient assumes various postures during a daily routine. For instance, estimated vectors initially used to calibrate the posture state definitions may be changed over time to more closely represent posture states the patient actually assumes, and to further adapt to changes in a patient's condition.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: October 6, 2015
    Assignee: MEDTRONIC, INC.
    Inventors: Rajeev M. Sahasrabudhe, Lynn Davenport, Jon P. Davis, Wende L. Dewing, Elizabeth A. Fehrmann, Steven Goetz, Shyam Gokaldas, Eric J. Panken
  • Patent number: 9089267
    Abstract: A neurostimulation system provides for capture verification and stimulation intensity adjustment to ensure effectiveness of vagus nerve stimulation in modulating one or more target functions in a patient. In various embodiments, stimulation is applied to the vagus nerve, and evoked responses are detected to verify that the stimulation captures the vagus nerve and to adjust one or more stimulation parameters that control the stimulation intensity.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: July 28, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Juan Gabriel Hincapie Ordonez, David J. Ternes, Jason J. Hamann, Stephen Ruble
  • Patent number: 9089706
    Abstract: A neural stimulation system automatically corrects or adjusts the stimulus magnitude (stimulation energy) in order to maintain a comfortable and effective stimulation therapy. Because the changes in impedance associated with the electrode-tissue interface can indicate obstruction of current flow and positional lead displacement, lead impedance can indicate the quantity of electrical stimulation energy that should be delivered to the target neural tissue to provide corrective adjustment. Hence, a change in impedance or morphology of an impedance curve may be used in a feedback loop to indicate that the stimulation energy needs to be adjusted and the system can effectively auto correct the magnitude of stimulation energy to maintain a desired therapeutic effect.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: July 28, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: John D. H. King, James R. Thacker
  • Patent number: 9079018
    Abstract: Implantable medical electrical leads, kits, systems and methods of use thereof for electrically stimulating the spinal cord with a plurality of electric stimulation leads. Directional stimulation electrodes are disposed along the distal end portions of the leads to form an electrode array in the epidural space of a patient with at least first, second and third directional stimulation electrodes being oriented at determined angular orientations relative to the spinal cord or each other. The stimulation electrodes may be programmed to create a tripole in which at least the first, second and third directional stimulation electrodes are active.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: July 14, 2015
    Assignee: Medtronic, Inc.
    Inventor: James M. Olsen
  • Publication number: 20150148869
    Abstract: Technology for deep brain stimulating including devices, systems, computer circuitry, and associated methods is provided. A deep brain stimulating device (100) can include a semiconductor substrate, an array of electrodes (140) coupled to the semiconductor substrate, and circuitry operable to control the array of electrodes (140). Each electrode (142) can be operable to function as an anode, a cathode, a common, or a float independent of other electrodes in the array to create highly configurable electric fields (122, 124).
    Type: Application
    Filed: May 16, 2013
    Publication date: May 28, 2015
    Applicant: University of Utah Research Foundation
    Inventors: Alan Dale Dorvall, II, Andrew Colin Willsie
  • Patent number: 9043001
    Abstract: Non-invasive electrical nerve stimulation devices and magnetic stimulation devices are disclosed, along with methods of treating medical disorders using energy that is delivered noninvasively by such devices. The disorders comprise migraine and other primary headaches such as cluster headaches, including sinus symptoms that resemble an immune-mediated response (“sinus” headaches), irrespective of whether those symptoms arise from an allergy that is co-morbid with the headache. The disclosed methods may also be used to treat other disorders that may be co-morbid with migraine headaches, such as anxiety disorders. In preferred embodiments of the disclosed methods, one or both of the patient's vagus nerves are stimulated non-invasively. In other embodiments, parts of the sympathetic nervous system and/or the adrenal glands are stimulated.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: May 26, 2015
    Assignee: Electrocore, LLC
    Inventors: Bruce J. Simon, Joseph P. Errico, John T. Raffle
  • Publication number: 20150142082
    Abstract: Devices, systems and methods are disclosed that are used to treat a medical condition, by electrical stimulation of a nerve or nerve ganglion, used in conjunction with biofeedback. The system comprises a stimulator that applies electrical impulses sufficient to modulate a nerve at a target site within the patient. A sensor measures a physiological output from the patient, such as heart rate variability, and a property of the stimulation signal is varied based on the physiological output.
    Type: Application
    Filed: November 15, 2013
    Publication date: May 21, 2015
    Applicant: ElectroCore, LLC
    Inventors: Bruce J. Simon, Joseph P. Errico
  • Publication number: 20150142084
    Abstract: A hybrid method is provided for modulating upper airway function in a subject. The method includes applying first and second therapy signals to the subject to modulate at least one extrinsic laryngeal muscle and at least one intrinsic laryngeal muscle to synergistically control laryngeal motion and vocal fold movement, respectively.
    Type: Application
    Filed: January 28, 2015
    Publication date: May 21, 2015
    Inventor: Dustin J. Tyler
  • Patent number: 9035794
    Abstract: A method and system for activity monitoring of a user are disclosed. In a first aspect, the method comprises calibrating posture by the user to determine a calibration vector. The method includes validating the calibration vector by comparing an anteroposterior axis to a threshold, wherein activity of the user is monitored using the validated calibration vector. In a second aspect, a wireless sensor device comprises a processor and a memory device coupled to the processor, wherein the memory device includes an application that, when executed by the processor, causes the processor to receive a posture calibration request from the user and to determine a calibration vector based on the received request. The application, when executed by the processor, further causes the processor to validate the calibration vector by comparing an anteroposterior axis to a threshold, wherein activity of the user is monitored using the validated calibration vector.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: May 19, 2015
    Assignee: VITAL CONNECT, INC.
    Inventors: Ravi Narasimhan, Nima Ferdosi
  • Patent number: 9037256
    Abstract: A system and method for selecting optimal stimulation parameter settings for a therapeutic neural stimulation for a current patient may include obtaining, by at least one processor, electrical parameter maps and corresponding score values of a patient population, and processing, by the at least one processor, the parameter maps and the score values to evaluate, based on a set of score criteria, parameter maps associated with potential stimulation parameter settings.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: May 19, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Hemant Sharad Bokil
  • Patent number: 9037255
    Abstract: A device for stimulating living tissue or nerves by individual or repeated stimulating pulses via stimulating electrodes which stimulate living tissue or nerves by stimulating pulses includes an electrical circuit which regulates the electric voltage or charge on the stimulating electrodes as a function of the electric voltage between the stimulating electrodes and reduces or equalises imbalances of electric charges on the stimulating electrodes. This device is capable of equalizing the electric charge on the stimulating electrodes of a stimulation system. The device and the process for using the device have the advantage that imbalances of electric charges on the stimulating electrodes, and the associated disadvantageous effects on the tissue and on the nerves, are avoided or eliminated. Furthermore, the device has a small space requirement.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: May 19, 2015
    Assignee: PIXIUM VISION SA
    Inventors: Andre Rocke, Maurits Ortmanns, Norbert Unger
  • Publication number: 20150134030
    Abstract: A method and system for treating cardiac arrhythmias which includes inserting one or more electrodes into a patient's neck, and connecting the electrodes to the vagus nerve in the patient's neck. A cardiac monitoring device detects a cardiac arrhythmia. A controller connected to an electrical power source provides electrical power to the electrodes to apply electrical stimulation to the vagus nerve when a cardiac arrhythmia is detected.
    Type: Application
    Filed: May 17, 2013
    Publication date: May 14, 2015
    Applicant: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK
    Inventors: Mark Stewart, Isaac Naggar, Jason Lazar
  • Publication number: 20150134031
    Abstract: A computer implemented system and method generates a patient-specific model of patient response to stimulation on a neural element basis, receives user-input of target neuromodulation sites, and, based on the patient-specific model, determines which stimulation paradigm and settings, including stimulation sites, would result in the target neuromodulation, where the stimulation sites are not necessarily the same as the resulting neuromodulation sites. The system outputs a visual representation of the stimulation sites that would result in the target neuromodulation. The system monitors a system state and/or patient state and dynamically changes which stimulation program to implement based on the state.
    Type: Application
    Filed: November 11, 2014
    Publication date: May 14, 2015
    Inventors: Michael A. MOFFITT, Rafael CARBUNARU
  • Patent number: 9026223
    Abstract: Posture-responsive therapy is delivered by the medical system based on posture state input from only one of multiple posture sensors at any given time. An example implantable medical system includes a first posture sensor and a second sensor. A processor controls therapy delivery to the patient based on at least one of a patient posture state or a patient activity level determined based on input from only one of the first or second posture sensors. In some examples, one of multiple posture sensors of an implantable posture-responsive medical system is used to automatically reorient another posture sensor (of the system), which has become disoriented. The disoriented posture sensor may be automatically reoriented for one or more posture states at a time.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: May 5, 2015
    Assignee: Medtronic, Inc.
    Inventors: Dennis M. Skelton, Jon P. Davis, Keith A. Miesel, Timothy J. Denison
  • Patent number: 9026224
    Abstract: Techniques, apparatuses, and systems for interfacing multiple sensors with a biological system can include amplifying signals from respective sensors associated with an external device; modulating the amplified signals based on respective different frequency values; and summing the modulated signals to produce an output signal to stimulate a biological system.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: May 5, 2015
    Inventors: Ranu Jung, Kenneth Horch, James J. Abbas, Stephen Phillips, Bertan Bakkaloglu, Seung-Jae Kim
  • Patent number: 9020598
    Abstract: Non-invasive electrical nerve stimulation devices and magnetic stimulation devices are disclosed, along with methods of treating medical disorders using energy that is delivered noninvasively by such devices. The disorders comprise migraine and other primary headaches such as cluster headaches, including sinus symptoms that resemble an immune-mediated response (“sinus” headaches), irrespective of whether those symptoms arise from an allergy that is co-morbid with the headache. The disclosed methods may also be used to treat other disorders that may be co-morbid with migraine headaches, such as anxiety disorders. In preferred embodiments of the disclosed methods, one or both of the patient's vagus nerves are stimulated non-invasively. In other embodiments, parts of the sympathetic nervous system and/or the adrenal glands are stimulated.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: April 28, 2015
    Assignee: ElectroCore, LLC
    Inventors: Bruce J. Simon, Joseph P. Errico, John T. Raffle
  • Patent number: 9020605
    Abstract: An electroporation device produces electric signals that may be adjusted in response to a cover area of electrodes, so that the electric signals are tolerable when delivered to cells within the cover area. The electroporation device can include an applicator, a plurality of electrodes extending from the applicator, a power supply in electrical communication with the electrodes, and a guide member coupled to the electrodes. The electrodes are associated with a cover area. The power supply is configured to generate one or more electroporating signals to cells within the cover area. The guide member can be configured to adjust the cover area of the electrodes. In some embodiments, the electrical signals may include opposing waveforms that produce a resultant interference waveform to effectively target the cover area, and each waveform may be a unipolar waveform or a bipolar waveform.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: April 28, 2015
    Assignee: OncoSec Medical Incorporated
    Inventors: Brian McCluskey, Punit Dhillon
  • Patent number: 9020604
    Abstract: A neurostimulation device is provided comprising an input, a neurostimulation probe, a stimulation unit and a distribution calculation module. At the input stimulation data is received comprising information relating to a stimulation preferability and an orientation of at least one fiber bundle. The neurostimulation probe comprises an array of stimulation electrodes which are coupled to the stimulation unit. The stimulation unit, in accordance with a specified current distribution, provides currents to the respective stimulation electrodes for generating an electric field gradient. The distribution calculation module is coupled to the input and the stimulation unit for based on the stimulation data determining a preferred position and orientation for the electric field gradient, and based on the preferred position and orientation for the electric field gradient, calculating the specified current distribution.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: April 28, 2015
    Assignee: Sapiens Steering Brain Stimulation B.V.
    Inventor: Hubert Cecile Francois Martens
  • Publication number: 20150112409
    Abstract: The present method and system provides for the clinical application of neurostimulation and/or neuromodulation to a patient. The method and system includes receipt and acquisition of patient data, processing of that data relative to one or more known data sets, and determination of a good-fit trigger specific treatment protocol. The method and system provides for application of the protocol to the patient, including delivery of neuromodulation and biofeedback. Based thereon, the method and system re-iterates the goodness of fit determination for further treatment to the patient.
    Type: Application
    Filed: December 22, 2014
    Publication date: April 23, 2015
    Inventor: David W Hagedorn
  • Publication number: 20150112410
    Abstract: A neural stimulation system includes a safety control system that prevents delivery of neural stimulation pulses from causing potentially harmful effects. The neural stimulation pulses are delivered to one or more nerves to control the physiological functions regulated by the one or more nerves. Examples of such harmful effects include unintended effects in physiological functions associated with autonomic neural stimulation and nerve injuries caused by excessive delivery of the neural stimulation pulses.
    Type: Application
    Filed: December 24, 2014
    Publication date: April 23, 2015
    Inventors: Imad Libbus, Andrew P. Kramer, William J. Linder, Jeffrey E. Stahmann
  • Patent number: 9014813
    Abstract: An apparatus is disclosed for providing efficient stimulation. As an example, a variable compliance regulator can be connected to supply a compliance voltage to a power supply rail, which compliance voltage can vary dynamically based on a stimulus waveform. A pulse generator can be configured to provide an output waveform to one or more output based on the stimulus waveform for delivery of electrical therapy.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: April 21, 2015
    Assignee: Cleveland Clinic Foundation
    Inventors: Thomas J. Foutz, D. Michael Ackermann, Cameron C. McIntyre
  • Patent number: 9014823
    Abstract: Non-invasive electrical nerve stimulation devices and magnetic stimulation devices are disclosed, along with methods of treating medical disorders using energy that is delivered noninvasively by such devices. The disorders comprise migraine and other primary headaches such as cluster headaches, including sinus symptoms that resemble an immune-mediated response (“sinus” headaches), irrespective of whether those symptoms arise from an allergy that is co-morbid with the headache. The disclosed methods may also be used to treat other disorders that may be co-morbid with migraine headaches, such as anxiety disorders. In preferred embodiments of the disclosed methods, one or both of the patient's vagus nerves are stimulated non-invasively. In other embodiments, parts of the sympathetic nervous system and/or the adrenal glands are stimulated.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: April 21, 2015
    Assignee: ElectroCore, LLC
    Inventors: Bruce J. Simon, Joseph P. Errico, John T. Raffle
  • Patent number: 9008780
    Abstract: Methods for bridging brain sites between which there is substantially no effective communication, and associated neural prosthetic devices, are provided. A neural spike in a first neural site in a subject is detected, and a stimulus to a second neural site in the subject is delivered within a defined period of time after the detection of the neural spike, wherein there is substantially no effective communication between the first and second neural sites. The method forms an artificial bridge between the two neural sites, and establishes lasting communication between the two sites. The present disclosure provides, among other things, a neural prosthetic device comprising an integrated circuit that comprises a recording front-end comprising a plurality of recording channels; a processor unit; and a stimulus delivering back-end comprising a plurality of stimulation channels.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: April 14, 2015
    Assignees: Case Western Reserve University, University of Kansas
    Inventors: Randolph J. Nudo, David Guggenmos, Pedram Mohseni, Meysam Azin
  • Patent number: 9008790
    Abstract: Timing channel circuitry for controlling stimulation circuitry in an implantable stimulator is disclosed. The timing channel circuitry comprises a addressable memory. Data for the various phases of a desired pulse are stored in the memory using different numbers of words, including a command indicative of the number of words in the phase, a next address for the next phase stored in the memory, and a pulse width or duration of the current phase, control data for the stimulation circuitry, pulse amplitude, and electrode data. The command data is used to address through the words in the current phase via the address bus, which words are sent to a control register for the stimulation circuitry. After the duration of the pulse width for the current phase has passed, the stored next address is used to access the data for the next phase stored in the memory.
    Type: Grant
    Filed: March 20, 2013
    Date of Patent: April 14, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Paul J. Griffith, Goran N. Marnfeldt, Jordi Parramon
  • Patent number: 9005102
    Abstract: Energy emitting systems are provided which include an adjustable conductive coil configured to generate a magnetic or electromagnetic field focused on a target nerve. The coil includes a central aperture which may be adjustable between a first configuration and a second configuration having a radius greater than the radius of the first configuration. The adjustable or movable nature of the coil allows the conductive coil to conform to, accommodate, or be positioned on a particular anatomical structure of a patient to position the coil in proximity to the underlying target nerve. In certain embodiments, methods of magnetic induction therapy are provided which include positioning a conductive coil relative to a portion of a patient's body by adjusting the central aperture of the coil such that the coil may conform to, accommodate or be positioned on the portion of the patient's body in proximity to the underlying target nerve.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: April 14, 2015
    Assignee: EMKinetics, Inc.
    Inventors: Daniel R. Burnett, Christopher Hermanson, James H. Ahlman, Bruno Strul
  • Publication number: 20150094787
    Abstract: This document provides methods and materials for treating syncope (e.g., neurocardiogenic syncope). For example, methods and materials involved in using electrical techniques to stimulate nerves (e.g., renal efferent and/or afferent nerves) in a manner that results in systemic blood vessel constriction and/or increased blood pressure are provided.
    Type: Application
    Filed: May 8, 2013
    Publication date: April 2, 2015
    Applicant: Mayo Foundation for Medical Education and Research
    Inventors: Malini Madhavan, Samuel J. Asirvatham
  • Publication number: 20150088223
    Abstract: A system and method for generating an estimated volume of activation (VOA) corresponding to settings applied to a stimulation leadwire includes a processor performing the following: determining, for each of a plurality of neural elements, one or more respective parameters characterizing an electrical distribution along the neural element, looking up the one or more parameters for each of the neural elements in a look-up table (LUT), obtaining threshold values for each of the neural elements recorded in the LUT in association with the looked-up parameters, comparing, for each of the neural elements, a value of the leadwire settings to each of the respective threshold value, estimating based on the comparisons which of the neural elements would be activated by the settings, and generating a structure corresponding to a region including the neural elements estimated to be activated.
    Type: Application
    Filed: December 2, 2014
    Publication date: March 26, 2015
    Inventors: David Arthur BLUM, Michael A. MOFFITT, Karl STEINKE
  • Publication number: 20150088230
    Abstract: A method and system are provided for determining a relation between stimulation settings for a brain stimulation probe and a corresponding V-field. The brain stimulation probe comprises multiple stimulation electrodes. The V-field is an electrical field in brain tissue surrounding the stimulation electrodes.
    Type: Application
    Filed: December 1, 2014
    Publication date: March 26, 2015
    Applicants: NEURO NEXUS TECHNOLOGIES INC., SAPIENS STEERING BRAIN STIMULATION B.V.
    Inventors: Emil Toader, Hubert Cécile François Martens, Michel Marcel Jose Decré, Franciscus Paulus Maria Budzelaar, Pieter Gerrit Blanken, David James Anderson
  • Publication number: 20150080984
    Abstract: A diagnostic device in an electrical interferential treatment regime applies different pulse frequencies in one selection of electrode placement and determines the change of blood flow in response to the change in pulse frequency in an attempt to determine an optimum or workable set of parameters. The device includes electronic storage to record a series of tests and their results and a communication link. The communication link enables a professional caregiver to determine whether the parameter determinations, made at a location remote from the professional's office, such as at the residence of the patient, were conducted and were conducted correctly. The communication link also enables the professional to determine whether the treatments were conducted and conducted correctly.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 19, 2015
    Inventor: Donald A. Rhodes
  • Publication number: 20150080987
    Abstract: A neuromimetic device includes a feedforward pathway and a feedback pathway. The device operates in parallel with a suspect neural region, coupled between regions afferent and efferent to the suspect region. The device can be trained to mimic the suspect region while the region is still considered functional; and then replace the region once the region is considered dysfunctional. The device may be particularly useful in treating neuromotor issues such as Parkinson's disease.
    Type: Application
    Filed: November 20, 2014
    Publication date: March 19, 2015
    Applicant: Sapiens Steering Brain Stimulation B.V.
    Inventors: Michel Marcel Jose Decre, Hubert Cecile Francois Martens, Youri Victorovitch Ponomarev
  • Publication number: 20150080985
    Abstract: Disclosed is a method of more accurately stimulating a living body and an apparatus using the method. The method includes determining targeted bio-information, deriving bio-stimulation information required to achieve the targeted bio-information using complicated time space data indicative of bio-responses interacting at a plurality of different positions in response to bio-stimulation composed of pieces of time-series data having a specific frequency, and applying a stimulation signal to the living body in response to the derived bio-stimulation information. The method is advantageous in that it can derive a systematic algorithm between bio-related information and stimulation information so that more accurate and safely stimulation is made upon applying bio-stimulation based on acquired bio-related information, can minimize a process of trial and error using a systematic algorithm, and can more accurately stimulate a living body by exactly determining a specific target stimulation position.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 19, 2015
    Applicant: YBRAIN INC.
    Inventors: Kyongsik YUN, Yongwook CHAE, Kiwon LEE
  • Publication number: 20150080670
    Abstract: A method includes receiving cardiac data and determining a cardiac index based upon the cardiac data; determining an increased risk of death associated with epilepsy if the indices are extreme, issuing a warning of the increased risk of death and logging information related to the increased risk of death. A second method comprises receiving at least one of arousal data, responsiveness data or awareness data and determining an arousal index, a responsiveness index or an awareness index, where the indices are based on arousal data, responsiveness data or awareness data respectively; determining an increased risk of death related to epilepsy if indices are extreme values, issuing a warning of the increased risk of death and logging information related to the increased risk of death. A non-transitory computer readable program storage device encoded with instructions that, when executed by a computer, perform a method is also provided.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 19, 2015
    Applicant: Flint Hills Scientific, L.L.C.
    Inventor: Ivan Osorio
  • Publication number: 20150080986
    Abstract: The invention relates to a device for applying a transcutaneous electrical stimulation stimulus to the surface of a section of the human ear, which comprises a retaining element which is mountable on or in the ear and a number of electrodes which are arranged on or in an electrode carrier, wherein the device comprises a control apparatus which controls or regulates the generation of a potential difference between the electrodes. In order to permit an improved and safer transcutaneous stimulation the invention proposes that at least three electrodes are arranged on or in the electrode carrier, wherein the at least three electrodes are located in one plane, wherein the position of at least one of the at least three electrodes is adjustable on the electrode carrier and wherein the at least one electrode of which the position is adjustable is mounted such as to be displaceable in a translational manner in the plane. Furthermore, the invention relates a method for the operation of such a device.
    Type: Application
    Filed: October 18, 2013
    Publication date: March 19, 2015
    Applicant: cerbomed GmbH
    Inventors: Jens ELLRICH, Christoph BECK, Wolf Gerhard FRENKEL, Andreas HARTLEP
  • Patent number: 8983611
    Abstract: An apparatus comprises a physiologic sensing circuit and a control circuit. The physiologic sensing circuit is configured to sense an electrical respiration signal representative of respiration of a subject. The control circuit includes a respiration monitor circuit and a therapy circuit. The respiration monitor circuit is configured to extract a respiration parameter from the respiration signal and detect that a value of the respiration parameter is outside of a target value range for the respiration parameter. The therapy circuit is configured to deliver neural stimulation to the carotid sinus of the subject to stimulate respiration and to adjust respiration to maintain the value of the respiration parameter within the target value range.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: March 17, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Eric A. Mokelke, Yi Zhang, John D. Hatlestad, Kenneth C. Beck, Viktoria A. Averina, Jon Peterson, Kent Lee
  • Publication number: 20150073510
    Abstract: The present invention provides methods, systems and apparatuses for effecting excitation or inhibition of small sensory nerve fibers, such as C-afferent fibers, by electrical stimulation of nerves innervating the pancreas in diabetic subjects. In an aspect the methods are directed to effecting insulin production and for the treatment of diabetes. This invention includes a closed or open loop feedback control system in which biomarker levels are monitored in order to direct electrical stimulation. An implantable or external neural stimulation device is also provided.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Inventor: Laura Tyler Perryman