Controlling Or Indicating Stimulation Level Patents (Class 607/7)
  • Patent number: 11944835
    Abstract: In embodiments, a Wearable Cardioverter Defibrillator (WCD) system includes a support structure for the patient to wear, and components that the support structure maintains on the patient's body. The components include a defibrillator, associated electrodes, and so on. The defibrillator can operate in a WCD mode while the patient wears the support structure. The defibrillator can further operate in a different, AED mode, during which time the patient need not wear a portion of the support structure, or even the entire support structure. Sometimes the AED mode is a type of a fully automatic AED mode. Other times the AED mode is a type of a semi-automated AED mode, where an attendant is present to administer the shock; at such times, the patient may not even need to have electrodes attached. This way the patient is more comfortable for a longer time.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: April 2, 2024
    Assignee: West Affum Holdings DAC
    Inventors: Brian D. Webster, Zoie R. Engman, Phillip D. Foshee, Jr., David P. Finch, Joseph L Sullivan, Gregory T. Kavounas
  • Patent number: 11896829
    Abstract: A data file system includes one or more files about a patient wearing a wearable cardiac defibrillator (WCD) system that has been assigned to them. The one or more files contain at least one patient identifier of the patient, compliance data about a history of the patient's wearing the WCD system, and possibly other data. The data file system can be accessed through a communication network when the patient uses a communication device. When so accessed, some of the contents can be viewed on a screen of the device, for example in the form of a website. In embodiments, the health care provider and friends and family can view such data and even enter inputs, which may create a situation that motivates the patient to comply better.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: February 13, 2024
    Assignee: West Affum Holdings DAC
    Inventors: Laura Marie Gustavson, David Peter Finch, Erick Michael Roane, Jason Fouts
  • Patent number: 11801383
    Abstract: Neuromodulation devices and methods of their use are described in which a therapeutic device is configured to generate a treatment for treating pain such as the reduction of the symptoms of chronic and acute pain as well as for treating other conditions. The neuromodulation device generates an output electrical signal in the form of pulses with a fast rise-time spike waveform followed by a longer-duration, lower amplitude primary phase waveform. The output signal includes a broad range of frequency components, with time constants tuned so as to interact with specific cell membrane or cellular components. The output signal may be conducted to the patient via electrodes. The pulses are triggered at variable intervals which prevent habituation.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: October 31, 2023
    Assignee: Hinge Health, Inc.
    Inventors: Alexander B. Izvorski, Shaun Rahimi, Kevin McCullough
  • Patent number: 11771330
    Abstract: A system and a method are provided for using a mobile computing system comprising that has a communication connection configured to communicate with an electrocardiographic (ECG) apparatus to acquire ECG signals from the subject through a plurality of ECG leads. The system includes a processor configured to receive the ECG signals through the communications connection and process the ECG signals to estimate at least one of a respiratory rate of the subject, a tidal volume of the subject, or an ischemic index or repolarization alternans of the subject, from the ECG signals. The processor is further configured to generate an alert upon determining at least one of the ischemic index or repolarization alternans is above a threshold value or a change in respiratory rate or tidal volume indicative of an abnormal respiratory event. The system also includes a display configured to display the alert.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: October 3, 2023
    Assignee: The General Hospital Corporation
    Inventor: Antonis A. Armoundas
  • Patent number: 11759647
    Abstract: A medical device and method conserve electrical power used in monitoring cardiac arrhythmias. The device includes a sensing circuit configured to sense a cardiac signal, a power source and a control circuit having a processor powered by the power source. The control circuit is configured to operate in a normal state by waking up the processor to analyze the cardiac electrical signal for determining a state of an arrhythmia. The control circuit switches from the normal state to a power saving state that includes waking up the processor at a lower rate than during the normal state.
    Type: Grant
    Filed: August 21, 2021
    Date of Patent: September 19, 2023
    Assignee: Medtronic, Inc.
    Inventors: Karen J. Kleckner, Wade M. Demmer, Vincent P. Ganion, Yanina Grinberg, Paul R. Solheim
  • Patent number: 11707632
    Abstract: In embodiments a WCD system is worn and/or carried by an ambulatory patient. The WCD system analyzes an ECG signal of the patient, to determine whether or not the patient should be given an electric shock to restart their heart. If so, then the WCD system first gives a preliminary alarm to the patient, asking them to prove they are alive if they are. The WCD system further determines whether the ECG signal contains too much High Amplitude (H-A) noise, which can distort the analysis of the ECG signal. If too much H-A noise is detected for a long time, the WCD system may eventually alert the patient about their activity, so that the ECG noise may be abated. The WCD system may even pause the analysis of the ECG signal, so that there will be no preliminary alarms that could be false until the ECG noise is abated.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: July 25, 2023
    Assignee: West Affum Holdings DAC
    Inventors: Joseph Leo Sullivan, Jaeho Kim
  • Patent number: 11701006
    Abstract: An ambulatory medical device comprises: a sensing component to be disposed on a patient for detecting a physiological signal of the patient; and monitoring and self-test circuitry configured for detecting a triggering event and initiating one or more self-tests based on detection of the triggering event. The ambulatory medical device senses the physiological signal of the patient substantially continuously over an extended period of time.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: July 18, 2023
    Assignee: ZOLL Medical Corporation
    Inventors: Gary A. Freeman, Shane S. Volpe, Timothy F. Stever, Thomas E. Kaib
  • Patent number: 11666769
    Abstract: A wearable medical monitoring (WMM) system may be worn for a long time. Some embodiments of WMM systems are wearable cardioverter defibrillator (WCD) systems. In such systems, ECG electrodes sense an ECG signal of the patient, and store it over the long-term. The stored ECG signal can be analyzed for helping long-term heart rate monitoring of the patient. The heart rate monitoring can be assisted a) by special filtering techniques that remove short-term variations inherent in patients' short-term heart rate determinations, and b) by indication techniques that indicate when conditions hampered sensing of the ECG signal too much for a reliable heart rate determination.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: June 6, 2023
    Assignee: WEST AFFUM HOLDINGS DAC
    Inventors: Steven Postlewait, Joseph Sullivan, Gregory T. Kavounas
  • Patent number: 11497923
    Abstract: A patient-worn arrhythmia monitoring and treatment device includes a pair of therapy electrodes and at least one pair of sensing electrodes disposed proximate to the skin and configured to continually sense at least one ECG signal of the patient over an extended period of time. The device includes a therapy delivery circuit coupled to the pair of therapy electrodes and configured to deliver one or more therapeutic pulses. A controller coupled to therapy delivery circuit is configured to analyze the at least one ECG signal and detect one or more treatable arrhythmias and cause the therapy delivery circuit to deliver the one or more therapeutic pulses to the patient. At least one of the one or more therapeutic pulses is formed as a biphasic waveform delivering within 15 percent of 360 J of energy to a patient body having a transthoracic impedance from about 20 to about 200 ohms.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: November 15, 2022
    Assignee: ZOLL Medical Corporation
    Inventors: Gary A. Freeman, James G. Radzelovage
  • Patent number: 11494131
    Abstract: A print system includes a print device and an information processor connected to the print device via a network. The information processor includes an information acquisition section that acquires, from a voice mediation device, information including a keyword included in a print instruction given by a user by voice, a guidance section that outputs, to the voice mediation device, a guidance message to be output by voice, a print data transmission section that generates print data using content based on the keyword acquired by the information acquisition section in response to an output of the guidance message and transmits the print data to the print device, and a proficiency determination section that determines proficiency indicating a level of proficiency of the user for the print instruction. Based on the proficiency, the guidance section generates the guidance message that is used for the acquisition of the keyword by the information acquisition section.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: November 8, 2022
    Assignee: Seiko Epson Corporation
    Inventor: Takashi Sera
  • Patent number: 11389101
    Abstract: The present application discloses a method for identifying arrhythmia, a device for identifying arrhythmia, and a computer readable medium. The method includes: acquiring a type of arrhythmia to be identified; acquiring an ECG signal collected by an ECG acquisition device; detecting feature wave information in the ECG signal according to the type of arrhythmia to be identified; extracting a feature parameter from the denoised ECG signal and the feature wave information according to the type of arrhythmia to be identified; and identifying, by a classifier, an occurrence of the type of arrhythmia to be identified according to the feature parameter.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: July 19, 2022
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Guangfei Li, Yang Han
  • Patent number: 11278731
    Abstract: In some embodiments, a wearable cardioverter defibrillator (“WCD”) system comprises a support structure configured to be worn by a patient, a power source, an energy storage module configured to be coupled to the support structure, to be charged from the power source and to store an electrical charge, a discharge circuit coupled to the energy storage module, the discharge circuit controllable to discharge the electrical charge so as to cause a shock to be delivered to the patient, a measurement circuit configured to render a physiological input from a patient physiological signal, a user interface configured to output one or more human-perceptible indications, and a processor.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: March 22, 2022
    Assignee: West Affum Holdings Corp.
    Inventors: Phillip D. Foshee, Jr., David P. Finch, Laura M. Gustavson, Nikolai Korsun, Joseph L. Sullivan, Gregory T. Kavounas
  • Patent number: 11243054
    Abstract: Implementations of conductive energy weapons (CEWs) may include a shock generating circuit configured to couple to a power source, two electrodes operatively coupled to the shock generating circuit, and a safety circuit operatively coupled to the shock generating circuit. The shock generating circuit may be configured to generate a first pulse train and deliver the first pulse train to a target, and may be configured to generate at least a second pulse train and deliver the at least second pulse train to a target. The safety circuit may be configured to prevent the CEW from applying pulse trains to the target after a predetermined number of pulse trains. The first pulse train may include two or more pulses having waveforms substantially identical with each other, each of the waveforms of the two or more pulses having both a positive voltage segment and a negative voltage segment.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: February 8, 2022
    Assignee: Leonidas IP, LLC
    Inventors: Steven Abboud, Kevin Chang, Ivo Foldyna
  • Patent number: 11207522
    Abstract: In some examples, a processor is configured determine whether efficacy of therapy delivered by a medical device to the patient may have changed and generate a notification based on the determination. For example, a processor may be configured to determine whether a bioelectrical brain signal indicative of activity of a brain of a patient includes a biomarker that indicates efficacy of therapy delivered by a medical device to the patient may have changed, and generate notification based on determining the bioelectrical brain signal includes the biomarker. In some examples, the processor modifies the therapy delivered to the patient prior to generating the notification.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: December 28, 2021
    Assignee: Medtronic, Inc.
    Inventor: Janardan Vaidyanathan
  • Patent number: 11116456
    Abstract: In some examples, determining a heart failure status of a patient using a medical device comprising a plurality of electrodes includes determining an estimated arterial pressure waveform of the patient based on an arterial impedance signal received from at least two of the plurality of electrodes. The estimated arterial pressure waveform may comprise a plurality of arterial pressure cycles. Each of the plurality of arterial pressure cycles may correspond to a different cardiac cycle of a plurality of cardiac cycles of the patient. At least one value of an intrinsic frequency of the corresponding arterial pressure cycle may be determined for at least some of the plurality of cardiac cycles and the heart failure status of the patient may be determined based on the at least one value of the intrinsic frequency.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: September 14, 2021
    Assignee: Medtronic, Inc.
    Inventors: Douglas A. Hettrick, John E. Burnes, Tommy D. Bennett, Shantanu Sarkar, Eduardo N. Warman, Todd M. Zielinski
  • Patent number: 11116417
    Abstract: A method for detection of interference in impedance based monitoring of a subject by using a monitor is disclosed. The method comprising, connecting the subject to the monitor using one or more leads; and before current is applied to the subject, measuring voltage on the subject via at least one of the one or more leads and if any voltage is detected then the monitor indicates a warning. An impedance based monitor is disclosed, the monitor being connectable to a subject. The monitor is configured to measure voltage on the subject, before any current is applied to the subject, and if any voltage is detected then the monitor is configured to indicate a warning.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: September 14, 2021
    Assignee: General Electric Company
    Inventors: Panu Antero Takala, Kimmo Henrik Uutela, Mikael Bröckl, Matti Huiku
  • Patent number: 11110288
    Abstract: A system including an ambulatory medical treatment device is provided. The ambulatory medical treatment device includes a memory, a treatment component configured to treat a patient, at least one processor coupled to the memory and the treatment component, a user interface component, and a system interface component. The user interface component is configured to receive an update session request and to generate the update session identifier responsive to receiving the request. The system interface component is configured to receive an encoded request including an identifier of an update session and device update information, to decode the encoded request to generate a decoded request including the device update information and the identifier of the update session, to validate the decoded request by determining that the update session identifier matches the identifier of the update session, and to apply the device update information to the ambulatory medical treatment device.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: September 7, 2021
    Assignee: ZOLL Medical Corporation
    Inventor: Thomas E. Kaib
  • Patent number: 11097118
    Abstract: A defibrillation system for synchronized cardioversion of a patient includes a first housing that includes a measurement circuit configured to receive electrocardiogram (ECG) signals and measure ECG parameters based on the ECG signals, and a first processor configured to analyze the ECG parameters, and initiate communication of a synchronization signal for a second processor for delivery of one or more defibrillation pulses and further includes a second housing that is separate from and external to the first housing and that includes a shock delivery circuit, and the second processor which is configured to receive the communication of the synchronization signal from the first processor, and control the shock delivery circuit to deliver the one or more defibrillation pulses in response to the synchronization signal.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: August 24, 2021
    Assignee: ZOLL Medical Corporation
    Inventors: Gary A Freeman, James E Brewer, Michael L Lopin
  • Patent number: 11065463
    Abstract: In embodiments, a Wearable Cardioverter Defibrillator (WCD) system includes a support structure for the patient to wear, and components that the support structure maintains on the patient's body. The components include a defibrillator, associated electrodes, and so on. The defibrillator can operate in a WCD mode while the patient wears the support structure. The defibrillator can further operate in a different, AED mode, during which time the patient need not wear a portion of the support structure, or even the entire support structure. Sometimes the AED mode is a type of a fully automatic AED mode. Other times the AED mode is a type of a semi-automated AED mode, where an attendant is present to administer the shock; at such times, the patient may not even need to have electrodes attached. This way the patient is more comfortable for a longer time.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: July 20, 2021
    Assignee: West Affum Holdings Corp.
    Inventors: Brian D. Webster, Zoie Engman, Phillip D. Foshee, Jr., David P. Finch, Joseph L. Sullivan, Gregory T. Kavounas
  • Patent number: 11013876
    Abstract: Disclosed is a system that includes both an Airway and Ventilation device (AV) and an Automated External Defibrillator (AED) device. The system is provided with components for assisting only minimally trained persons to operate it in emergency situations involving respiratory failure and/or cardiac arrhythmias. The system includes one or both of a mask for applying non-invasive ventilation and a ventilation tube for applying invasive ventilation.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: May 25, 2021
    Assignee: INOVYTEC MEDICAL SOLUTIONS LTD.
    Inventors: Ehud Kantor, Mark Shahar, Nir Barkai
  • Patent number: 11000691
    Abstract: A wearable medical monitoring (WMM) system may be worn for a long time. Some embodiments of WMM systems are wearable cardioverter defibrillator (WCD) systems. In such systems, ECG electrodes sense an ECG signal of the patient, and store it over the long-term. The stored ECG signal can be analyzed for helping long-term heart rate monitoring of the patient. The heart rate monitoring can be assisted a) by special filtering techniques that remove short-term variations inherent in patients' short-term heart rate determinations, and b) by indication techniques that indicate when conditions hampered sensing of the ECG signal too much for a reliable heart rate determination.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: May 11, 2021
    Assignee: West Affum Holdings Corp.
    Inventors: Steven Postlewait, Joseph Sullivan, Gregory T. Kavounas
  • Patent number: 10993674
    Abstract: The present disclosure provides systems and methods for classifying signals of interest in a cardiac rhythm management (CRM) device. A CRM device includes an intrinsic activation sensing circuit configured to pass signals falling within a first passband, a crosstalk sensing circuit configured to pass signals falling within a second passband, wherein the second passband contains higher frequencies than the first passband, and a computing device communicatively coupled to the intrinsic activation sensing circuit and the crosstalk sensing circuit, the computing device configured to classify a signal of interest as one of an intrinsic activation signal and a crosstalk signal based on whether the signal of interest is passed by the intrinsic activation sensing circuit and the crosstalk sensing circuit.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: May 4, 2021
    Assignee: PACESETTER, INC.
    Inventors: Matthew G. Fishler, Gene A. Bornzin, Benjamin T. Persson, Kenneth J. Carroll
  • Patent number: 10980030
    Abstract: A polarization stream architecture is described. A transmitter may implement a reverse polarization stream to shape a first source signal in a first signal space to a first target signal in a second signal space. The reverse polarization stream is implemented as a cascade of reverse polarization steps. Each reverse polarization step includes a shuffle function, a split function, a scaling function and an offset function. Machine-learning techniques may be used to implement the scaling function and the offset function. A receiver may implement a polarization stream to recover the source signal.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: April 13, 2021
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Yiqun Ge, Wuxian Shi, Wen Tong
  • Patent number: 10960205
    Abstract: An electric treatment device includes an impedance detector to measure bioelectrical impedance at a site of a body of a user by using electrodes in contact with the site, a voltage controller to perform treatment of the site by controlling a voltage applied to the electrodes, and a timer to set a target time from when treatment of the site is started by the voltage controller to when the voltage value of the applied voltage reaches the target voltage value, based on the measured bioelectrical impedance. The greater the measured bioelectrical impedance is, the shorter the timer sets the target time. The voltage controller increases the voltage value of the applied voltage to the target voltage value based on the set target time.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: March 30, 2021
    Assignee: OMRON HEALTHCARE CO., LTD.
    Inventors: Mitsuru Samejima, Yui Watanabe, Makoto Tabata, Tetsuya Sato, Shozo Takamatsu
  • Patent number: 10905880
    Abstract: A training aid stimulator for providing fast perceptive feedback is disclosed. The training aid stimulator includes a first skin electrode and a second skin electrode both for making electrical contact to the body of a user, a charging module, a discharge module connected to one or more of the skin electrodes for a feedback discharging, and a processor for controlling the charging of a capacitor equivalent to a predetermined first voltage level, wherein the processor further being connected to the discharge module for controlling a feedback discharge of the capacitor equivalent. The stimulator comprises a voltage measurement module for measuring the level of charge of the capacitor equivalent, and the processor is configured for keeping the stimulator ready to discharge by repeatedly measuring the level of charge and by providing a maintenance charging when the voltage over said capacitance equivalent is at or below a predetermined second voltage level.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: February 2, 2021
    Inventors: Christian Bergh, Christian Wallenberg, Philip Dahl
  • Patent number: 10744057
    Abstract: An ambulatory medical device comprises: a sensing component to be disposed on a patient for detecting a physiological signal of the patient; and monitoring and self-test circuitry configured for defecting a triggering event and initiating one or more self-tests based on detection of the triggering event. The ambulatory medical device senses the physiological signal of the patient substantially continuously over an extended period of time.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: August 18, 2020
    Assignee: ZOLL MEDICAL CORPORATION
    Inventors: Gary A. Freeman, Shane S. Volpe, Timothy F. Stever, Thomas E. Kaib
  • Patent number: 10625088
    Abstract: A defibrillation device for administering an electrotherapy, such as a dual-sequential defibrillation (DSD) electrotherapy. The defibrillation device can include a defibrillation therapy module, a physiological parameter module and a control module. The defibrillation therapy module can output one or more energies and the physiological parameter module can receive one or more physiological parameters, including electrocardiogram (ECG) data. The control module can analyze the physiological parameters to determine an indication for the administration of an electrotherapy and can determine a DSD electrotherapy. The DSD electrotherapy can be based at least in part on the physiological parameters, the indication for the administration of an electrotherapy or a review of the ECG data.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: April 21, 2020
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: Fred W. Chapman, Robert G. Walker, Mitchell A. Smith, Blaine Krusor, William E. Crone, David J. Linville, Steven Heightman, Tyson G. Taylor
  • Patent number: 10625087
    Abstract: Techniques are disclosed for modulating the generation of charge current by operational circuitry included in an implantable medical device (IMD) for delivery of an induction stimulation pulse waveform by the IMD. The modulation may include modulating a charging circuit of the operational circuitry to facilitate the regulation of the induction stimulation pulse waveform. The techniques include monitoring an electrical parameter of a charging path during the delivery of the induction stimulation pulse and modulating the charging circuit based on the monitored electrical parameter.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: April 21, 2020
    Assignee: Medtronic, Inc.
    Inventors: Randolph E. Crutchfield, Lonny V. Cabelka
  • Patent number: 10537745
    Abstract: A defibrillator and method for using a defibrillator which adopts an ECG analysis algorithm that can detect a cardiac arrhythmia in the presence of noise artifact induced by cardio pulmonary resuscitation (CPR) compressions. The apparatus and method provides both of a continuous and scheduled mode of operation for interleaving periods of CPR with electrotherapy, in a manner that improves the effectiveness of the rescue, resulting in more CPR “hands-on” time, better treatment of refibriUation, and reduced transition times between CPR and electrotherapy.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: January 21, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Chenguang Liu, Stacy Earl Gehman, James Knox Russell, Christopher William Fleming, Dawn Blilie Jorgenson, David Roy Axness, Jeffrey Martin Boschee
  • Patent number: 10357169
    Abstract: Methods for automatically determining whether a patient monitor alarm will sound from a true or false signal, in particular from ventricular tachycardia (VT) and suppressing false alarms without eliminating any true alarms are presented. A multiresolution wavelet is extracted from a raw ECG waveform. Features are then extracted from the wavelets that account for summary statistics, noise, areas under the curve and summary statistics of the KL-divergence of the power spectra density between every two ECG leads. A classifier can be then be trained and its performance measured.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: July 23, 2019
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Xiao Hu, Rebeca Salas-Boni
  • Patent number: 10350425
    Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) is configured to induce a tachyarrhythmia by charging a high voltage capacitor to a voltage amplitude and delivering a series of pulses to a patient's heart by discharging the capacitor via an extra-cardiovascular electrode vector. Delivering the series of pulses includes recharging the high-voltage capacitor during an inter-pulse interval between consecutive pulses of the series of pulses.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: July 16, 2019
    Assignee: Medtronic, Inc.
    Inventors: Vladimir P. Nikolski, David A. Anderson, Mark T. Marshall, Robert T. Sawchuk, Amy E. Thompson-Nauman, John D. Wahlstrand, Gregory A. Younker
  • Patent number: 10245438
    Abstract: An automated external defibrillator includes a first pad at least partially colored in a first color, a second pad at least partially colored in a second color, and a main unit to which the first pad and the second pad are connected. The main unit has a first guidance surface that indicates how to attach of the first pad and the second pad. The first guidance surface has a first marker in the first color at a position corresponding to an attachment position of the first pad and a second marker in the second color at a position corresponding to an attachment position of the second pad.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: April 2, 2019
    Assignee: NIHON KOHDEN CORPORATION
    Inventor: Masashi Sato
  • Patent number: 10188867
    Abstract: A method and medical device for generating a template that includes sensing a cardiac signal from a plurality of electrodes, determining a plurality of beats in response to the sensed cardiac signal, determining whether to store a beat of the plurality of beats in a subgroup of a plurality of subgroups for storing beats, determining whether a number of beats stored in one of the plurality of subgroups exceeds a subgroup threshold, and generating a template in response to beats stored in the one of the plurality of subgroups that exceeds the subgroup threshold.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: January 29, 2019
    Assignee: Medtronic, Inc.
    Inventor: Xusheng Zhang
  • Patent number: 10182765
    Abstract: The present disclosure provides systems and methods for classifying signals of interest in a cardiac rhythm management (CRM) device. A CRM device includes an intrinsic activation sensing circuit configured to pass signals falling within a first passband, a crosstalk sensing circuit configured to pass signals falling within a second passband, wherein the second passband contains higher frequencies than the first passband, and a computing device communicatively coupled to the intrinsic activation sensing circuit and the crosstalk sensing circuit, the computing device configured to classify a signal of interest as one of an intrinsic activation signal and a crosstalk signal based on whether the signal of interest is passed by the intrinsic activation sensing circuit and the crosstalk sensing circuit.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: January 22, 2019
    Assignee: Pacesetter, Inc.
    Inventors: Matthew G. Fishler, Gene A. Bornzin, Benjamin T. Persson, Kenneth J. Carroll
  • Patent number: 10046168
    Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) is configured to induce a tachyarrhythmia by charging a high voltage capacitor to a voltage amplitude and delivering a series of pulses to a patient's heart by discharging the capacitor via an extra-cardiovascular electrode vector. Delivering the series of pulses includes recharging the high-voltage capacitor during an inter-pulse interval between consecutive pulses of the series of pulses.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: August 14, 2018
    Assignee: Medtronic, Inc.
    Inventors: Vladimir P. Nikolski, David A. Anderson, Mark T. Marshall, Robert T. Sawchuk, Amy E. Thompson-Nauman, John D. Wahlstrand, Gregory A. Younker
  • Patent number: 10022551
    Abstract: A wearable defibrillator system includes a support structure with one or more electrodes in an unbiased state. A monitoring device monitors, for the long term, a parameter of the person that is not the person's ECG; rather, the monitored parameter can be the person's motion, a physiological parameter, or both. When a value of the monitored parameter reaches a threshold, such as when the person is having an actionable episode, the electrode becomes mechanically biased against the person's body, for making good electrical contact. Then, if necessary, the person can be given electrical therapy, such as defibrillation. As such, the electrodes of the wearable defibrillator system can be worn loosely for the long term, without making good electrical contact. This can reduce the person's aversion to wearing the defibrillation system.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: July 17, 2018
    Assignee: WEST AFFUM HOLDINGS CORP.
    Inventors: Fred W. Chapman, Gregory T. Kavounas
  • Patent number: 9849290
    Abstract: According to various method embodiments, a person is indicated for a therapy to treat a cardiovascular disease, and the therapy is delivered to the person to treat the cardiovascular disease. Delivering the therapy includes delivering a vagal stimulation therapy (VST) to a vagus nerve of the person at a therapeutically-effective intensity for the cardiovascular disease that is below an upper boundary at which upper boundary the VST would lower an intrinsic heart rate during the VST.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: December 26, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Weiying Zhao, Quan Ni, Stephen B. Ruble, Jason J. Hamann
  • Patent number: 9808638
    Abstract: The device includes a cardiac therapy circuit with a first terminal, and a peripheral therapy circuit with a second terminal. These terminals can either receive a cardiac detection/stimulation lead or a peripheral detection/stimulation lead of an organ. The device is configured to recognize the leads and automatically configure the connection terminals according to the type of lead received by the terminal. This includes discrimination methods for identifying the terminal on which a cardiac signal is detected, and selectively activating the cardiac therapy circuit and the peripheral therapy circuit based on the detection of the cardiac signal on a lead.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: November 7, 2017
    Assignee: SORIN CRM SAS
    Inventors: Hervé Blumstein, Hervé Mével
  • Patent number: 9724528
    Abstract: An implantable medical device includes a low-power circuit, a high-power circuit, and a dual-cell power source. The power source is coupled to a dual-transformer such that each cell is connected to only one of the transformers. Each transformer includes multiple windings and each of the windings is coupled to a capacitor, and the capacitors are all connected in a series configuration. The low power circuit is coupled to the power source and issues a control signal to control the delivery of charge from the power source to the plurality of capacitors through the first and second transformers.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: August 8, 2017
    Assignee: Medtronic, Inc.
    Inventors: Mark R Boone, Randolph E Crutchfield, Lonny V Cabelka, Kevin P Kuehn, John T Meador
  • Patent number: 9603532
    Abstract: A diagnostic ECG system analyzes lead traces for evidence of ST elevation in the lead signals. The pattern of ST elevation in leads having predetermined vantage points to the electrical activity of the heart and, in some instances, the presence of ST depression in certain other leads, identifies a specific coronary artery or branch as the culprit coronary artery for an acute ischemic event. ECG measurements which are associated with the identity of specific arterial occlusion locations are calculated and used to form a classifier of the probability of occlusion at different locations. The location identified as having the highest probability is indicated to a user as the most likely occlusion location.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: March 28, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Richard Gregg, Sophia Huai Zhou, Cheng-Hao Chien
  • Patent number: 9596728
    Abstract: A method and system of driving an LED load. A driver is configured to deliver a level of current indicated by a control signal to the LED load when a PWM signal is ON and stop delivering the level of current when the PWM signal is OFF. An output capacitance element is coupled across a differential output of the LED driver. A feedback path, having a store circuit, is configured to store an information indicative of a first voltage level across the output capacitance element as a stored feedback reference signal just after the PWM signal is turned OFF. The feedback path causes the voltage across the output capacitance element to be at the first voltage level just before the PWM signal is turned ON.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: March 14, 2017
    Assignee: Linear Technology Corporation
    Inventors: Joshua William Caldwell, Dongwon Kwon, Lucas Andrew Milner
  • Patent number: 9522283
    Abstract: In a subcutaneous implantable cardioverter/defibrillator, cardiac arrhythmias are detected to determine necessary therapeutic action. Cardiac signal information is sensed from far field electrodes implanted in a patient. The sensed cardiac signal information is then amplified and filtered. Parameters such as rate, QRS pulse width, cardiac QRS slew rate, amplitude and stability measures of these parameters from the filtered cardiac signal information are measured, processed and integrated to determine if the cardioverter/defibrillator needs to initiate therapeutic action.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: December 20, 2016
    Assignee: CAMERON HEALTH INC.
    Inventors: Gust H. Bardy, William J. Rissmann, Alan H. Ostroff, Paul J. Erlinger, Venugopal Allavatam
  • Patent number: 9308379
    Abstract: A out-of-hospital cardiac treatment apparatus, comprising: a cardiac waveform monitor capable of sensing a physiological signal from a heart of a patient and wirelessly transmitting the sensed physiological signal to a remote medical provider, an electrical stimulator adapted to deliver a therapeutic dose of electrical energy to the heart of the patient, a medical provider transceiver adapted to receive the sensed physiological signal from the cardiac waveform monitor and also wirelessly transmit a command signal to control the electrical stimulator.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: April 12, 2016
    Inventors: N. Alejandro Barbagelata, James C. Mills
  • Patent number: 9283384
    Abstract: An electrical living body stimulation signal waveform generation device includes a waveform generation unit that generates a low-frequency pulse signal wave and a high-frequency signal wave individually, and a waveform synthesis circuit that superimposes the high-frequency signal wave on the low-frequency pulse signal wave during an ON period of the low-frequency pulse signal wave to form a synthesized wave having a waveform in which a level gradually rises from a point of time when the superimposition is started and the ON period and an OFF period are continuously repeated, wherein the synthesized wave is given as an electrical stimulus to a living body.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: March 15, 2016
    Assignee: EXCARE JAPAN CO., LTD.
    Inventors: Masaei Turumaki, Ryoji Kawahata
  • Patent number: 9144402
    Abstract: A technology to grasp a state of a human being more accurately is provided. The technology is provided with means for acquiring a time-series waveform of a frequency from a time-series waveform of a biological signal sampled from the upper body of a human being and for further acquiring a time-series waveform of frequency slope and a time-series waveform of frequency fluctuation and for applying frequency analysis to them. In the frequency analysis, a power spectrum of each frequency corresponding to a functional adjustment signal, a fatigue reception signal, and an activity adjustment signal, respectively, determined in advance is acquired. Then, a state of a human being is determined from a time-series change of each power spectrum.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: September 29, 2015
    Assignee: Delta Tooling Co., Ltd.
    Inventors: Etsunori Fujita, Yumi Ogura, Shinichiro Maeda, Naoki Ochiai, Shigeki Wagata
  • Patent number: 9089685
    Abstract: A transthoracic defibrillator for external defibrillation comprises at least three electrodes configured to be attached to the thorax of a patient to establish at least two electrical paths across the thoracic cavity and through the heart of the patient. In addition, a defibrillator circuit contained in a defibrillator housing has the capability to deliver a different defibrillation waveform across each of the at least two electrical paths.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: July 28, 2015
    Assignee: WEST AFFUM HOLDINGS CORP.
    Inventors: Joseph L. Sullivan, Isabelle Banville, Richard C. Nova
  • Patent number: 9056207
    Abstract: At least two energy storage devices are used to realize biphasic defibrillation therapy. One of the energy storage devices is the primary energy storage device and the other (e.g. second) energy storage device is the auxiliary energy storage device. The first energy storage device is used to implement both the first and second phase pulses of biphasic pulse therapy to the patient, and the second energy storage device can be used to assist in the first and/or second phase pulse. In other words, the second energy storage device may be combined with the first energy storage device to discharge electricity to the patient to realize the first and/or second phase pulse.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: June 16, 2015
    Assignee: SHENZHEN MINDRAY BIO-MEDICAL ELECTRONICS CO., LTD
    Inventors: Ancen Shao, Saixin Zhou, Min An
  • Patent number: 9050043
    Abstract: Methods and systems are disclosed for producing a plurality of archetype signals in wavelet space at a plurality of wavelet scales. A signal is transformed using a continuous wavelet transform based at least in part on a wavelet function. A scale dependent archetype transformed signal is computed based at least in part on the transformed signal and based at least in part on a natural periodicity of the wavelet function used to transform the signal. Information may be derived about the signal from the archetype transform signal, and stored in memory.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: June 9, 2015
    Assignee: Nellcor Puritan Bennett Ireland
    Inventors: Paul Addison, James Ochs, James Watson
  • Publication number: 20150148858
    Abstract: An electrode assembly includes a first surface to be placed adjacent a person's skin and a second surface including a plurality of reservoirs of conductive gel. The plurality of reservoirs of conductive gel are disposed on sections of the electrode assembly that are at least partially physically separated and may move at least partially independently of one another to conform to contours of a body of a patient. The electrode assembly is configured to dispense an amount of the electrically conductive gel onto the first surface in response to an activation signal and to provide for a defibrillating shock to be applied to the patient through the amount of the electrically conductive gel.
    Type: Application
    Filed: February 3, 2015
    Publication date: May 28, 2015
    Inventor: Thomas E. Kaib
  • Publication number: 20150148854
    Abstract: A non-invasive bodily-attached ambulatory medical monitoring and treatment device with pacing is provided. The noninvasive ambulatory pacing device includes a battery, at least one therapy electrode coupled to the battery, a memory storing information indicative of a patient's cardiac activity, and at least one processor coupled to the memory and the at least one therapy electrode. The at least one processor is configured to identify a cardiac arrhythmia within the information and execute at least one pacing routine to treat the identified cardiac arrhythmia.
    Type: Application
    Filed: January 30, 2015
    Publication date: May 28, 2015
    Inventors: Jason T. Whiting, Thomas E. Kaib, Rachel H. Carlson, Gregory R. Frank