Distillation Patents (Class 62/620)
  • Publication number: 20150013380
    Abstract: A method is provided for separating off acid gases, in particular CO2 and H2S, from a hydrocarbon-rich fraction, in particular natural gas. The hydrocarbon-rich fraction is cooled and partially condensed. The resultant CO2-enriched liquid fraction is separated by rectification into a CO2-rich liquid fraction and a CO2-depleted gas fraction. The hydrocarbon-rich fraction is cooled close to the temperature of the CO2 triple point by means of a closed multistage refrigeration circuit. The refrigerant is a CO2 fraction of greater than 99.5% by volume. The rectification column is operated at a pressure between 40 and 65 bar. The reboiler of the rectification column is heated by means of a condensing refrigerant substream of the refrigeration circuit that is at a suitable pressure level.
    Type: Application
    Filed: July 9, 2014
    Publication date: January 15, 2015
    Applicant: LINDE AKTIENGESELLSCHAFT
    Inventors: Heinz BAUER, Claudia GOLLWITZER
  • Patent number: 8919148
    Abstract: A process for the recovery of ethane, ethylene, propane, propylene, and heavier hydrocarbon components from a hydrocarbon gas stream is disclosed. The stream is cooled and divided into first and second streams. The first stream is further cooled to condense substantially all of it and is thereafter expanded to the fractionation tower pressure and supplied to the fractionation tower at a first mid-column feed position. The second stream is expanded to the tower pressure and is then supplied to the column at a second mid-column feed position. A vapor distillation stream is withdrawn from the column above the feed point of the second stream and is then directed into heat exchange relation with the tower overhead vapor stream to cool the vapor distillation stream and condense at least a part of it, forming a condensed stream. At least a portion of the condensed stream is directed to the fractionation tower as its top feed.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: December 30, 2014
    Assignee: Ortloff Engineers, Ltd.
    Inventors: John D. Wilkinson, Joe T. Lynch, Hank M. Hudson, Kyle T. Cuellar, Tony L. Martinez
  • Patent number: 8910495
    Abstract: Devices and methods for retrofitting a natural gas liquids plant are contemplated to extend recovery of C3+ hydrocarbons from various feed gases to recovery of C2+ and C3+ hydrocarbons. In especially preferred aspects, dedicated C2+ exchangers are integrated to exclusively cool the feed gas to produce a cooled absorber feed and to produce two separate absorber reflux streams. During C2+ recovery, absorber reflux is provided by a portion of the residue gas and a portion of the feed gas, while during C3+ recovery absorber and distillation column reflux are provided by the distillation column overhead product.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: December 16, 2014
    Assignee: Fluor Technologies Corporation
    Inventor: John Mak
  • Patent number: 8899076
    Abstract: Disclosed is a gas treatment device that can efficiently regulate the temperature of a gas without being affected by load.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: December 2, 2014
    Assignee: Mitsubishi Heavy Industries Compressor Corporation
    Inventors: Kazuhiro Takeda, Yosuke Nakagawa, Tomoaki Takeda, Yasushi Mori
  • Publication number: 20140345320
    Abstract: A process for dehydrating and removing heavy hydrocarbons in the production of liquefied natural gas from a methane-rich gas mixture is disclosed, wherein the methane-rich gas mixture subjected to deacidification treatment is divided into two streams, i.e. the first stream and the second stream, wherein the first stream used as a system process gas is introduced into a drying procedure, and the second stream used as regenerating gas is introduced into a regenerating procedure; the first stream is subjected to a drying treatment, and the moisture and the heavy hydrocarbons are simultaneously removed from the first stream in a composite adsorbent bed(s) of a drying tower, wherein the moisture is removed such that the dew point at normal pressure is ??76° C.
    Type: Application
    Filed: September 13, 2012
    Publication date: November 27, 2014
    Applicant: XINDI ENERGY ENGINEERING TECHNOLOGY CO., LTD.
    Inventors: Yonggen Xuan, Huazhou Xu
  • Publication number: 20140338395
    Abstract: Embodiments described herein provide methods and systems for generating a CO2 product stream. A method described includes generating a liquid acid gas stream including H2S and CO2. The liquid acid gas stream is flashed to form a first vapor stream and a bottom stream. The bottom stream is fractionated to form a second vapor stream and a liquid acid waste stream. The first vapor stream and the second vapor stream are combined to form a combined vapor stream. The combined vapor stream is treated in an absorption column to remove excess H2S, forming the CO2 product stream.
    Type: Application
    Filed: November 16, 2012
    Publication date: November 20, 2014
    Inventors: Russell H. Oelfke, Tor Vestad
  • Patent number: 8881549
    Abstract: A process and an apparatus are disclosed for a compact processing assembly to recover propane, propylene, and heavier hydrocarbon components from a hydrocarbon gas stream. The gas stream is cooled, expanded to lower pressure, and fed to an absorbing means. A first distillation liquid stream from the absorbing means is fed to a mass transfer means. A first distillation vapor stream from the mass transfer means is cooled to partially condense it, forming a residual vapor stream and a condensed stream. The condensed stream is supplied as the top feed to the absorbing means. A second distillation vapor stream from the absorbing means is heated by cooling the first distillation vapor stream, combined with the residual vapor stream, and heated by cooling the gas stream. A second distillation liquid stream from the mass transfer means is heated in a heat and mass transfer means to strip out its volatile components.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: November 11, 2014
    Assignees: Ortloff Engineers, Ltd., S.M.E. Products, LP
    Inventors: Andrew F. Johnke, W. Larry Lewis, John D. Wilkinson, Joe T. Lynch, Hank M. Hudson, Kyle T. Cuellar
  • Patent number: 8850849
    Abstract: A process for recovering ethane and heavier hydrocarbons from LNG and a hydrocarbon gas stream is disclosed. The LNG feed stream is divided into two portions. The first is supplied to a fractionation column as a first upper mid-column feed. The second portion is heated while condensing a portion of a column distillation stream, thereby producing a “lean” LNG stream and a reflux stream. The reflux stream is supplied as top column feed. The second portion of LNG feed is heated further and supplied to the column as a first lower mid-column feed. The gas stream is divided into two portions. The second is expanded, then both portions are cooled while vaporizing the lean LNG stream and heating another portion of the distillation stream. The colder first portion is supplied to the column as a second upper mid-column feed, and the second is supplied as a second lower mid-column feed.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: October 7, 2014
    Assignee: Ortloff Engineers, Ltd.
    Inventors: Tony L. Martinez, John D. Wilkinson, Hank M. Hudson, Kyle T. Cuellar
  • Publication number: 20140290307
    Abstract: This method comprises a separation of a feed stream (16) into a first fraction (41A) and a second fraction (41B). It comprises injecting the first cooled feed fraction (42) into a first separating flask (22) to produce a light head stream (44). The method comprises expanding a turbine feed fraction (48) resulting from the light head stream (44) in a first turbine (26) up to a first pressure and injecting the first expanded fraction (54) into a distillation column (30). The method comprises expanding the second fraction of the feed stream (41B) in a second turbine (40) up to a second pressure substantially equal to the first pressure. The second expanded fraction (91A) from the second dynamic expansion turbine (40) is used to form a cooled reflux stream (91B) injected into the column (30).
    Type: Application
    Filed: December 26, 2011
    Publication date: October 2, 2014
    Applicant: TECHNIP FRANCE
    Inventors: Vanessa Gahier, Julie Gouriou, Sandra Thiebault, Loic Barthe
  • Patent number: 8840707
    Abstract: A gas condensate production plant comprises a plurality of separation units in which C2 and/or C3 lighter components are stripped from the separator feeds using compressed heated stripping vapor produced from the feed in respective downstream separation units. Contemplated plants substantially reduce heating and cooling duties by using the waste heat from the compressor discharges in the separation process. Furthermore, the multi-stage fractionation according to the inventive subject matter provides improved gas condensate recovery at reduced energy costs.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: September 23, 2014
    Assignee: Fluor Technologies Corporation
    Inventor: John Mak
  • Publication number: 20140260420
    Abstract: A natural gas liquids plant uses a demethanizer and a deethanizer in a two-column or single column configuration that can be used for ethane recovery and ethane rejection. During ethane recovery, 95% ethane recovery and 99% propane recovery are achieved, while during ethane rejection the sales gas Wobbe Index requirement is maintained while maintaining 95% propane recovery. A residue gas recycle exchanger is most preferably configured to use the demethanizer overhead product to either cool a portion of the residue gas and a portion of the feed gas during ethane recovery, or to cool a portion of the feed gas using two distinct heat transfer areas to produce a feed gas reflux at significantly lower temperature.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: FLUOR TECHNOLOGIES CORPORATION
    Inventor: John MAK
  • Publication number: 20140238075
    Abstract: This method comprises cooling the feed natural gas in a first heat exchanger and introducing the cooled, feed natural gas into a first separation flask. It comprises the dynamic expansion of a turbine supply flow in a first expansion turbine and introducing the expanded flow into a separation column. This method comprises removing, at the head of the separation column, a head flow rich in methane and removing a first recirculation flow from the compressed head flow rich in methane. The method comprises forming at least a second recirculation flow obtained from the head flow rich in methane downstream of the separation column and forming a dynamic expansion flow from the second recirculation flow.
    Type: Application
    Filed: May 5, 2014
    Publication date: August 28, 2014
    Inventors: Henri PARADOWSKI, Sandra THIEBAULT, Loic BARTHE
  • Patent number: 8794029
    Abstract: A process for separating hydrocarbons from an LNG, including the steps of: distilling a feed LNG in a first distillation column to separate it into a fraction enriched with methane and a fraction enriched with components heavier than methane; distilling the fraction enriched with components heavier than methane in a second distillation column to separate it into a fraction enriched with ethane and a fraction enriched with components heavier than ethane; recovering the cryogenic heat of the feed LNG to be fed into the first distillation column or of the liquid inside the first distillation column by using a heat transfer medium; and cooling the overhead gas of the second distillation column by using the heat transfer medium which has recovered the cryogenic heat to condense at least part of the overhead gas of the second distillation column. An apparatus for carrying out this process.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: August 5, 2014
    Assignee: Toyo Engineering Corporation
    Inventors: Hiroshi Yokohata, Shoichi Yamaguchi, Akihiko Tamakoshi
  • Publication number: 20140202207
    Abstract: A process for separating a hydrocarbon gas into a fraction containing a predominant portion of the methane or ethane and lighter components and a fraction containing a predominant portion of the C2 or C3 and heavier components in which process the feed gas is treated in one or more heat exchange, and expansion steps; partly condensed feed gas is directed into a separator wherein a first residue vapor is separated from a C2 or C3-containing liquid; and C2 or C3-containing liquids, at substantially the pressure of separation, are directed into a distillation column wherein said liquid is separated into a second residue is separated to recover a C2 or C3-containing product.
    Type: Application
    Filed: January 18, 2013
    Publication date: July 24, 2014
    Inventor: Zaheer I. Malik
  • Patent number: 8758572
    Abstract: The present invention is a novel method for removing tritium oxide contamination from a solution with water. The method captures the tritium oxide in a much smaller volume suitable for economical disposal. In so doing the original water is decontaminated of the tritium oxide and may be discharged.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: June 24, 2014
    Assignees: Exelon Generation Company, LLC, Industrial Idea Partners
    Inventors: Randall N. Avery, Charlie Booth, Keith Moser
  • Publication number: 20140150494
    Abstract: A process for separation of a hydrocarbon-containing feed stream can include cooling the hydrocarbon-containing feed stream using an absorption refrigeration cycle to form a cooled feed stream. The cooled feed stream can be subjected to distillation conditions to remove a bottom stream including co-monomer; and an overhead stream including hydrocarbon diluents, olefin monomer, and components selected from H2, N2, O2, CO, CO2, and formaldehyde. The overhead stream can be subjected to distillation conditions adapted to remove a bottom stream including substantially olefin-free hydrocarbon diluents; a side stream including hydrocarbon diluent; and an overhead vapor stream including olefin monomer, diluents, and components selected from H2, N2, O2, CO, CO2, and formaldehyde. The overhead vapor stream can be cooled using an absorption refrigeration cycle to form a cooled overhead vapor stream. Olefin monomers can be separated from diluents in the cooled overhead vapor stream.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 5, 2014
    Applicant: Total Petrochemicals Research Feluy
    Inventor: Bernard Van Der Schrick
  • Patent number: 8707730
    Abstract: A process comprising receiving an ethane-rich stream comprising at least about 70 molar percent ethane, conditioning the ethane-rich stream to a temperature such that the ethane-rich stream has a vapor pressure similar to the vapor pressure of conventional liquefied natural gas (LNG), and transporting the conditioned ethane-rich stream. Included is a plurality of processing equipment configured to implement a process comprising receiving an ethane-rich stream, adjusting a temperature, a pressure, or both of the ethane-rich stream such that the ethane-rich stream has a temperature from about ?160° F. to about 0° F. and a pressure from about 14.7 pounds per square inch absolute (psia) to about 100 psia, and removing substantially all of any vapor fraction from the ethane-rich stream.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: April 29, 2014
    Assignee: Alkane, LLC
    Inventor: Eric Prim
  • Patent number: 8695376
    Abstract: Contemplated plant configurations and methods employ a vaporized and supercritical LNG stream at an intermediate temperature that is expanded, wherein refrigeration content of the expanded LNG is used to chill one or more recompressor feed streams and to condense a demethanizer reflux. One portion of the so warmed and expanded LNG is condensed and fed to the demethanizer as reflux, while the other portion is expanded and fed to the demethanizer as feed stream. Most preferably, the demethanizer overhead is combined with a portion of the vaporized and supercritical LNG stream to form a pipeline product.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: April 15, 2014
    Assignee: Fluor Technologies Corporation
    Inventor: John Mak
  • Publication number: 20140096563
    Abstract: A process for recovering ethane and heavier hydrocarbons from LNG and a hydrocarbon gas stream is disclosed. The LNG feed stream is divided into two portions. The first is supplied to a fractionation column as a first upper mid-column feed. The second portion is heated while condensing a portion of a column distillation stream, thereby producing a “lean” LNG stream and a reflux stream. The reflux stream is supplied as top column feed. The second portion of LNG feed is heated further and supplied to the column as a first lower mid-column feed. The gas stream is divided into two portions. The second is expanded, then both portions are cooled while vaporizing the lean LNG stream and heating another portion of the distillation stream. The colder first portion is supplied to the column as a second upper mid-column feed, and the second is supplied as a second lower mid-column feed.
    Type: Application
    Filed: November 27, 2012
    Publication date: April 10, 2014
    Applicant: Ortloff Engineers, Ltd.
    Inventors: Tony L. Martinez, John D. Wilkinson, Hank M. Hudson, Kyle T. Cuellar
  • Patent number: 8677780
    Abstract: Contemplated gas treatment plants for recovery of NGL from rich feed gas include an upstream conditioning unit in which heavier hydrocarbons, and most typically C5 and heavier are removed prior to feeding the processed feed gas to an NGL recovery plant, thus avoiding the need to process the heavier hydrocarbons in the NGL recovery plant. Such conditioning units advantageously reduce energy demand for dehydration otherwise required and allow for production of C2-C4, and C5+ streams that can be sold as valuable products.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: March 25, 2014
    Assignee: Fluor Technologies Corporation
    Inventor: John Mak
  • Patent number: 8667812
    Abstract: A process and an apparatus are disclosed for removing carbon dioxide from a hydrocarbon gas stream. The gas stream is cooled, expanded to intermediate pressure, and supplied to a fractionation tower at a top column feed position. The tower overhead vapor stream is compressed to higher pressure and cooled to partially condense it, forming a condensed stream. The condensed stream is expanded to intermediate pressure, used to subcool a portion of the tower bottom liquid product, then supplied to the tower at a mid-column feed position. The subcooled portion of the tower bottom liquid product is expanded to lower pressure and used to cool the compressed overhead vapor stream. The quantities and temperatures of the feeds to the fractionation tower are effective to maintain the overhead temperature of the fractionation tower at a temperature whereby the major portion of the carbon dioxide is recovered in the tower bottom liquid product.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: March 11, 2014
    Assignee: Ordoff Engineers, Ltd.
    Inventors: Kyle T. Cuellar, John D. Wilkinson, Hank M. Hudson
  • Publication number: 20140060114
    Abstract: A natural gas two-column processing plant allows for recovery of at least 95% of C4 and heavier hydrocarbons, and about 60 to 80% of C3 hydrocarbons from a rich feed gas stream in which the first column (absorber) operates at a higher pressure than the second column, with the absorber receiving a compressed gas from the second column, and a turboexpander discharging a two-phase stream to the top of the absorber. Most typically, contemplated configurations and methods operate without the use of external refrigeration.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 6, 2014
    Applicant: Fluor Technologies Corporation
    Inventor: John Mak
  • Publication number: 20140033763
    Abstract: A method and apparatus of removing heavy hydrocarbons from a natural gas feed stream, the method comprising using first and second hydrocarbon removal systems in series such that the first system processes the natural gas feed stream to produce a heavy hydrocarbon depleted natural gas stream and the second system processes at least a portion of the heavy hydrocarbon depleted natural gas stream from the first system to produce a natural gas stream lean in heavy hydrocarbons, wherein one of said systems is a adsorption system that comprises one or more beds of adsorbent for adsorbing and thereby removing heavy hydrocarbons from a heavy hydrocarbon containing natural gas, and the other of said systems is a gas-liquid separation system for separating a heavy hydrocarbon containing natural gas into a heavy hydrocarbon depleted natural gas vapor and a heavy hydrocarbon enriched liquid.
    Type: Application
    Filed: September 12, 2012
    Publication date: February 6, 2014
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Fei Chen, Xukun Luo, Christopher Michael Ott, Mark Julian Roberts, Gowri Krishnamurthy
  • Publication number: 20140033762
    Abstract: A method and apparatus of removing heavy hydrocarbons from a natural gas feed stream, the method comprising using first and second hydrocarbon removal systems in series such that the first system processes the natural gas feed stream to produce a heavy hydrocarbon depleted natural gas stream and the second system processes at least a portion of the heavy hydrocarbon depleted natural gas stream from the first system to produce a natural gas stream lean in heavy hydrocarbons, wherein one of said systems is a adsorption system that comprises one or more beds of adsorbent for adsorbing and thereby removing heavy hydrocarbons from a heavy hydrocarbon containing natural gas, and the other of said systems is a gas-liquid separation system for separating a heavy hydrocarbon containing natural gas into a heavy hydrocarbon depleted natural gas vapor and a heavy hydrocarbon enriched liquid.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 6, 2014
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Fei Chen, Xukun Luo, Christopher Michael Ott, Mark Julian Roberts, Gowri Krishnamurthy
  • Publication number: 20140026615
    Abstract: An natural gas processing plant allows for recovery of at least 98% of butane and heavier hydrocarbons, and about 60 to 80% of propane hydrocarbons from a rich feed gas stream with a single fractionator that operates at two different pressures, that receives a chilled gas from a turboexpander in the upper fractionator and a C5+ liquid in the lower section, while producing a C2? vapor stream in the lower section that is used as reflux to the upper section. Most typically, contemplated configurations and methods operate without the use of external refrigeration.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 30, 2014
    Applicant: FLUOR TECHNOLOGIES CORPORATION
    Inventor: John MAK
  • Publication number: 20140026614
    Abstract: Methods for controlling the operation of fractionation columns to avoid column flooding are described. The methods use mass flow meters to measure the mass flow rates of the receiver vapor, and the stripper hydrocarbon liquid or stripper reflux and stripper net overhead. The water from the receiver can be measured with either a volumetric flow meter or a mass flow meter. A computer can be used to determine the dew point from the mass flows, and an alarm can be triggered and/or a process change can be made if the difference between the calculated dew point and the temperature of the overhead vapor stream is less than a predetermined amount.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 30, 2014
    Applicant: UOP LLC
    Inventors: Richard K. Hoehn, James W. Harris, Amit Goyal, Xin X. Zhu
  • Publication number: 20140013796
    Abstract: A process for separating a hydrocarbon gas into a fraction containing a predominant portion of the methane or ethane and lighter components and a fraction containing a predominant portion of the C2 or C3 and heavier components in which the feed gas is treated in one or more heat exchange and expansion steps; partly condensed feed gas is directed into a separator wherein a first residue vapor is separated from a C2 or C3-containing liquid; and C2 or C3-containing liquids at substantially the pressure of separation are directed into a distillation column wherein the liquid is separated into a second residue to recover a C2 or C3-containing product. A portion of the vapor and/or a portion of the liquid from the first hydrocarbon vapor/liquid separation is further cooled and introduced into a fractionation column to increase the C2 or C3 and heavier hydrocarbons recovery from the natural gas stream.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 16, 2014
    Inventors: Zaheer I. Malik, Ronald D. Key
  • Publication number: 20140013797
    Abstract: A system and method for removing nitrogen from an intermediate stream in a gas subcooled process operation that processes natural gas into a sales gas stream and a natural gas liquids stream. The system and method of the invention are particularly suitable for use with gas subcooled process operations where the sales gas stream exceeds pipeline nitrogen specifications by up to about 3%, such as for reducing the nitrogen content of sales gas streams to levels permissible for pipeline transport.
    Type: Application
    Filed: July 11, 2012
    Publication date: January 16, 2014
    Inventor: Rayburn C. Butts
  • Patent number: 8627681
    Abstract: A process for recovery of natural gas liquids is disclosed, the process including: fractionating a gas stream comprising nitrogen, methane, ethane, and propane and other C3+ hydrocarbons into at least two fractions including a light fraction comprising nitrogen, methane, ethane, and propane, and a heavy fraction comprising propane and other C3+ hydrocarbons; separating the light fraction into at least two fractions including a nitrogen-enriched fraction and a nitrogen-depleted fraction in a first separator; separating the nitrogen-depleted fraction into a propane-enriched fraction and a propane-depleted fraction in a second separator; feeding at least a portion of the propane-enriched fraction to the fractionating as a reflux; recycling at least a portion of the propane-depleted fraction to the first separator. In some embodiments, the nitrogen-enriched fraction may be separated in a nitrogen removal unit to produce a nitrogen-depleted natural gas stream and a nitrogen-enriched natural gas stream.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: January 14, 2014
    Assignee: Lummus Technology Inc.
    Inventor: Michael Malsam
  • Publication number: 20140007616
    Abstract: Contemplated plants for flexible ethane recovery and rejection by allowing to switch the top reflux to the demethanizer from residue gas to the deethanizer overhead product and by controlling the flow ratio of feed gas to two different feed gas exchangers. Moreover, the pressure of the demethanizer is adjusted relative to the deethanizer pressure for control of the ethane recovery and rejection.
    Type: Application
    Filed: December 15, 2011
    Publication date: January 9, 2014
    Applicant: FLUOR TECHNOLOGIES CORPORATION
    Inventor: John Mak
  • Patent number: 8597471
    Abstract: A method for concentrating contaminated sorbate in a solution which includes contaminated sorbate and clean sorbate is described wherein contaminated sorbate having a freezing point which is higher than the freezing point of the clean sorbate is cooled to a temperature below the freezing point of the contaminated sorbate and above the freezing point of the clean sorbate to concentrate the contaminated sorbate by cycling alternately from a desorption cycle to an adsorption cycle. By maintaining the solution at a temperature between the freezing point of the contaminated sorbate and the freezing point of the clean sorbate, the clean sorbate can be evaporated off.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: December 3, 2013
    Assignee: Industrial Idea Partners, Inc.
    Inventors: Randall N. Avery, Charlie Booth
  • Publication number: 20130312457
    Abstract: In a process for the cryogenic separation of a methane-rich feed stream containing between 3 and 35% of oxygen and also nitrogen, the feed stream is cooled in order to produce a cooled stream, at least one portion of the cooled stream is sent to a distillation column, a bottom stream is withdrawn from the distillation column, the bottom stream being enriched in methane compared to the feed stream, a stream enriched in oxygen compared to the feed stream is withdrawn from the distillation column, and a nitrogen-rich stream is sent to the column.
    Type: Application
    Filed: February 8, 2012
    Publication date: November 28, 2013
    Applicant: L'AIR LIQUIDE SOCIETE ANONYME POUR L'ETUDE ET ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE
    Inventor: Golo Zick
  • Patent number: 8590340
    Abstract: A process and apparatus for the recovery of ethane, ethylene, propane, propylene, and heavier hydrocarbon components from a hydrocarbon gas stream is disclosed. The stream is cooled and divided into first and second streams. The first stream is further cooled to condense substantially all of it and is thereafter expanded to the pressure of a fractionation tower and supplied to the fractionation tower at a first mid-column feed position. The second stream is expanded to the tower pressure and is then supplied to the column at a second mid-column feed position. A distillation vapor stream is withdrawn from the column below the feed point of the first stream and compressed to an intermediate pressure, and is then directed into heat exchange relation with the tower overhead vapor stream to cool the distillation stream and condense substantially all of it, forming a condensed stream.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: November 26, 2013
    Assignee: Ortoff Engineers, Ltd.
    Inventors: Richard N. Pitman, John D. Wilkinson, Joe T. Lynch, Hank M. Hudson, Tony L. Martinez
  • Patent number: 8585802
    Abstract: An energy-efficient method of recovering carbon dioxide (CO2) in a high-pressure liquid state from a high-pressure gas stream. The method includes cooling, condensing, and/or separating CO2 from a high-pressure gas stream in two or more separation zones and further purifying the resulting sub-critical pressure liquid CO2 streams in a third purification zone to thereby provide purified CO2. The purified liquid CO2 may be pumped to above the critical pressure for further utilization and/or sequestration for industrial or environmental purposes.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: November 19, 2013
    Inventor: Arnold Keller
  • Patent number: 8584488
    Abstract: A process and an apparatus for liquefying a portion of a natural gas stream are disclosed. The natural gas stream is cooled under pressure and divided into a first stream and a second stream. The first stream is cooled, expanded to an intermediate pressure, and supplied to a lower feed point on a distillation column. The second stream is expanded to the intermediate pressure and divided into two portions. One portion is cooled and then supplied to a mid-column feed point on the distillation column; the other portion is used to cool the first stream. The bottom product from this distillation column preferentially contains the majority of any hydrocarbons heavier than methane that would otherwise reduce the purity of the liquefied natural gas, so that the overhead vapor from the distillation column contains essentially only methane and lighter components.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: November 19, 2013
    Assignee: Ortloff Engineers, Ltd.
    Inventors: John D. Wilkinson, Hank M. Hudson, Kyle T. Cuellar
  • Publication number: 20130298602
    Abstract: A method for recovering natural gas liquids from a recycle stream having natural gas is provided. In one embodiment, a carbon dioxide recycle stream that comprises carbon dioxide, natural gas, and natural gas liquids is received. The carbon dioxide recycle stream is separated into a purified carbon dioxide recycle stream and a natural gas liquids stream. The purified carbon dioxide recycle stream comprises the carbon dioxide and the natural gas, and the natural gas liquids stream comprises the natural gas liquids. In another embodiment, a system comprises piping and a separator. The piping is configured to receive a recycle stream, and the separator is coupled to the piping and is configured to separate the recycle stream into a purified recycle stream and a natural gas liquids stream.
    Type: Application
    Filed: July 19, 2013
    Publication date: November 14, 2013
    Applicant: Pilot Energy Solutions, LLC
    Inventor: Eric Prim
  • Publication number: 20130283853
    Abstract: A process for recovering heavier hydrocarbons from a liquefied natural gas (LNG) stream and a hydrocarbon gas stream is disclosed. The LNG stream is heated to vaporize at least part of it, expanded, and supplied to a fractionation column at a first mid-column feed position. The gas stream is expanded, cooled, and supplied to the column at a second mid-column feed position. A distillation vapor stream is withdrawn from the column below the mid-column feed positions and cooled by the LNG stream sufficiently to condense at least a part of it, with at least a portion of the condensed stream directed to the column at an upper mid-column feed position. A portion of the column overhead stream is cooled by the LNG feed stream to condense it and form both a “lean” LNG stream and a reflux stream that is supplied to the column at a top column feed position.
    Type: Application
    Filed: March 8, 2013
    Publication date: October 31, 2013
    Inventors: Tony L. Martinez, John D. Wilkinson, Hank M. Hudson, Kyle T. Cuellar
  • Patent number: 8534094
    Abstract: Method and apparatus for liquefying a hydrocarbon stream. A hydrocarbon feed stream is passed through an NGL recovery system to separate the hydrocarbon feed stream into at least a methane-enriched overhead stream and a C2+ enriched bottom stream. The methane-enriched overhead stream is then passed through a first compressor to provide a methane-compressed stream, which is liquefied to provide a first liquefied stream. The pressure of the first liquefied stream is reduced to provide a mixed phase stream, which is passed through an end gas/liquid separator to provide an end gaseous stream and a liquefied hydrocarbon product stream. The end gaseous stream is passed through one or more end-compressors to provide an end compressed stream, of which at least a recycle fraction is fed into the methane-enriched overhead stream. The temperature of the first liquefied stream may be controlled to change the amount of the end gaseous stream.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: September 17, 2013
    Assignee: Shell Oil Company
    Inventor: Chee Seng Teo
  • Patent number: 8528360
    Abstract: A method for cooling a natural gas stream (CxHy) and separating the cooled gas stream into various fractions having different boiling points, such as methane, ethane, propane, butane and condensates, comprises: cooling the gas stream (1,2); and separating the cooled gas stream in an inlet separation tank (4); a fractionating column (7) in which a methane lean rich fluid fraction (CH4) is separated from a methane lean fluid fraction (C2+Hz); feeding at least part of the methane enriched fluid fraction from the inlet separation tank (4) into a cyclonic expansion and separation device (8), which preferably has an isentropic efficiency of expansion of at least 80%, such as a supersonic or transonic cyclone; and feeding the methane depleted fluid fraction from the cyclonic expansion and separation device (8) into the fractionating column (7) for further separation.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: September 10, 2013
    Assignee: Twister B.V.
    Inventors: Marco Betting, Jacob Michiel Brouwer, Pascal van Eck, Cornelis Antonie Tjeenk Willink
  • Patent number: 8528361
    Abstract: A method for recovering C2 and higher weight hydrocarbons, or alternatively C3 and higher weight hydrocarbons, from low pressure gas, wherein the method avoids the need to significantly compress contaminated low pressure gas in most cases, and is robust in response to pressure and temperature variations in the low pressure gas feed.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: September 10, 2013
    Assignee: Technip USA
    Inventors: Rajeev Nanda, Rahul Singh
  • Publication number: 20130227986
    Abstract: Hydrocarbon distillation columns with heat pumps and methods of operating them are described. The overhead stream is compressed to increase temperature so that it can be used both to heat the reboiler and to superheat the overhead stream before it enters the heat pump compressor.
    Type: Application
    Filed: March 5, 2012
    Publication date: September 5, 2013
    Applicant: UOP LLC
    Inventors: Clayton C. Sadler, Xin X. Zhu, Tokhanh Ngo, David J. Shecterle
  • Patent number: 8522574
    Abstract: Methods of reducing the concentration of low boiling point components in liquefied natural gas are disclosed. The methods involve dynamic decompression of the liquefied natural gas and one or more pre-fractionation vessels. Particular embodiments are suited for recovering helium and/or nitrogen enriched streams from a liquefied natural gas stream.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: September 3, 2013
    Assignee: Kellogg Brown & Root LLC
    Inventors: Duffer Crawford, David Coyle, Bharthwaj Anantharaman
  • Publication number: 20130219957
    Abstract: The present invention relates to an improved process for recovery of natural gas liquids from a natural gas feed stream. The process runs at a constant pressure with no intentional reduction in pressure. An open loop mixed refrigerant is used to provide process cooling and to provide a reflux stream for the distillation column used to recover the natural gas liquids. The processes may be used to recover C3+ hydrocarbons from natural gas, or to recover C2+ hydrocarbons from natural gas.
    Type: Application
    Filed: April 8, 2013
    Publication date: August 29, 2013
    Applicant: Lummus Technology Inc.
    Inventor: Lummus Technology Inc.
  • Publication number: 20130213088
    Abstract: Methods and systems for separating hydrocarbons using one or more dividing wall columns are provided. The method can include introducing a hydrocarbon fluid to a first dividing wall column. A first overhead comprising methane, ethane, or a combination thereof, a first intermediate comprising ethane, a second intermediate comprising ethane, and a first bottoms comprising one or more hydrocarbons having three or more carbon atoms per molecule can be recovered from the first dividing wall column. The first overhead can be introduced to a process for producing a liquefied natural gas. The first bottoms can be introduced to a second dividing wall column. A second overhead comprising propane, a third intermediate comprising butane, and a second bottoms comprising one or more hydrocarbons having five or more carbon atoms per molecule can be recovered from the second dividing wall column. The second overhead can be introduced to the process for producing a liquefied natural gas.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 22, 2013
    Applicant: KELLOGG BROWN & ROOT LLC
    Inventors: Elena Stylianou, Myrian Andrea Schenk
  • Publication number: 20130213086
    Abstract: Methods and apparatuses for processing natural gas are provided. In a method for processing a natural gas stream, the natural gas stream is fractionated to form an overhead stream and a bottoms stream. The overhead stream is separated with a membrane to form a methane rich residual stream and a permeate stream.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 22, 2013
    Applicant: UOP LLC
    Inventor: Gregory F. Maher
  • Patent number: 8505312
    Abstract: LNG vapor from an LNG storage vessel is absorbed using C3 and heavier components provided by a fractionator that receives a mixture of LNG vapors and the C3 and heavier components as fractionator feed. In such configurations, refrigeration content of the LNG liquid from the LNG storage vessel is advantageously used to condense the LNG vapor after separation. Where desired, a portion of the LNG liquid may also be used as fractionator feed to produce LPG as a bottom product.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: August 13, 2013
    Assignee: Fluor Technologies Corporation
    Inventors: John Mak, Richard B. Nielsen, Curt Graham
  • Patent number: 8505332
    Abstract: A method comprising receiving a hydrocarbon feed stream, separating the hydrocarbon feed stream into a heavy hydrocarbon rich stream and a carbon dioxide recycle stream, separating the carbon dioxide recycle stream into a natural gas liquids (NGL) rich stream and a purified carbon dioxide recycle stream, and injecting the purified carbon dioxide recycle stream into a subterranean formation. Included is a method comprising selecting a first recovery rate for a NGL recovery process, estimating the economics of the NGL recovery process based on the first recovery rate, selecting a second recovery rate that is different from the first recovery rate, estimating the economics of the NGL recovery process based on the second recovery rate, and selecting the first recovery rate for the NGL recovery process when the estimate based on the first recovery rate is more desirable than the estimate based on the second recovery rate.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: August 13, 2013
    Assignee: Pilot Energy Solutions, LLC
    Inventor: Eric Prim
  • Patent number: 8505333
    Abstract: An LNG facility employing an optimized heavies removal system. The optimized heavies removal system can comprise at least one distillation column and at least two separate heat exchangers. The heat exchangers can be operable to heat a liquid stream withdrawn from a distillation column to thereby provide predominantly vapor and/or liquid streams that can be reintroduced into the column.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: August 13, 2013
    Assignee: ConocoPhilips Company
    Inventors: Megan V. Evans, Attilio J. Praderio, Lisa M. Strassle, Mohan S. Chahal, Matthew C. Gentry, Wesley R. Qualls, Marc T. Bellomy, James L. Rockwell
  • Patent number: 8499581
    Abstract: A method and apparatus for conditioning imported liquefied natural gas to conform to a particular pipeline heating value specification and recovery of liquefied petroleum gas or natural gas liquids from liquefied natural gas are disclosed. An input stream containing liquefied natural gas is split into a direct stream and a bypass stream. The direct stream is heated in a cross-exchanger to produce a heated rich liquefied natural gas stream, which is split into a primary column feed and a secondary column feed. At least a major portion of the secondary column feed is vaporized to produce a vaporized secondary column feed, which is expanded in an expander to produce a vaporized and expanded secondary column feed. A top feed, the primary column feed, and the vaporized and expanded secondary column feed are fractionated to produce an overhead product stream and a bottom product stream. The overhead product stream is compressed in a compressor coupled to the expander.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: August 6, 2013
    Assignee: IHI E&C International Corporation
    Inventors: Kamal Shah, Girish Joshi
  • Publication number: 20130192298
    Abstract: Light naphtha distillation columns with heat pumps and methods of operating them are described. The overhead stream is compressed to increase temperature so that it can be used both to heat the reboiler and to superheat the overhead stream before it enters the heat pump compressor.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 1, 2013
    Applicant: UOP LLC
    Inventors: Clayton C. Sadler, Xin X. Zhu, Tokhanh N. Ngo