Compressor Or Its Drive Controlled Patents (Class 62/228.1)
  • Patent number: 9394780
    Abstract: A system for providing supplemental or auxiliary heat to a crude oil separator is provided. The system includes a primary circuit carrying a fluid heated by a solar panel and a secondary circuit carrying a fluid heated by heat exchangers engaged with the primary circuit. The secondary circuit includes heat exchangers engaging the separator to provide auxiliary heat. The system may also include a source of off-grid electrical energy, such as a wind turbine and/or photoelectric cell.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: July 19, 2016
    Assignee: Industrial Solar Heating Systems, LLC
    Inventors: Wallace Bruce, Richard Chacon, Mark Ray
  • Patent number: 9249650
    Abstract: A system for providing supplemental or auxiliary heat to a crude oil separator is provided. The system includes a primary circuit carrying a fluid heated by a solar panel and a secondary circuit carrying a fluid heated by heat exchangers engaged with the primary circuit. The secondary circuit includes heat exchangers engaging the separator to provide auxiliary heat. The system may also include a source of off-grid electrical energy, such as a wind turbine and/or photoelectric cell.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: February 2, 2016
    Inventors: Wallace Bruce, Richard Chacon, Mark Ray
  • Patent number: 9182154
    Abstract: A control system controls adaptively an operation of a vapor compression system. The control system includes a memory for storing a mapping relationship between control inputs of the vapor compression system, and a processor for executing a supervisory controller and an optimization controller. The supervisory controller controls the operation of the vapor compression system using a set of control inputs selected according to the mapping relationship. The optimization controller modifies the mapping relationship in response to the operation of the vapor compression system.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: November 10, 2015
    Assignee: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Dan Burns, Christopher Laughman
  • Patent number: 9145893
    Abstract: When starting a screw-type air compressor in sub-zero conditions, current spikes are mitigated by detecting an over-current condition and/or a below-threshold temperature, and a warm-up routine is initiated in which compressor motor speed is ramped in a sawtooth fashion between two speeds that are substantially lower than a nominal operating speed of the compressor motor. In this manner, the internal components of the compressor are warmed prior to fully starting the compressor, which mitigates current spikes, reduces blown fuses, and extends the life of the compressor motor and other compressor components.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: September 29, 2015
    Assignee: BENDIX COMMERCIAL VEHICLE SYSTEMS LLC
    Inventor: Marv Hamdan
  • Patent number: 9109816
    Abstract: A transcritical R-744 refrigeration system with an energy efficiency ratio of a level comparable to that of refrigeration systems using common refrigerants by mechanically subcooling of the R-744 refrigerant. Mechanical subcooling increases the refrigeration capacity without increasing the power consumption of the refrigeration system's compressors. The compressors used to provide the refrigeration capacity for the subcooling process operate at much more favorable conditions, therefore have a very high energy efficiency ratio. The result is higher refrigeration capacity and lower power consumption.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: August 18, 2015
    Assignee: SYSTEMES LMP INC.
    Inventors: Jordan Kantchev, GaƩtan Lesage
  • Patent number: 9038405
    Abstract: A control system to selectively control the operation of the compressor of a mini-split air conditioning system including at least one remote evaporator operatively coupled to the compressor to receive refrigerant therethrough, a sensor to monitor the operation of the evaporator and to generate an operating control signal to turn-off the compressor when a predetermined operating condition is sensed at the evaporator and a condensate drain pan to receive or catch condensate from the evaporator, the control system comprising a condensate sensor disposed to sense condensate in the condensate drain pan at a predetermined level and to generate a condensate level signal fed to a battery powered control device including an isolated solid state relay coupled to the sensor by a control coupling device to generate a condensate level control signal fed to the sensor causing the sensor to generate the operating control signal fed to turn off the compressor when condensate within the condensate drain pan reaches the prede
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: May 26, 2015
    Assignee: THE RECTORSEAL CORPORATION
    Inventors: Christopher Cantolino, Mark Oudshoorn, Robert Dean Sells
  • Publication number: 20150135753
    Abstract: It is determined whether thermo-off postponement control is allowed or not on the basis of a current compressor operating frequency when a thermo-off condition is satisfied. If it is determined that thermo-off postponement control is allowed, the thermo-off postponement control in which a lowest operating frequency in an operating frequency range of a compressor is temporarily reduced within a range greater than or equal to a minimum operating frequency of the compressor in use so as to continue an operation. If it is determined that thermo-off postponement control is not allowed, thermo-off of stopping the compressor is performed.
    Type: Application
    Filed: October 22, 2014
    Publication date: May 21, 2015
    Inventors: Ryoji ABE, Masanori AOKI
  • Patent number: 9032750
    Abstract: A variable capacity screw compressor for use in a refrigeration system is provided. Compressed refrigerant gas from the compressor is expelled into a discharge port in fluid communication with the refrigeration circuit. The volume associated with the discharge port can be periodically varied, allowing the efficiency of the compressor to be varied periodically. The discharge port volume includes a penetration that houses a movable member or plug that permits the volume to be periodically varied. This movable member is accessible from the exterior of the compressor housing to adjust the position of the movable member within the discharge port volume. The movable member may be adjusted to a full open position in which the discharge port volume is maximized, to a full closed position in which the discharge port volume is minimized, and to any position between full open and full closed.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: May 19, 2015
    Assignee: Johnson Controls Technology Company
    Inventors: Paul Nemit, Jr., Angela Marie Comstock, Shahebaz Malik
  • Publication number: 20150121925
    Abstract: Provided is a refrigerator. The refrigerator may include a power supply unit configured to power the refrigerator using commercial power, a battery coupled to the power supply unit and configured to supply auxiliary power to the refrigerator, a power detection unit coupled to the power supply unit and the battery and configured to detect whether power is being supplied from the power supply unit, a driving unit to provide cold air, and a controller configured to control an operational mode of the driving unit based on the detection at the power detection unit. When the power supply unit is supplying power, the driving unit may be controlled to operate in a normal operation mode, and when the power supply unit is not supplying power, the driving unit may be controlled to operate in a power failure operation mode and to control the power to be supplied from the battery.
    Type: Application
    Filed: November 5, 2014
    Publication date: May 7, 2015
    Inventors: Shinhyun PARK, Sun KIM, Byoungsuk CHOI
  • Publication number: 20150121921
    Abstract: The CPTS is a new device that allows the refrigerator or freezer to run about half the time of normal and maintain food freshness while saving from 50% to almost 70% on the monthly electric bill by using a laser sensor which operates at a 360 Degree and 90 Degree functionality that senses food temperature inside the box and renders a reading that sends an output signal to the compressor in the refrigeration unit and brings the temperature to its proper setting.
    Type: Application
    Filed: June 3, 2013
    Publication date: May 7, 2015
    Inventor: Kenneth Glaser
  • Patent number: 9010138
    Abstract: A variable displacement compressor adjusts the pressure in a control pressure chamber and controls the displacement in accordance with the adjusted pressure. Refrigerant is supplied via a supply passage, and released via a bleed passage. The compressor includes a first control valve for adjusting the cross-sectional area of the supply passage for refrigerant. The compressor further includes a second control valve that adjusts the cross-sectional area of the bleed passage in accordance with the opening/closing state of the first control valve. The second control valve adjusts the cross-sectional area of the bleed passage such that the cross-sectional area when the first control valve is in the closed state is larger than that when the first control valve is in the opened state. The back pressure chamber is located in a section of the bleed passage that is located between the second control valve and the control pressure chamber.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: April 21, 2015
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Hiroyuki Yoshida, Osamu Hiramatsu
  • Patent number: 9010137
    Abstract: Disclosed is an air conditioner which can obtain an energy-saving effect without any change to the setting temperature set by a user and, accordingly, without causing discomfort to the user. If a capacity restriction mode is set to at least one of indoor units Y1 and Y2, the setting temperature Ts in the indoor units Y1 and Y2 is not changed and is maintained at a value set by the user and a compressor 1 is operated with the capacity less than the normal capacity.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: April 21, 2015
    Assignee: Toshiba Carrier Corporation
    Inventors: Akiyoshi Sugiyama, Yoshiro Nakamura
  • Patent number: 9004369
    Abstract: A method and system is provided which receives a desired humidity level from a user for the refrigeration compartment of a refrigerator, determines the current humidity level, and then activates an atomizer in the refrigeration compartment to increase the humidity level if needed. The humidity in the refrigeration compartment may be determined based at least in part on the temperature of the refrigeration compartment, the defrost timer, the door opening times, and the compressor timer.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: April 14, 2015
    Assignee: Whirlpool Corporation
    Inventors: Anderson Bortoletto, Rameet Singh Grewal, Guolian Wu
  • Publication number: 20150096316
    Abstract: An air conditioning system of a motor vehicle is provided herein, as well as a method for the same. The air condition system includes a refrigerant circuit including a compressor and an evaporator located inside the flow duct; an air conducting device provided downstream of the evaporator in the air flow direction; a heating heat exchanger provided inside the flow duct; and a control unit to receive a signal from a sensor. The control unit is configured to receive a position of the air conducting device from the position sensor, the control unit is configured to switch the compressor off or on based on the position.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 9, 2015
    Inventors: Bodo Thiele, Rowena Tomski
  • Patent number: 8984904
    Abstract: A refrigerating device is provided which can improve COP when a required load is 50% of a maximum load or below. When the load required of a common evaporator is 50% or less, a control unit stops a second compressor and controls the volume of a first compressor. Accordingly, it becomes possible to improve COP when the required load is equal to or below 50% as compared to the case of controlling the first and second compressors simultaneously to a low volume.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: March 24, 2015
    Assignee: Daikin Industries, Ltd.
    Inventors: Kenichi Tamura, Yasuhiro Kondou
  • Patent number: 8984901
    Abstract: A heat pump system includes: a heat-source-side refrigerant circuit having a heat-source-side compressor, a first usage-side heat exchanger operable as a radiator of heat-source-side refrigerant, and a heat-source-side heat exchanger operable as a radiator of heat-source-side refrigerant; and a usage-side refrigerant circuit having a usage-side compressor, a refrigerant/water heat exchanger operable as a radiator of usage-side refrigerant to heat an aqueous medium, and the first usage-side heat exchanger operable as an evaporator of usage-side refrigerant by radiation of heat-source-side refrigerant.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: March 24, 2015
    Assignees: Daikin Industries, Ltd., Daikin Europe N.V.
    Inventor: Masahiro Honda
  • Patent number: 8973381
    Abstract: A vehicle air conditioning system includes a compressor, a condenser, an evaporator and a controller. The controller is operatively coupled to the compressor to manage operation of the compressor during a cooling operation that provides temperature reduction of air flowing across heat transferring portions of the evaporator. The controller further manages operation of the compressor in a moisture releasing operation in response to termination of the cooling operation. The moisture releasing operation includes, for example, finite operation of the compressor that retards release of moisture from the heat transferring portions of the evaporator.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: March 10, 2015
    Assignee: Nissan North America, Inc.
    Inventor: Ronald S. Eisenhour
  • Patent number: 8970158
    Abstract: In one embodiment, a cryocooler drive circuit for a cryocooler motor is provided that includes: a first switching power converter configured to track a first sinusoidal input voltage signal to provide a first sinusoidal output voltage signal at a first output node; and a second switching power converter configured to track a second sinusoidal input voltage signal to provide a second sinusoidal output voltage signal at a second output node, wherein the second sinusoidal input voltage signal is an inverted version of the first sinusoidal input voltage signal such that the cryocooler motor is driven by an alternating current flowing between the first and second output nodes.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: March 3, 2015
    Assignee: FLIR Systems, Inc.
    Inventor: Louis David Chowning
  • Publication number: 20150052911
    Abstract: A method for controlling transitions between activating and deactivating a vehicle air conditioner compressor is disclosed. In one example, displacement of the air conditioner compressor is adjusted before the air conditioner is coupled to an energy conversion device. The method may provide smooth transitions between different air conditioner compressor control modes.
    Type: Application
    Filed: November 4, 2014
    Publication date: February 26, 2015
    Inventors: John Eric Rollinger, Jeffrey Allen Doering, Hugh Hamilton, Brent Jacobsen, Steve Pryor Perry
  • Publication number: 20150047376
    Abstract: A method for controlling an operation of a refrigerator includes circulating and/or supplying a refrigerant to a refrigeration chamber evaporator and a freezer chamber evaporator, determining whether to stop an operation of the compressor a predetermined time from or after an initial driving point in circulating and/or supplying the refrigerant; opening a refrigeration chamber switching valve, a freezer chamber switching valve and/or a refrigerant flow path valve, and subsequently closing the valve(s) when it is determined that the compressor should be stopped; and stopping the compressor after opening the refrigeration chamber switching valve, the freezer chamber switching valve and/or the refrigerant flow path valve.
    Type: Application
    Filed: July 10, 2014
    Publication date: February 19, 2015
    Inventor: Won Joo KWON
  • Patent number: 8955346
    Abstract: Apparatus and method are provided for cooling an electronic component. The apparatus includes a coolant-cooled structure in thermal communication with the component(s) to be cooled, and a coolant-to-refrigerant heat exchanger coupled in fluid communication with the coolant-cooled structure via a coolant loop to receive coolant from and supply coolant to the coolant-cooled structure. The apparatus further includes a refrigerant loop coupled in fluid communication with the coolant-to-refrigerant heat exchanger, and the heat exchanger cools coolant passing therethrough by dissipating heat from the coolant in the coolant loop to refrigerant in the refrigerant loop. A controllable coolant heater is associated with the coolant loop for providing an adjustable heat load on the coolant in the coolant loop to ensure at least a minimum heat load is dissipated from the coolant to the refrigerant passing through the heat exchanger.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: February 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 8952635
    Abstract: A method for use in controlling a free piston Stirling machine having a cold end and a warm end and driven by a linear motor having an armature winding to which a drive voltage is applied. The method comprises (a) sensing internal mechanical collisions; (b) repeatedly sensing the temperature of the cold end, the temperature of the warm end and the drive voltage; (c) storing, as associated data, a value representing drive voltage, the temperature of the cold end and the temperature of the warm end at the time of sensed collisions; and (d) limiting the drive voltage to less than the drive voltage that was sensed at a collision and is stored in association with stored warm end and cold end temperatures that are proximate currently sensed warm end and cold end temperatures.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: February 10, 2015
    Assignee: Global Cooling, Inc.
    Inventors: Yongrak Kwon, Robert Lee Mash, II
  • Publication number: 20150034293
    Abstract: An air-conditioning apparatus according to the present invention includes at least indoor heat exchangers. In response to a request to increase heat exchange performance from the indoor heat exchanger, the air-conditioning apparatus decreases a heat exchange capacity of an outdoor heat exchanger and controls an opening degree of an expansion valve corresponding to the indoor heat exchanger a to decrease a flow rate of a refrigerant that flows through the indoor heat exchanger.
    Type: Application
    Filed: March 27, 2012
    Publication date: February 5, 2015
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Keisuke Takayama, Osamu Morimoto, Daisuke Shimamoto
  • Publication number: 20150027152
    Abstract: An automotive air conditioning system comprising: an air cooling circuit including a compressor, a condenser, an expansion valve and an evaporator, fluidically connected to be flowed, during operation, by a heat transfer fluid, and a blower fan associated with the evaporator and operable to generate an airflow through the evaporator; an air heating circuit including a liquid/air heater configured to be flowed, during operation, by a heat transfer fluid and arranged close to the evaporator to be flowed also by the airflow generated by the blower fan associated with the evaporator, and a flow rate regulation solenoid valve arranged to regulate the flow rate of the heat transfer fluid through the heater; and an electronic control unit configured to receive a measured evaporator air temperature and a set cabin air temperature and to switch an operating condition of the compressor when the measured evaporator air temperature exhibits a given relation with at least one on/off threshold temperature computed, in at l
    Type: Application
    Filed: December 5, 2012
    Publication date: January 29, 2015
    Applicant: C.R.F. Societa' Consortile Per Azioni
    Inventors: Rossella Marco, Walter Ferraris, Carloandrea Malvicino, Carlo D'Ambrosio
  • Publication number: 20150027155
    Abstract: A compressor includes: a heat exchanger configured to discharge heat generated during compression outside the compressor; a cooling liquid inlet port through which cooling liquid flowing from outside the compressor into the compressor passes; and a cooling liquid outlet port through which the cooling liquid flowing out of the compressor from inside the compressor passes. The compressor is configured such that an operation mode is switchable between a first mode in which the cooling liquid passing through the cooling liquid inlet port flows in the heat exchanger in a predetermined first direction and passes through the cooling liquid outlet port, and a second mode in which the cooling liquid passing through the cooling liquid inlet port flows in the heat exchanger in a second direction opposite to the first direction and passes through the cooling liquid outlet port.
    Type: Application
    Filed: July 22, 2014
    Publication date: January 29, 2015
    Inventor: Toru Maruyama
  • Patent number: 8931547
    Abstract: A vehicle air conditioning system includes an electric powered refrigerant compressing device, an evaporator, an electric heater, an air temperature determining component, a cabin interior temperature controlling component, an upper limit electric power setting component, and an electric power distribution controller. The evaporator receives refrigerant from the compressing device. The heater is downstream of the evaporator in an air passageway. The determining component determines a first air temperature upstream of the evaporator and a second air temperature between the evaporator and the heater. The controlling component sets a vehicle interior discharge air temperature at a position downstream of the heater to a target temperature. The power setting component sets an upper limit for power supplied to the compressing device and the heater.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: January 13, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tzu-Hsiang Yen, Takayoshi Matsuoka, Takafumi Uehara
  • Publication number: 20150000318
    Abstract: The invention relates to a cooling device, comprising at least one re-generatively operated primary cooling circuit, in particular a solar-powered cooling circuit, wherein the cooling circuit has at least one compressor, at least one condenser, at least one evaporator, at least one cooling space, at least one temperature sensor for measuring the cooling space temperature (Tair) in the cooling space, and a controller. A desired temperature value (SET) of the cooling space and a comparison temperature value (TSET) can be stored in the controller. The invention is characterised in that the cooling of the cooling space can be interrupted by the controller and the comparison temperature value (TSET) can be changed by the controller depending upon the time and/or the cooling space temperature (Tair).
    Type: Application
    Filed: September 10, 2012
    Publication date: January 1, 2015
    Applicant: Dometic S.a.r.l.
    Inventors: Admilson Pinto, Uwe Schramer, Mario Lentz
  • Patent number: 8915094
    Abstract: A bypass device of a refrigerator connected to an inrush current preventing device bypasses an input power when the input power is applied to the refrigerator, and a controller controls the input power input through the inrush current preventing device in response to a voltage measured by a voltage measuring device, recovers a function of the inrush current preventing device, and drives a compressor. Therefore, a standby time to re-drive the refrigerator is decreased and convenience is enhanced.
    Type: Grant
    Filed: March 29, 2008
    Date of Patent: December 23, 2014
    Assignee: LG Electronics Inc.
    Inventors: Jae Yoo Yoo, Chang Oh Kim
  • Publication number: 20140338376
    Abstract: A thermal management system for a vehicle includes a traction motor and a battery pack. The thermal management system comprises a battery circuit for cooling a battery circuit thermal load including the battery pack, a battery circuit temperature sensor positioned to sense a temperature relating to a temperature of the battery circuit thermal load, and a controller. The controller is configured to control the battery circuit to maintain the temperature sensed by the battery circuit temperature sensor below a first battery circuit temperature limit when the controller detects that the vehicle is not connected to an external electrical source, and to maintain the temperature sensed by the battery circuit temperature sensor below a second battery circuit temperature limit that is lower than the first battery circuit temperature limit when the controller detects that the vehicle is connected to the external electrical source.
    Type: Application
    Filed: December 17, 2012
    Publication date: November 20, 2014
    Inventors: Neil Carpenter, Guanging Gao
  • Publication number: 20140331705
    Abstract: A transport refrigeration system includes an engine, a hydraulic pump driven by the engine, a supply line coupled to an output of the pump, a supply control valve coupled to the supply line and a refrigerant compressor coupled to the supply control valve through a compressor supply line. The refrigerant compressor speed is responsive to fluid flow in the compressor supply line.
    Type: Application
    Filed: December 13, 2012
    Publication date: November 13, 2014
    Inventor: John T. Steele
  • Patent number: 8882471
    Abstract: Methods, devices and systems capable of performing a hot restart of a compressor driven by a turbine are provided. The turbine has a high speed shaft and a low speed shaft connected to the compressor. A base slow roll speed at which a speed of the low speed shaft is in a slow roll range is maintained at the high speed shaft for a predetermined time. Then, when a vibration amplitude of the compressor is larger than a vibration limit, the maintaining is repeated. Otherwise, a set speed of the high speed shaft is increased, until a current speed of the low speed shaft reaches a minimum operating speed. If, while increasing the set speed, the vibration amplitude becomes larger than the vibration limit, the maintaining is repeated.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: November 11, 2014
    Assignee: Nuovo Pignone S.p.A.
    Inventors: Gianni Bagni, Michele Fontana, Antonio Baldassarre, Leonardo Baldassarre
  • Patent number: 8875529
    Abstract: A method for controlling transitions between activating and deactivating a vehicle air conditioner compressor is disclosed. In one example, displacement of the air conditioner compressor is adjusted before the air conditioner is coupled to an energy conversion device. The method may provide smooth transitions between different air conditioner compressor control modes.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: November 4, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: John Eric Rollinger, Jeffrey Allen Doering, Hugh Hamilton, Brent Jacobsen, Steve Pryor Perry
  • Patent number: 8875530
    Abstract: An embodiment of method used to control operation of a screw compressor of a refrigeration system may include receiving status signals regarding operation of the screw compressor of the refrigeration system. The method may further include determining an operating point of the screw compressor based upon the received status signals, and selecting a torque profile for the screw compressor based upon the operating point. The method may also include driving the screw compressor per the selected torque profile. Refrigeration systems and compressor systems suitable for implementing the method are also presented.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: November 4, 2014
    Assignee: Trane International Inc.
    Inventors: David M. Foye, Nathan T. West, Dennis M. Beekman, John R. Sauls
  • Publication number: 20140318159
    Abstract: A vehicle air conditioning system includes a compressor configured to compress refrigerant, a condenser, an evaporator, a temperature sensor and a controller. The condenser receives the refrigerant from the compressor and the evaporator receives the refrigerant from the condenser. The temperature sensor is positioned proximate the evaporator to measure a temperature of air passing through the evaporator prior to entering a vehicle passenger compartment. The controller is operatively coupled to the compressor to cycle the compressor on and off based upon the temperature measured by the temperature sensor and correlation data stored in the controller that correlates temperatures at the evaporator to estimated moisture densities at the evaporator to maintain the moisture density of the air in the vehicle passenger compartment below a predetermined moisture density threshold.
    Type: Application
    Filed: April 30, 2013
    Publication date: October 30, 2014
    Applicant: Nissan North America, Inc.
    Inventor: Ronald EISENHOUR
  • Publication number: 20140305151
    Abstract: A compact beverage dispensing unit includes a cooling system and a housing. A dispensing channel is defined in the housing.
    Type: Application
    Filed: April 16, 2013
    Publication date: October 16, 2014
    Applicant: NOTTINGHAM SPIRK DESIGN ASSOCIATES, INC.
    Inventor: NOTTINGHAM SPIRK DESIGN ASSOCIATES, INC.
  • Patent number: 8857200
    Abstract: A compressor may include a fluid-injection source, a shell, and first and second scroll members. The shell may define a suction pressure region. The first scroll member may include a first end plate and a first scroll wrap extending therefrom. The second scroll member may include a second end plate and a second scroll wrap extending therefrom. The first and second scroll wraps may cooperate to define a plurality of fluid pockets. The second end plate may include a first passage and a second passage. The second end plate may also include a first port and a second port extending through the second end plate and communicating with at least one of the fluid pockets. The first passage may be in communication with the suction pressure region. The second passage may be in communication with the fluid-injection source.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: October 14, 2014
    Assignee: Emerson Climate Technologies, Inc.
    Inventors: Robert C. Stover, Masao Akei, Michael M. Perevozchikov
  • Patent number: 8857201
    Abstract: An air-conditioning device includes a refrigerating cycle; a controller to control a refrigerant discharge capacity of a compressor of the cycle in a manner that a refrigerant evaporation temperature of an evaporator of the cycle approaches a target temperature; and a setting portion to set an upper limit for a fuel amount consumed by an engine based on at least the refrigerant evaporation temperature. The controller controls the refrigerant discharge capacity of the compressor in a manner that an actual fuel amount consumed by the engine is equal to or lower than the upper limit.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: October 14, 2014
    Assignee: Denso Corporation
    Inventor: Takeshi Aoyagi
  • Publication number: 20140260390
    Abstract: A diagnostic system for a refrigeration system including a condenser is provided. The diagnostic system may include a controller determining a subcooling temperature of the refrigeration system, an approach temperature of the condenser, and a condenser temperature difference of the condenser. The controller may determine at least one of a fault condition of the refrigeration system and a charge of the refrigeration system based on the subcooling temperature, the approach temperature, and the condenser temperature difference.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Emerson Climate Technologies, Inc.
    Inventor: Hung M. Pham
  • Publication number: 20140260342
    Abstract: A charge-verification system for a circuit including a condenser having an inlet, an outlet, and a coil circuit tube extending between the inlet and the outlet is provided. The charge-verification system may include a first of coil temperature sensor located on the coil circuit tube a first distance from the inlet and a second of coil temperature sensor located on the coil circuit tube a second distance from the inlet. The charge-verification system may also include a controller receiving a first signal from the first temperature sensor indicative of a first temperature and a second signal from the second temperature sensor indicative of a second temperature. The controller may determine which of the first signal and the second signal is closer to an actual saturated condensing temperature of the condenser.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 18, 2014
    Applicant: Emerson Climate Technologies, Inc.
    Inventor: Hung M. Pham
  • Publication number: 20140260368
    Abstract: A heat pump system for conditioning regeneration air from a space is provided. The heat pump system is operable in a winter mode and/or a summer mode, and may be selectively operated in a defrost mode or cycle. During a defrost mode, hot refrigerant may be used to directly and sequentially defrost the regeneration air heat exchanger. A compressor may be configured to be overdriven during a defrost cycle.
    Type: Application
    Filed: February 21, 2014
    Publication date: September 18, 2014
    Applicant: VENMAR CES, INC
    Inventors: DAVID MARTIN WINTEMUTE, Mathieu Philippe Beliveau
  • Patent number: 8820105
    Abstract: A medium voltage power controller box is mounted on a chiller unit with the other components of the chiller system. The power controller box can be positioned on the chiller system unit to permit the power controller box to be close coupled to the motor, and specifically to the main motor lead exit hub without the need for any power conduit connections between the power controller box and the motor. In addition, the power controller box also does not require any control interface and receives controls from a control panel. A short conduit connection between the control panel and the power controller box is used to provide the necessary connections between the control panel and the power controller box.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: September 2, 2014
    Assignee: Johnson Controls Technology Company
    Inventors: Dean K. Norbeck, John C. Hansen
  • Publication number: 20140230464
    Abstract: A control system for a refrigeration appliance is provided. The control system uses a linear model that is designed to minimize or remove excess enthalpy from one or more compartments and/or features of the appliance. At least one variable speed compressor is operated at a speed that will remove excess enthalpy within a desired time period while also operating at an optimized speed for energy efficiency.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 21, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bahman Abbasi, Keith Wesley Wait
  • Publication number: 20140216087
    Abstract: A compressor (22) has a housing assembly (50) with a suction port (24) and a discharge port (26). An impeller (54) is supported by a shaft (70) which is mounted for rotation to be driven in at least a first condition so as to draw fluid in through the suction port (24) and discharge the fluid from the discharge port (26). A magnetic bearing system (66, 67, 68) supports the shaft (70). A controller (84) is coupled to an axial position sensor (80) and is configured to control impeller position.
    Type: Application
    Filed: June 11, 2012
    Publication date: August 7, 2014
    Applicant: CARRIER CORPORATION
    Inventor: Vishnu M. Sishtla
  • Publication number: 20140216086
    Abstract: A cooling system includes a compressor, a first heat exchanger, an expansion valve, a second heat exchanger, piping that connects these components and circulates a refrigerant through these components, a cooling unit that is provided in the piping between the first heat exchanger and the expansion valve and that cools a heat-generating source with the refrigerant; and a connection passage communicating a first passage with a second passage, the first passage being the piping between the compressor and the first heat exchanger, the second passage being the piping between the cooling unit and the expansion valve. The first heat exchanger is positioned higher than the cooling unit, and the piping is arranged so that the refrigerant that is condensed by the first heat exchanger is caused to flow into the cooling unit by gravitational force.
    Type: Application
    Filed: May 22, 2012
    Publication date: August 7, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuichi Ohno, Kazuhide Uchida, Yuki Jojima, Yoshiaki Kawakami, Eizo Takahashi, Kousuke Sato
  • Publication number: 20140202185
    Abstract: A climate controller device may be configured to perform operations including comparing an outside air temperature to a threshold temperature; selecting, based on the comparison, one of a function to determine target compressor off setpoint values for relatively lower temperatures and a function to determine target compressor off setpoint values for relatively higher temperatures; retrieving a value according to the selection function to determine target compressor off setpoint values, the value specifying a compressor off setpoint value corresponding to airflow configuration settings; and determining a target compressor off setpoint value based at least in part on the retrieved value.
    Type: Application
    Filed: January 21, 2013
    Publication date: July 24, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: David Alan Wong, Debasish Dhar, Manfred Koberstein, William Stewart Johnston, Alan Douglas Wallington, Tina Maurer
  • Publication number: 20140202188
    Abstract: An HVAC system that obtains demand specific data from an outdoor unit thereof is provided. An indoor unit controller, an outdoor unit controller and an outdoor unit of the HVAC system are also disclosed. In one embodiment, the outdoor unit controller includes: (1) an interface configured to receive a request for a second portion of demand data from an indoor controller of the HVAC system, wherein the request includes a first portion of the demand data that corresponds to the second portion and (2) a processor configured to respond to the request by determining the second portion based on the first portion and sending the second portion of the demand data to the indoor controller of the HVAC system.
    Type: Application
    Filed: June 14, 2013
    Publication date: July 24, 2014
    Inventors: Pete Hrejsa, Takeshi Sakai
  • Publication number: 20140196491
    Abstract: Systems and methods are provided for controlling the temperature of an electronic component of a computer. In one embodiment, a system includes a compressor, a compact cooling block, a condenser, and a controller. The compressor compresses or cools a refrigerant. The condenser receives the refrigerant and condenses the refrigerant. The compact cooling block is thermally coupled to an electronic component of a computer, receives the refrigerant from the condenser, transfers thermal energy from the electronic component to the refrigerant, and sends the refrigerant to back to the compressor. The controller is in electronic communication with the compressor and controls the compressor based on a pulse-width modulation (PWM) signal in order to maintain a temperature range for the electronic component. In another embodiment, a system is provided that controls the temperature of a circulating liquid that, in turn, cools an electronic component of a computer.
    Type: Application
    Filed: August 29, 2012
    Publication date: July 17, 2014
    Applicant: POWERQUEST LLC
    Inventors: Patrick Zuili, Todd Stabinski, Daren Stabinski, Joe Arnold
  • Patent number: 8769976
    Abstract: A method for controlling a refrigerant distribution in a vapour compression system, such as a refrigeration system, e.g. an air condition system, comprising at least two evaporators. The refrigerant distribution determines the distribution of the available amount of refrigerant among the evaporators. While monitoring a superheat, SH, at a common outlet for the evaporators, the distribution of refrigerant is modified in such a manner that a mass flow of refrigerant to a first evaporator is altered in a controlled manner. The impact on the monitored SH is then observed, and this is used for deriving information relating to the behaviour of the first evaporator, in the form of a control parameter. This is repeated for each evaporator, and the refrigerant distribution is adjusted on the basis of the control parameters. The impact may be in the form of a significant change in SH.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: July 8, 2014
    Assignee: Danfoss A/S
    Inventors: Claus Thybo, Rafael Wisniewski
  • Publication number: 20140165633
    Abstract: An air compressor system is disclosed that includes a housing sized to enclose an air compressor pump as well as a dryer structured to remove moisture from air that is compressed by the compressor pump. The air compressor pump may be intermittently placed into operation, but the dryer itself is structured in one form to continuously maintain a heat exchanger in a desired temperature range in anticipation of operation of the air compressor pump. The heat exchanger of the dryer can include sufficient thermal mass such that a refrigerant pump of the dryer need not be operated continuously in anticipation of operation of the air compressor pump. While a cooling air flow can be created by operation of the air compressor pump, when the air compressor pump is not operated a cooling fan can be used provide cooling to the heat generating components of the dryer.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 19, 2014
    Inventors: Paolo De Piero, Stefano Vezil, Charles John Bergh
  • Patent number: 8752400
    Abstract: A refrigerator includes a compressor to compress refrigerant, a condenser to liquefy the refrigerant supplied from the compressor, a capillary tube to decompress and expand the refrigerant supplied from the condenser, an evaporator to vaporize the refrigerant supplied from the capillary tube, a shutoff valve installed at an inlet of the capillary tube so as to prevent the refrigerant in the condenser during stoppage of the compressor from being moved to the evaporator, and a control unit to enable the shutoff valve to be blocked together so as to prevent movement of the refrigerant from the condenser to the evaporator during stoppage of the compressor, and to enable the shutoff valve to be opened together so as to move the refrigerant from the condenser to the evaporator during starting of the compressor.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: June 17, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jee Hoon Lee, Sang Gyu Jung, Seung Yong Yang, Jae Sek Oh, Kae Hum Lee, Sung Cheul Park, Jong Nam Lee, Ho June Jeon