Bypass, E.g., Compressor Unloading Patents (Class 62/196.1)
  • Patent number: 8904813
    Abstract: A pulse width modulation control is provided for a suction valve on a suction line, delivering refrigerant into a housing shell of a compressor. When the suction valve is closed, the pressure within the housing shell can become very low. Thus, a pressure regulator valve is included within the refrigerant system to selectively deliver a limited amount of refrigerant into the housing shell when the suction valve is closed. The delivery of this limited amount of refrigerant ensures that a specified pressure is maintained within the housing shell to achieve the most efficient operation while at the same time preventing problems associated with damage to electrical terminals, motor overheating and excessive discharge temperature.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: December 9, 2014
    Assignee: Carrier Corporation
    Inventors: Alexander Lifson, Michael F. Taras
  • Patent number: 8899058
    Abstract: Heating equipment, including a first heat exchanger, a compressor, a second heat exchanger, and a first expansion valve that decompresses a refrigerant flowing from the second heat exchanger to the first heat exchanger, are connected so as to circulate the refrigerant. A third heat exchanger provides heat of the refrigerant flowing from the second heat exchanger to the first heat exchanger to the refrigerant flowing from the first heat exchanger toward the compressor. An injection circuit merges part of the refrigerant flowing from the second heat exchanger to the first heat exchanger with the refrigerant that is sucked by the compressor. An injection expansion valve is installed in the injection circuit and decompresses the refrigerant flowing in the injection circuit. A fourth heat exchanger is installed in the injection circuit to supply heat of the refrigerant flowing from the second heat exchanger toward the first heat exchanger to the refrigerant flowing in the injection circuit.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: December 2, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Fumitake Unezaki, Makoto Saitou, Tetsuji Saikusa, Masanori Aoki, Masato Yosomiya
  • Publication number: 20140318163
    Abstract: An air-conditioning apparatus is capable of completing heat medium freeze prevention control more quickly by performing heat medium temperature rise control for raising the temperature of a cooled heat medium and includes a controller that adjusts a current opening degree of a bypass device at a bypass pipe to an opening degree, and that makes an adjustment such that the flow passage resistance in the case of the opening degree becomes equal to the flow passage resistance in the case of an opening degree before an expansion device is adjusted to a minimum opening degree.
    Type: Application
    Filed: November 18, 2011
    Publication date: October 30, 2014
    Applicant: Mitsubishi Electric Corporation
    Inventors: Keisuke Takayama, Koji Azuma, Yuji Motomura, Takeshi Hatomura
  • Patent number: 8869554
    Abstract: Gas treatment equipment includes a compressor which compresses process gas, a first process module which is disposed downstream of the compressor and which treats the process gas, an expander which is disposed downstream of the first process module and which expands the process gas to obtain power, a second process module which is disposed downstream of the expander and which treats the process gas, and a driver which drives the compressor. A first pressure indicator is disposed at an inlet of the compressor for the process gas and measures a pressure of the process gas, and a second pressure indicator is disposed at an outlet of the second process module for the process gas and measures a pressure of the process gas. A recirculation flow path is connected to both of the outlet of the second process module for the process gas and the inlet of the compressor.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: October 28, 2014
    Assignee: Mitsubishi Heavy Industries Compressor Corporation
    Inventors: Kazuhiro Takeda, Yosuke Nakagawa, Tomoaki Takeda, Yasushi Mori
  • Patent number: 8863545
    Abstract: A refrigeration apparatus includes a multi-stage compression mechanism, heat source-side and usage side heat exchangers each operable as a radiator/evaporator, a switching mechanism switchable between cooling and heating operation states, a second-stage injection tube, an intermediate heat exchanger and an intermediate heat exchanger bypass tube. The intermediate heat exchanger bypass tube ensures that refrigerant discharged from the first-stage compression element and drawn into the second-stage compression element is not cooled by the intermediate heat exchanger during a heating operation. Injection rate optimization controls a flow rate of refrigerant returned to the second-stage compression element through the second-stage injection tube so that an injection ratio is greater during the heating operation than during a cooling operation.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: October 21, 2014
    Assignee: Daikin Industries, Ltd.
    Inventors: Shuji Fujimoto, Atsushi Yoshimi
  • Publication number: 20140260386
    Abstract: An air conditioning system includes: first and second utilization side heat exchangers and a heat source side heat exchanger respectively connected in series; a compressor connected between the first utilization side heat exchanger and the heat source side heat exchanger; an expansion valve connected between the first utilization side heat exchanger and the second utilization side heat exchanger; a pressure control device connected between the second utilization side heat exchanger and the heat source side heat exchanger; and a bypass valve connected between the expansion valve and the heat source side heat exchanger. The bypass valve provides a variable amount of liquid refrigerant flowing from the expansion valve to the heat source side heat exchanger. The pressure control device and the bypass valve cooperate with each other to keep a temperature of the compressor below a maximum allowable temperature predetermined for the compressor.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicants: MITSUBISHI ELECTRIC US, INC., MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kensaku HATANAKA, Kazuyoshi SHINOZAKI, Joseph Paul BUSH, Peter Christian FLYNN
  • Patent number: 8826691
    Abstract: An air conditioner includes at least one compressor, an outlet pipe, an inlet pipe, and at least one bypass pipe. Oil and/or refrigerant discharged from the at least one compressor flows through the outlet pipe. The inlet pipe receives the oil and/or refrigerant flown through the outlet pipe and allows the oil and/or refrigerant to flow to the at least one compressor. The at least one bypass pipe is connected to the at least one compressor and allow bypass flows of the oil and/or refrigerant from the at least one compressor to the outlet pipe.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: September 9, 2014
    Assignee: LG Electronics Inc.
    Inventors: Pil Hyun Yoon, Sai Kee Oh
  • Patent number: 8820106
    Abstract: A heat source-side refrigerant circuit A including a compressor 11, an outdoor heat exchanger 13, a first refrigerant branch portion 21 connected to the compressor 11, a second refrigerant branch portion 22 and a third refrigerant branch portion 23 connected to the outdoor heat exchanger 13, a first refrigerant flow rate control device 24 provided between branch piping 40 and the second refrigerant branch portion 22, intermediate heat exchangers 25n connected at one side thereof to the first refrigerant branch portion 21 and the third refrigerant branch portion 23 via three-way valves 26n and connected at the other side thereof to the second refrigerant branch portion 22, and second refrigerant flow rate control devices 27n provided between the respective intermediate heat exchangers 25n and the second refrigerant branch portion 22, and user-side refrigerant circuits Bn having indoor heat exchangers 31n connected respectively to the intermediate heat exchangers 25n are provided, and at least one of water and
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: September 2, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shinichi Wakamoto, Koji Yamashita, Takashi Okazaki, Naoki Tanaka, Keisuke Hokazono, Hiroyuki Morimoto, Yuji Motomura, Takeshi Hatomura, Tomohiko Kasai, Naofumi Takenaka, Yusuke Shimazu
  • Patent number: 8789381
    Abstract: The refrigeration unit of an electrically powered trailer refrigeration system includes an economized scroll compressor and an economizer circuit selectively operable to inject refrigeration vapor into an intermediate stage of the scroll compressor. An engine driven generator produces AC current to power the scroll compressor and other electric components of the system. During operation of the refrigeration system at high capacity demand, a controller will operate the refrigeration system in an economized mode if sufficient electric power is available from the generator and in the non-economized mode if insufficient power is available to sustain operation of the refrigeration system in the economized mode.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: July 29, 2014
    Assignee: Carrier Corporation
    Inventors: Nader S. Awwad, Michael Stockbridge
  • Patent number: 8783050
    Abstract: A time for loading a refrigerant is shortened when a utilization unit of an air conditioner is installed. A heat source unit 1 includes a compressor 100; a heat-source-side heat exchanger 200; a refrigerant regulator 61 storing a refrigerant; an introducing pipe 62 which is a pipe that is branched off from a discharge-side pipe 110 of the compressor 100 and connected to the refrigerant regulator 61, and introduces the refrigerant discharged from the compressor 100 into the refrigerant regulator 61; and a lead-out pipe 63 which is a pipe that is connected from the refrigerant regulator 61 to an intake-side pipe 120 of the compressor 100, and leads out the refrigerant stored in the refrigerant regulator 61 into the intake-side pipe 120.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: July 22, 2014
    Assignee: Daikin Industries, Ltd.
    Inventors: Atsushi Okamoto, Shinya Matsuoka, Takuya Kotani
  • Patent number: 8707720
    Abstract: The present invention relates to a hybrid vapor compression—absorption cooling or heating system and apparatus containing a refrigerant pair comprising at least one refrigerant and at least one ionic liquid. The present invention also provides for the performance of a hybrid vapor compression—absorption cycle that utilizes refrigerants and absorbents such as fluorocarbon gases in fluorinated ionic liquids. The present invention also provides a method of cooling by the execution of a hybrid vapor compression—absorption cycle using a refrigerant pair comprising at least one refrigerant and at least one ionic liquid. The present invention also provides a method of heating by the execution of a hybrid vapor compression—absorption cycle using a refrigerant pair comprising at least one refrigerant and at least one ionic liquid.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: April 29, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Mark Brandon Shiflett, Akimichi Yokozeki
  • Publication number: 20140109605
    Abstract: In various implementations, air conditioners may include a high pressure portion and a low pressure portion. A bypass line may divert a portion of the refrigerant from the high pressure portion to the low pressure portion to reduce the pressure of at least a part of the high pressure portion. The bypass line may be opened automatically.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 24, 2014
    Inventors: Yi Qu, Der-Kai Hung
  • Publication number: 20140090409
    Abstract: An air-conditioning apparatus includes a controller which calculates a composition ratio of a refrigerant mixture using a high-pressure-side pressure of a refrigerant discharged from a compressor, a low-pressure-side pressure of a refrigerant to be sucked into the compressor, a high-pressure-side temperature of a refrigerant at an inlet side of a second expansion device in a high/low pressure bypass pipe, and a low-pressure-side temperature of a refrigerant at an outlet side of the second expansion device in the high/low pressure bypass pipe and which determines whether to open or close a bypass-channel opening/closing device.
    Type: Application
    Filed: June 14, 2011
    Publication date: April 3, 2014
    Applicant: Mitsubishi Electric Corporation
    Inventors: Koji Yamashita, Toshihide Koda, Hiroyuki Morimoto
  • Patent number: 8677772
    Abstract: An air conditioning system for a vehicle includes a cabin air conditioning unit, a heat management unit, a temperature detecting unit, a switching unit, and a control unit. The control unit is operable to control operations of the cabin air conditioning unit, the switching unit, and the heat management unit according to temperature detection results from the temperature detecting unit, thereby regulating temperature of at least one of a passenger cabin and a heat generating component, which generates waste heat during operation thereof, of the vehicle.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: March 25, 2014
    Assignee: Automotive Research & Testing Center
    Inventors: Chun-Yu Shih, Po-Hsu Lin
  • Patent number: 8671703
    Abstract: A refrigerant vapor compression system includes a flash tank disposed in series refrigerant flow relationship in the refrigerant circuit intermediate a refrigerant heat rejection heat exchanger and a refrigerant heat absorption heat exchanger. A primary expansion valve is interdisposed in the refrigerant circuit upstream of the refrigerant heat absorption heat exchanger and a secondary expansion valve is interdisposed in the refrigerant circuit upstream of the flash tank. A refrigerant vapor line is provided to direct refrigerant vapor from the flash tank to an intermediate pressure stage of the compression process. A refrigerant-to-refrigerant heat exchanger operates to transfer heat from refrigerant flowing through the primary refrigerant circuit to refrigerant flowing through the refrigerant vapor line.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: March 18, 2014
    Assignee: Carrier Corporation
    Inventors: Biswajit Mitra, Yu H. Chen
  • Publication number: 20140053587
    Abstract: A refrigeration cycle apparatus includes a controller configured to control opening and closing of a solenoid valve and that of a solenoid valve depending on any of a time when a compressor is activated, a time when the compressor is in normal operation, a time when a temperature of a motor of the compressor rises in the normal operation, and a time when the compressor stopped due to low-pressure cutoff is activated.
    Type: Application
    Filed: April 4, 2012
    Publication date: February 27, 2014
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Yusuke Arii
  • Patent number: 8635879
    Abstract: A heat pump and a method of controlling a heat pump are provided. The heat pump may perform gas injection through a plurality of coolant injection circuits formed in a compressor, such as a scroll compressor, to increase a corresponding flow rate. The heat pump may control the plurality of coolant injection circuits based on one or more operation conditions by selecting an appropriate optimal middle pressure from a high-and-low pressure difference, a pressure ratio, and a compression ratio of the compressor to enhance cooling/heating performance.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: January 28, 2014
    Assignee: LG Electronics Inc.
    Inventors: Byoungjin Ryu, Yonghee Jang
  • Patent number: 8567207
    Abstract: A system for controlling a centrifugal gas compressor (108) in an HVAC, refrigeration or liquid chiller system (100) in which flow of gas through the compressor is automatically controlled to maintain desired parameters within predetermined ranges so as to prevent stall and surge conditions within the system. A variable geometry diffuser (119) in the compressor controls the refrigerant gas flow at the discharge of the compressor impeller wheel (201). This arrangement reduces mass flow, decrease/eliminate flow-reducing stall, and increases the operating efficiency of the compressor at partial load conditions. The variable geometry diffuser control in combination with a variable speed drive (VSD) (120) increases the efficiency of the compressor at partial system loads, and eliminates the need for pre-rotation vanes at the inlet of the centrifugal compressor.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: October 29, 2013
    Assignee: Johnson Controls & Technology Company
    Inventors: Steven Trent Sommer, John Trevino, Jr., Florin Iancu, Rudy Chervil, Eric John Smyder
  • Patent number: 8539791
    Abstract: A manufacturing method of a transition critical refrigerating cycle device in which a gas cooler and a sub-cooler are integrated to constitute one heat exchanger so as to most efficiently cool a refrigerant in the device. The transition critical refrigerating cycle device is constituted by successively connecting a compressor, the gas cooler, a capillary tube and an evaporator, and having a supercritical pressure on a high-pressure side of the device. The sub-cooler cools an intermediate-pressure refrigerant of the device. A ratio of the number of refrigerant pipes of the sub-cooler to the number of refrigerant pipes of the whole heat exchanger is set to 20% or more and 30% or less. The refrigerant pipes of the sub-cooler have a uniform heat transfer area per unit length of each refrigerant pipe.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: September 24, 2013
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Satoshi Hariu, Jun Sato, Hiroshi Tamayama
  • Patent number: 8540498
    Abstract: A control method and apparatus for critical rotational speed avoidance in a compressor-expander set in a gas refrigeration system. By varying an opening of an antisurge or recycle valve, a shaft power used by the compressor in the compressor-expander set may be varied, thereby varying the rotational speed of the compressor-expander set to move it away from its critical speed zone. Additionally, a feedforward signal may be provided by a compressor-expander set control system to cause an antisurge valve for a recycle compressor to open upon a trip or shutdown of one compressor-expander set.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: September 24, 2013
    Assignee: Compressor Controls Corp.
    Inventors: Saul Mirsky, Wayne Jacobson, David J. Hoogerwerf
  • Publication number: 20130233008
    Abstract: An air-conditioning apparatus includes a refrigerant circuit including a low-pressure shell structure compressor into which a refrigerant flowing through an injection pipe flows, a first heat exchanger, a second heat exchanger, a first expansion device, a refrigerant flow switching device, and a second expansion device configured to allow the refrigerant which has passed through the first expansion device and flows from the second heat exchanger to the first heat exchanger to have an intermediate pressure, the compressor, the first heat exchanger, the second heat exchanger, the first expansion device, the refrigerant flow switching device, and the second expansion device being connected by pipes to constitute the refrigerant circuit, and further includes a controller that controls an amount of refrigerant flowing through the injection pipe into a compression chamber. A part of a high-pressure refrigerant flowing from the first heat exchanger to the second heat exchanger flows through the injection pipe.
    Type: Application
    Filed: January 31, 2011
    Publication date: September 12, 2013
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Koji Yamashita, Hiroyuki Morimoto, Katsuhiro Ishimura, Shinichi Wakamoto, Naofumi Takenaka
  • Patent number: 8532832
    Abstract: In a temperature control system using a controlled mix of high temperature pressurized gas and a cooled vapor/liquid flow of the same medium to cool a thermal load to a target temperature in a high energy environment, particular advantages are obtained in precision and efficiency by passing at least a substantial percentage of the cooled vapor/liquid flow through the thermal load directly, and thereafter mixing the output with a portion of the pressurized gas flow. This “post load mixing” approach increases the thermal transfer coefficient, improves control and facilities target temperature change. Ad added mixing between the cooled expanded flow and a lesser flow of pressurized gas also is used prior to the input to the thermal load. A further feature, termed a remote “Line Box”, enables transport of the separate flows of the two phase medium through a substantial spacing from pressurizing and condensing units without undesired liquefaction in the transport lines.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: September 10, 2013
    Assignee: BE Aerospace, Inc.
    Inventors: Kenneth W. Cowans, William W. Cowans, Glenn Zubillaga
  • Patent number: 8506839
    Abstract: This invention relates to a composition comprising water and at least one ionic liquid, and also to devices capable of executing an absorption cycle using such compositions as a refrigerant pair. This invention also provides a method of cooling using an absorption cycle comprising water as the refrigerant and at least one ionic liquid as the absorbent. The present invention also provides a method of heating using an absorption cycle comprising water as the refrigerant and at least one ionic liquid.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: August 13, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Mark Brandon Shiflett, Akimichi Yokozeki
  • Publication number: 20130199222
    Abstract: An efficient indirect building cooling system that bypasses a conventional chiller mechanism by connecting the indoor and outdoor intermediate fluid systems when conditions permit. This system includes indoor and outdoor fluid cooling circuits, each of which interfaces with the conventional chiller mechanism. The two fluid cooling circuits are connected together when weather conditions make doing so more efficient.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 8, 2013
    Applicant: SYSTECON, INC.
    Inventor: Terrence J. Moses
  • Publication number: 20130152614
    Abstract: A thermal management module for the distribution as required of coolant flows in an electric vehicle, including a valve arrangement (4) having several valves (1, 2, 3). A first valve (1) for connecting a first cooling circuit (5) and a second valve (2) for connecting a second cooling circuit (6) as well as a third valve (3) for connecting a bypass circuit are provided, wherein the bypass circuit (7) allows bypassing a cooler (8) arranged in the first cooling circuit (5). The invention further relates to a cooling system for an electric vehicle having such a thermal management module.
    Type: Application
    Filed: May 31, 2011
    Publication date: June 20, 2013
    Applicant: SCHAEFFLER TECHNOLOGIES AG & CO. KG
    Inventors: Thomas Traudt, Michael Bogner
  • Patent number: 8459051
    Abstract: An air conditioner includes a compressor, a first heat exchanger, and a first pipe configured to allow refrigerant to flow from the first heat exchanger. A bypass pipe is branched off from the first pipe and is configured to expand refrigerant flowing through the bypass pipe. A second heat exchanger is configured to allow the expanded refrigerant of the bypass pipe to heat-exchange with the refrigerant flowing along the first pipe. A second pipe couples the second heat exchanger to the compressor so that the refrigerant expanded by the bypass pipe and heat-exchanged at the second heat exchanger can be introduced into the compressor.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: June 11, 2013
    Assignee: LG Electronics Inc.
    Inventors: Ho Jong Jeong, Chi Woo Song, Baik Young Chung, Sai Kee Oh
  • Patent number: 8448460
    Abstract: A chiller bypass system is provided for deployment onboard a vehicle that includes a battery pack through which a first coolant is circulated. In one embodiment, the chiller bypass system comprises a chiller, a chiller bypass duct fluidly coupled to the battery pack and configured to supply the first coolant thereto, and a chiller bypass valve. The chiller bypass valve includes: (i) a valve inlet fluidly coupled to the battery pack and configured to receive the first coolant therefrom, (ii) a first valve outlet fluidly coupled to the chiller and configured to supply the first coolant thereto, and (iii) a second valve outlet fluidly coupled to the chiller bypass duct and configured to supply the first coolant thereto. The chiller bypass valve selectively directs coolant flow between the first valve outlet and the second valve outlet to adjust the volume of the first coolant cooled by the chiller.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: May 28, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael J. Dogariu, Christopher C. Nyeholt
  • Patent number: 8424326
    Abstract: A refrigerant vapor compression system includes a flash tank economizer defining a separation chamber is disposed in the refrigerant circuit intermediate a refrigerant heat rejection heat exchanger and a refrigerant heat absorption heat exchanger. A primary expansion valve is interdisposed in the refrigerant circuit in operative association with and upstream of the refrigerant heat absorption heat exchanger and a secondary expansion valve is interdisposed in the refrigerant circuit in operative association and upstream of the flash tank economizer. A refrigerant vapor injection line establishes refrigerant flow communication between an upper portion of the separation chamber and an intermediate pressure stage of the system's compression device and a suction pressure portion of the refrigerant circuit.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: April 23, 2013
    Assignee: Carrier Corporation
    Inventors: Biswajit Mitra, Yu H. Chen, Jason Scarcella, Suresh Duraisamy, Lucy Yi Liu
  • Patent number: 8418486
    Abstract: Refrigerant systems are provided with selectively operable components that allow variation in the capacity provided by the refrigerant system to achieve desired temperature and humidity levels. A reheat circuit is provided and an economizer circuit may also be added to the system. Typically, the reheat and economizer functions each provide a step change in the humidity control. A compressor having a variable speed drive is utilized. By providing the reheat/economizer functions along with the variable speed compressor, continuously adjustable humidity control is achieved.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: April 16, 2013
    Assignee: Carrier Corporation
    Inventors: Michael F. Taras, Alexander Lifson
  • Patent number: 8413455
    Abstract: An air conditioning system is provided. The air conditioning system allows coolant to selectively flow through a series of bypass pipes and valves connecting an outlet of a compressor and an outlet of an expansion member. The series of bypass pipes and valves allow a defrosting function to be performed without performing a reverse cycle.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: April 9, 2013
    Assignee: LG Electronics Inc.
    Inventors: Jae Hoon Sim, Deok Huh, Seung Hee Ryu, Seong Won Bae
  • Patent number: 8413456
    Abstract: There is provided a refrigeration apparatus in which a refrigerant accumulating in non-operating outdoor units is supplied to an outdoor unit being operated in which a shortage of refrigerant occurs without starting the compressors of the non-operating outdoor units.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: April 9, 2013
    Assignee: Fujitsu General Limited
    Inventors: Satoshi Tomioka, Hideya Tamura, Tetsuya Ito, Takahiro Matsunaga, Takamitsu Kurokawa, Shintaro Sanada
  • Publication number: 20130042640
    Abstract: An internal heat exchanger and a first flow control valve are connected in series between a condenser and a refrigerant inlet of an ejector. A gas refrigerant outlet of a gas-liquid separator is connected to a suction port of a compressor. A first bypass circuit connects a refrigerant outlet of the condenser to an intermediate pressure portion of the compressor via a second flow control valve and the internal heat exchanger. A second bypass circuit connects a refrigerant outlet of the internal heat exchanger to the liquid refrigerant outlet of the gas-liquid separator via a third flow control valve. While the second flow control valve is opened such that the refrigerant flows through the first bypass circuit, the fourth flow control valve is switched to be opened or closed, and the third flow control valve is switched to be closed or opened.
    Type: Application
    Filed: January 26, 2011
    Publication date: February 21, 2013
    Applicant: Mitsubishi Electric Corporation
    Inventors: Shinya Higashiiue, Takashi Okazaki, So Nomoto, Hirokazu Minamisako
  • Publication number: 20130036757
    Abstract: A refrigeration cycle apparatus 100 is provided with a refrigerant circuit 106, an injection flow passage 111, and a high-pressure supply passage 130. The refrigerant circuit 106 includes a low-pressure stage compressor 105, a high-pressure stage compressor 101, a heat radiator 102, an expander 103, a gas-liquid separator 108, and an evaporator 104. The expander 103 and the low-pressure stage compressor 105 are coupled by a power-recovery shaft 107. The refrigeration cycle apparatus 100 is further provided with a flow passage-switching mechanism that selectively connects one of the evaporator 104 and the high-pressure supply passage 130 to the low-pressure stage compressor 105. The flow passage-switching mechanism, for example, is constituted by an on-off valve 131 and a check valve 132.
    Type: Application
    Filed: April 21, 2011
    Publication date: February 14, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Atsuo Okaichi, Takeshi Ogata, Masanobu Wada
  • Publication number: 20130025306
    Abstract: An object is to provide a turbo-refrigeration-unit control device capable of achieving stable operation and reducing the amount of refrigerant. Provided is a control device for controlling a turbo refrigeration unit that includes a centrifugal compressor, a first-non-refrigerant pump for supplying a first non-refrigerant, a condenser that performs heat exchange between the first non-refrigerant and a refrigerant, an expansion valve that expands the refrigerant, a second-non-refrigerant pump for supplying a second non-refrigerant, an evaporator that performs heat exchange between the second non-refrigerant and the refrigerant, a bypass circuit that is used to inject part of the refrigerant from a discharge port of the centrifugal compressor into a suction port of the centrifugal compressor, and a bypass-circuit control valve that controls the flow rate of the refrigerant.
    Type: Application
    Filed: September 16, 2011
    Publication date: January 31, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Noriyuki Matsukura, Kenji Ueda, Seiichi Okuda, Tatsuru Nagai
  • Publication number: 20130019624
    Abstract: Provided is an air-conditioning and hot water supply combination system capable of maintaining a high hot water supply capacity and achieving high efficiency even under high-temperature outside air conditions by appropriately controlling the degree of superheat and the degree of subcooling of a heat exchanger. In an air-conditioning and hot water supply combination system, when an evaporating pressure or an evaporating temperature calculated from the evaporating pressure reaches a first predetermined value or higher, the degree of superheat of a refrigerant on a low-pressure gas side of a subcooling heat exchanger or the degree of subcooling of the refrigerant on a high-pressure liquid side of the subcooling heat exchanger is controlled by the opening degree of a low-pressure bypass pressure reducing mechanism, such that the evaporating pressure or the evaporating temperature calculated from the evaporating pressure is less than or equal to the first predetermined value.
    Type: Application
    Filed: April 5, 2010
    Publication date: January 24, 2013
    Inventors: Shogo Tamaki, Kosuke Tanaka, Fumitake Unezaki, Hirokuni Shiba, Yuto Shibao
  • Patent number: 8322155
    Abstract: A method of calculating net sensible cooling capacity of a cooling unit includes measuring a discharge pressure from of fluid from a compressor and a suction pressure from an evaporator, calculating a condensing temperature of fluid flowing from the compressor and an evaporating temperature of fluid flowing from the evaporator, calculating a mass flow rate of fluid flowing from the compressor, calculating enthalpy of fluid flowing from the compressor, of fluid flowing from the thermal expansion valve, and of fluid flowing from the evaporator, calculating a mass flow rate of fluid flowing through the hot gas bypass valve, and calculating net sensible cooling capacity. Embodiments of cooling units and other methods are further disclosed.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: December 4, 2012
    Assignee: American Power Conversion Corporation
    Inventors: Ozan Tutunoglu, John H. Bean, Jr.
  • Patent number: 8302413
    Abstract: Out of switching mechanisms (30A, 30B), the switching mechanism (30A) connected to an indoor heat exchanger (41) performing a heating operation is configured so that the opening of a supercooling control valve (53) is adjusted according to the air conditioning load of another indoor heat exchanger (41) performing a cooling operation downstream of a liquid connection pipe (13) connected to the former indoor heat exchanger (41).
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: November 6, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Satoshi Kawano, Shinya Matsuoka
  • Patent number: 8302417
    Abstract: A system and method of operating a vehicle air conditioning system having an engine driven, fixed capacity refrigerant compressor and a compressor clutch is disclosed. The method may comprises setting a preliminary evaporator air temperature target; charging a cold storage apparatus in the vehicle air conditioning system; determining if the cold storage apparatus has reached a predetermined threshold; if the cold storage apparatus has reached a predetermined threshold, determining a new evaporator air temperature target by: determining a maximum allowable dewpoint evaporator air temperature for maintaining a passenger compartment humidity below a predetermined value; determining a maximum allowable mode evaporator air temperature based on a mode to which the vehicle air conditioning system is set; and setting the evaporator air temperature target to the lower of the dewpoint evaporator air temperature and the mode evaporator air temperature.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: November 6, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Gregory A. Major, John I. Frey, Kenneth L. Porrett
  • Publication number: 20120260687
    Abstract: A centrifuge including: a rotor configured to be driven by a motor and to hold a sample, a centrifuge inverter, a chamber accommodating the rotor, a temperature sensor configured to detect the temperature of the chamber, a cooling machine configured to cool the chamber and including a compressor, a compressor inverter, a compressor motor configured to be controlled in a variable speed and a control device, wherein the control device carries out a feedback control of the compressor motor based on a preset temperature and a detected temperature of the temperature sensor when the rotation number of the compressor motor is larger than a predetermined rotation number, and the control device carries out an intermittent control for turning ON-OFF the cooling function of the compressor when the rotation number of the compressor motor is smaller than a predetermined rotation number.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 18, 2012
    Applicant: HITACHI KOKI CO., LTD.
    Inventors: Masahiro INANIWA, Hiroyuki TAKAHASHI, Kouichi AKATSU, Hisanobu OOYAMA, Yuki HODOTSUKA, Hidetaka OSAWA
  • Patent number: 8276395
    Abstract: The present invention relates to a way of reducing the amount of energy required to partially compress a refrigerant in a compressor operating in a rapidly cycled unloaded mode. A valve on a suction line is closed when the compressor moves to the unloaded condition. In this manner, the amount of energy required to partially compress the refrigerant in the compressor, at the unloaded condition, is dramatically reduced.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: October 2, 2012
    Assignee: Carrier Corporation
    Inventors: Alexander Lifson, Michael F. Taras
  • Publication number: 20120227429
    Abstract: A cooling system having a pumped loop cooling system and an embedded vapor compression loop system for cooling air inside an enclosed space such as a container both when the required air temperature inside container is warmer or cooler than the outside ambient air temperature. The pumped loop cooling system is positioned within the container except for a condenser positioned outside the container. The vapor compression loop system is positioned outside the container and includes a liquid to liquid heat exchanger which cools the fluid in the pumped loop system when the condenser is selectively bypassed when the temperature inside the container is higher than the temperature outside the container.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 13, 2012
    Inventors: TIMOTHY LOUVAR, MICHAEL TRUMBOWER
  • Patent number: 8220280
    Abstract: In a refrigerant amount determining method of an air-conditioning apparatus, when a refrigerant amount determining mode is requested to be performed, whether or not the amount of refrigerant in the air-conditioning apparatus can be automatically determined. Thus, a user can easily check whether or not the refrigerant charged in the air-conditioning apparatus is excessive or insufficient.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: July 17, 2012
    Assignee: LG Electronics Inc.
    Inventors: Seung Yong Chang, Chi Woo Song, Sung Hwan Kim, Chang Min Choi
  • Publication number: 20120174610
    Abstract: A refrigeration cycle apparatus includes a refrigeration cycle formed by a first compressor, a radiator, an expander that expands a refrigerant that has passed through the radiator, and an evaporator. A bypass piping has one end connected to a discharge piping of the expander and the other end connected to a suction piping of the first compressor. A pressure sensor and a temperature sensor detect the suction pressure and suction temperature of the expander as physical quantities of the refrigerant to be sucked into the expander. A bypass valve controls the flow rate of the refrigerant. A control device determines the appropriate discharge pressure of the expander on the basis of the suction pressure and suction temperature of the expander, and opens the bypass valve when the pressure at which the expander discharges the refrigerant is higher than the determined appropriate discharge pressure.
    Type: Application
    Filed: September 24, 2009
    Publication date: July 12, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Keisuke Takayama, Yusuke Shimazu, Masayuki Kakuda, Hideaki Nagata, Takeshi Hatomura
  • Patent number: 8186180
    Abstract: An ejector-type refrigerant cycle device includes: a first evaporator 15 that evaporates refrigerant flowing out of an ejector 14; a branch passage 17 that branches a flow of refrigerant between a radiator 13 and the ejector 14 and guides this flow of refrigerant to a vapor-phase refrigerant suction port 14c of the ejector 14; a throttling mechanism 18 disposed in the branch passage 17; and a second evaporator 19 disposed downstream of the throttling mechanism 18 with respect to the flow of refrigerant. The throttling mechanism 18 is constructed to be provided with a fully opening function, and to fully open the branch passage 17 when the second evaporator 19 is defrosted. Therefore, in an ejector-type refrigerant cycle device including multiple evaporators, the function of defrosting the evaporators can be carried out with a simple construction.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: May 29, 2012
    Assignee: Denso Corporation
    Inventors: Hiroshi Oshitani, Hirotsugu Takeuchi, Etsuhisa Yamada, Haruyuki Nishijima
  • Patent number: 8190328
    Abstract: An electropneumatic control arrangement for an automatic vehicle level control system, particularly of a commercial vehicle, includes at least; a solenoid valve unit having at least two electropneumatic solenoid valves, a compressed air inlet for infeeding compressed air, at least one compressed air connection for at least one air bellows and electrical control inputs, and an electronic control unit for actuating the solenoid valve unit. The electronic control unit comprises control outputs for electrically connecting to the control inputs of the solenoid valve unit. A plug connector is configured on the housing of the solenoid valve unit, in which the electrical control inputs are disposed, and a plug connector is provided on the housing of the electronic control unit, in which the control outputs are disposed. The plug connectors are mechanically plugged into each other.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: May 29, 2012
    Assignee: WABCO GmbH
    Inventors: Ingo Jovers, Berend Kleen, Johann Lucas, Frauke Rathjen, Andreas Rutsch, Andreas Schwarzer, Thomas Stellmacher
  • Publication number: 20120125022
    Abstract: A cooling system for a heat source includes a heat source loop, a refrigerant loop, and a controller. The heat source loop provides a closed fluid path for a process fluid and fluidly connects a valve, a bypass leg and/or a heat exchange leg having a heat exchanger, and a pump. The process fluid is disposed within a portion of the loop and is subject to heat transfer from the heat source. The valve is disposed downstream of the heat source portion of the loop, wherein the valve is selectively operable to direct process fluid to the bypass leg and/or the heat exchanger leg. The refrigerant loop provides a closed fluid path for a fluid refrigerant and fluidly connects the heat exchanger, a refrigerant compressor, a refrigerant condenser, and a refrigerant regulator. The controller is in communication with the valve and is adapted to control the valve to regulate an amount of process fluid entering the bypass leg and the heat exchanger leg.
    Type: Application
    Filed: July 30, 2010
    Publication date: May 24, 2012
    Applicant: CARRIER CORPORATION
    Inventors: Daniel M. Maybury, Alan S. Drucker, XuQiang Liao, Belin G. Czechowicz, Gavin R. Blight, Andreas Hille, Timothy R. Campbell
  • Patent number: 8141376
    Abstract: An air conditioning system including an outdoor heat-exchanging unit, at least one indoor heat-exchanging unit, a gaseous refrigerant line connected between the outdoor heat-exchanging unit and the indoor heat-exchanging unit, to allow a refrigerant in a gaseous state to flow between the outdoor heat-exchanging unit and the indoor heat-exchanging unit, and a pressure compensation device for increasing a pressure of the gaseous refrigerant flowing through the gaseous refrigerant line. The pressure compensation device is located along the gaseous refrigerant line at a position closer to the indoor heat-exchanging unit than to the outdoor heat-exchanging unit. A pressure compensation device for use in an air conditioning system is also provided.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: March 27, 2012
    Assignee: LG Electronics Inc.
    Inventors: Song Choi, Baik Young Chung, Yun Ho Ryu
  • Publication number: 20120060523
    Abstract: A space conditioning system comprising an evaporator subunit (ES) and control subunit (CS). The ES includes at least three evaporator stages in a pathway of air flow through the ES. First and second stages are adjacent and have major surfaces substantially parallel to each other. A third stage is located in the pathway before the first stage. A major surface of the third stage covers the major surface of the first stage in a same pathway direction. The major surfaces are substantially perpendicular to the pathway. The CS is configured to operate the evaporator subunit in at least one of two partial load cooling modes. In a first mode, the CS causes refrigerant to circulate through the first and second but not through the third stage. In a second mode, the control subunit causes the refrigerant to circulate through the first and third stage but not through the second stage.
    Type: Application
    Filed: September 14, 2010
    Publication date: March 15, 2012
    Applicant: Lennox Industries Inc.
    Inventor: Der-Kai Hung
  • Publication number: 20120031130
    Abstract: A relay unit connected to one or a plurality of outdoor units and a plurality of indoor units by different pipeline systems, respectively, so as to exchange heat between a refrigerant circulating through the outdoor unit and a heat medium different from the refrigerant and to circulate the heat medium through the indoor unit, provided with a valve block unit in which a plurality of valve blocks integrated with at least a plurality of branch pipes connected to the indoor unit, a plurality of main pipes which become channels for the heat medium relating to the heat exchange, and heat medium flow direction switching devices that switch the main pipes to communicate with the branch pipes are connected.
    Type: Application
    Filed: April 17, 2009
    Publication date: February 9, 2012
    Applicant: Mitsubishi Electric Corporation
    Inventors: Hiroyuki Morimoto, Koji Yamashita, Katsuhiko Hayashida, Hiroto Nakao, Yuji Motomura, Shinichi Wakamoto
  • Patent number: RE43458
    Abstract: A self-contained beverage chilling apparatus including a refrigerant cooling system comprising a refrigerant reservoir in a fluid communication with a cold plate, a refrigerator accumulator, a compressor and a refrigerant condenser mounted within a housing unit. The housing unit further included beverage inlet means in fluid communication with the cooling system cold plate, and beverage dispenser means in fluid communication with the cold plate wherein the beverage to be dispensed is chilled to a desired temperature as it passes through the cold plate to the beverage dispensing means.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: June 12, 2012
    Inventor: James M. Cleland