Coating Patents (Class 623/1.46)
  • Patent number: 10456245
    Abstract: Methods for applying polymeric material to a stent are disclosed. A mandrel is coupled to a stent body. The stent body comprises an inner surface defining a cavity and an outer surface opposing the internal surface. The stent body also has a length along an axis defined by the mandrel between a first end of the stent body and a second end of the stent body. An electrospun material is applied to at least a portion of the stent external surface and to at least a portion of the mandrel to form a coating sheet. A portion of the coating sheet extends from at least one of the first end or second end of the stent to the mandrel. One or both of the stent and the mandrel are moved to apply at least some of the portion of the coating sheet onto the internal surface of the stent body.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: October 29, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: Paul P. Nguyen, Chris McWilliams, Connor Cady, Cody Jeremiah Kratochvil, Dylan Joseph Kratochvil
  • Patent number: 10327926
    Abstract: There is disclosed an implantable medical stent system, including: a radially expandable stent comprising a filamental structure in a pattern surrounding a bore to form a substantially tubular wall along a length relative to a longitudinal axis; in which the filamental structure includes at least one arcuate crown with a crown peak having a radius of curvature located along a reference axis, and first and second arcuate crown shoulders on first and second sides, respectively, of the reference axis; in which the filamental structure also includes at least one pair of first and second elongated struts extending from the first and second crown shoulders, respectively; the first and second elongated struts have a region of constant maximum width at an intermediate portion and tapering toward the first and second crown shoulders.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: June 25, 2019
    Assignee: CELONOVA BIOSCIENCES, INC.
    Inventors: Michael J. Lee, Stuart Earl Karl, Riley King
  • Patent number: 10240005
    Abstract: Disclosed herein is an ABA type block copolymer including a repeating unit derived from lactic acid that is excellent in physical properties, such as toughness. The ABA type block copolymer includes a polymer block A including a repeating unit derived from lactic acid and a polymer block B including a repeating unit represented by a formula [I] linked in an order of A-B-A. In the following formula [I], R1 represents a hydrogen atom, an unsubstituted or substituted alkyl group, or an unsubstituted or substituted aryl group, R2 and R3 each independently represent a hydrogen atom, an unsubstituted or substituted alkyl group, or an unsubstituted or substituted aryl group, and n represents an integer of 1 to 10. X represents —S—, —SO— or —SO2—, and R4 represents an unsubstituted or substituted alkyl group, or an unsubstituted or substituted aryl group.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: March 26, 2019
    Assignee: NIPPON SODA CO., LTD.
    Inventor: Eiji Takahashi
  • Patent number: 10201338
    Abstract: The invention relates to a device comprising a surgical material and a support material and related methods for the application of the surgical material to a wound or surgical site using the device.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: February 12, 2019
    Assignee: Abyrx, Inc.
    Inventors: John Pacifico, Frank Do, Richard L. Kronenthal, Aniq Darr
  • Patent number: 10137225
    Abstract: Articles-of-manufacturing comprising an object having a surface and at least a first layer of a first therapeutically active agent being deposited onto at least a continuous portion of the surface, wherein at least 50 weight percents of the first layer is the first therapeutically active agent in a crystalline form are disclosed. Methods utilizing such articles-of-manufacturing for treating medical conditions are also disclosed. Processes of preparing the articles-of-manufacturing by contacting a surface of the object with a solution containing the therapeutically active agent, without cooling the surface to a temperature below a temperature of the solution, are also disclosed.
    Type: Grant
    Filed: November 27, 2016
    Date of Patent: November 27, 2018
    Assignee: Yissum Research Development Company of the Hebrew University of Jerusalem Ltd.
    Inventors: Abraham Jacob Domb, Shady Farah
  • Patent number: 10010652
    Abstract: The present invention relates generally to a bio-degradable implant based on magnesium having a reduced corrosion rate and to a method for the production of such an implant. It is a method for treating a surface of a bio-degradable metallic implant comprising the following steps: providing a dispersed system comprising a colloid-dispersed apatite and adding an apatite powder to the dispersed system, subjecting an implant to the dispersed system such that a surface of the implant which is to be treated is immersed in the dispersed system wherein the implant comprises a magnesium based alloy, applying an AC voltage difference between the implant as a first electrode and a second electrode positioned in the dispersed system for generating a plasma electrolytic oxidation on the immersed surface of the implant so that the immersed surface is converted to an oxide film which is at least partially covered by apatites formed by the colloid-dispersed apatite and the apatite powder.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: July 3, 2018
    Assignee: AAP INPLANTATE AG
    Inventors: Elvira Dingeldein, Cyrille Gasqueres, Amir Eliezer, Marco Wolfstadter, Lydia Heimann
  • Patent number: 9981072
    Abstract: Provided herein is a coated coronary stent, comprising: a. stent; b. a plurality of layers deposited on said stent to form said coronary stent; wherein at least one of said layers comprises a bioabsorbable polymer and at least one of said layers comprises one or more active agents; wherein at least part of the active agent is in crystalline form.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: May 29, 2018
    Assignee: Micell Technologies, Inc.
    Inventors: Douglas Taylor, James B. McClain
  • Patent number: 9950341
    Abstract: Systems and methods for coating of spiral intracranial aneurysm coils, e.g., a Guglielmi Detachable Coil (GDC), such that only selected surfaces along the spiral coil are coated with a polymer via an atomized polymer deposition process. The resulting device is a detachable aneurysm coil system which preserves the mechanical geometry and flexibility of the coil, and delivers specific agents to promote wound healing.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: April 24, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Ben Wu, Arnold Suwarnasarn, Fernando Vinuela, Ichiro Yuki
  • Patent number: 9867903
    Abstract: The present invention provides articles of manufacture comprising biocompatible nanostructures comprising significantly increased surface area for, e.g., organ, tissue and/or cell growth, e.g., for bone, tooth, kidney or liver growth, and uses thereof, e.g., for in vitro testing of drugs, chemicals or toxins, or as in vivo implants, including their use in making and using artificial tissues and organs, and related, diagnostic, screening, research and development and therapeutic uses, e.g., as drug delivery devices. The present invention provides biocompatible nanostructures with significantly increased surface area, such as with nanotube and nanopore array on the surface of metallic, ceramic, or polymer materials for enhanced cell and bone growth, for in vitro and in vivo testing, cleansing reaction, implants and therapeutics. The present invention provides optically transparent or translucent cell-culturing substrates.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: January 16, 2018
    Assignee: The Regents of the University of California
    Inventors: Sungho Jin, Seunghan Oh
  • Patent number: 9844435
    Abstract: A prosthetic heart valve includes a collapsible and expandable stent having an outflow end and an inflow end, a plurality of commissure features attached to the stent, a plurality of anchoring features disposed on legs of the stent, the plurality of anchoring features being coupleable to a delivery device for repositioning, and a valve assembly disposed within the stent. The anchoring features may be configured to attach to heart tissue to help secure the prosthetic heart valve in an operating position.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: December 19, 2017
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventor: Tracee Eidenschink
  • Patent number: 9795496
    Abstract: The invention relates to a medical device and a method of using it. The device is a stent which can be percutaneously deliverable with (or on) an endovascular catheter or via other surgical or other techniques and then expanded. The stent is configured to have a central portion defined by “open” cells and at least two end portions, defined by “closed” cells, spaced apart and directly connected to the distal and proximal ends of the central portion of the stent. The stent may also optionally have a covering or a lattice with openings.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: October 24, 2017
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Joseph R. Armstrong, Edward H. Cully, Michael W. Franklin, Mark Y. Hansen, Brandon A. Lurie, Craig R. McMurray, William D. Montgomery, Wendy J. Terry, Eric M. Tittelbaugh
  • Patent number: 9592325
    Abstract: Absorbable stents and absorbable stent coatings have been developed with improved properties. These devices preferably comprise biocompatible copolymers or homopolymers of 4-hydroxybutyrate, and optionally poly-L-lactic acid and other absorbable polymers and additives. Compositions of these materials can be used to make absorbable stents that provide advantageous radial strengths, resistance to recoil and creep, can be plastically expanded on a balloon catheter, and can be deployed rapidly in vivo. Stent coatings derived from these materials provide biocompatible, uniform coatings that are ductile, and can be expanded without the coating cracking and/or delaminating and can be used as a coating matrix for drug incorporation.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: March 14, 2017
    Assignee: Tepha, Inc.
    Inventors: Klaus-Peter Schmitz, Detlef Behrend, Katrin Sternberg, Niels Grabow, David Martin, Simon Williams
  • Patent number: 9556508
    Abstract: A method for the photocatalytically active coating of surfaces is presented and described, as well as an article (1) photocatalytically actively coated according to this method. The object of providing a method for the photocatalytically active coating of, in particular, metallic surfaces, whereby a permanently stable coating is produced without negatively affecting the photocatalytic activity of the layer, is achieved by a method, in which a substrate article is prepared which has a surface, a metallic adhesion-promoting layer is applied to the surface of the substrate article, a photocatalytically active layer consisting of one or more metal oxides is applied to the adhesion-promoting layer, wherein the metallic adhesion-promoting layer and the surface of the substrate article consist of a different material and the adhesion-promoting layer is selected such that it is not oxidized or reduced by the photocatalytically active layer.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: January 31, 2017
    Assignee: LINDE AKTIENGESELLSCHAFT
    Inventors: Jan-Oliver Kliemann, Henning Gutzmann, Thomas Klassen, Frank Gaertner
  • Patent number: 9510810
    Abstract: A method for bonding a polymeric medical device to tissue is provided which includes providing a polymeric medical device having a plurality of reactive members of a specific binding pair attached on a surface of the medical device, and providing tissue with a plurality of complementary reactive members of the specific binding pair, wherein upon contact of the reactive members on the surface of the medical device with the complimentary reactive members on the tissue, covalent bonds are formed between the reactive members and the complementary reactive members, thus adhering the device to the tissue.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: December 6, 2016
    Assignee: Sofradim Production
    Inventors: Sébastien Ladet, Philippe Gravagna
  • Patent number: 9469889
    Abstract: An alloy and an implant having a three-dimensional structure based on such alloy. The alloy comprises a monophasic MgZn alloy containing from 2.0 wt. % Zn to 6 wt. % Zn, having less than 0.001 wt. % of one or more other elements with the remainder being Mg. In some embodiments, the alloy is substantially free of microgalvanic elements. In some embodiments, the alloy includes a MgZnCa alloy containing nanosized precipitates being less noble than the Mg matrix alloy and having a Zn content ranging from 3.0 wt. % Zn to 6 wt. % Zn and a calcium content ranging from 0.0005 wt. % to 1.0 wt. %, having less than 0.001 wt. % of one or more other elements with the remainder being Mg. In other embodiments, the alloy includes a MgZnCa alloy containing nanosized precipitates being less noble than the Mg matrix alloy, a plurality of nanosized precipitates being more noble than the Mg matrix and having a Zn content ranging from 3.0 wt. % Zn to 6 wt. % Zn, a calcium content ranging from 0.0005 wt. % to 1.0 wt.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 18, 2016
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Thomas Imwinkelried, Stefan Beck, Peter Uggowitzer, Joerg Loeffler
  • Patent number: 9457127
    Abstract: Methods to produce micro-fiber webs containing fibers of 4-hydroxybutyrate or copolymers thereof with average diameters from 0.01 to 100 ?m, have been developed. The micro-fiber webs are produced by centrifugal spinning. These methods allow the micro-fiber webs to be produced without substantial loss of the polymer weight average molecular weight. Webs containing micro-fibers of poly-4-hydroxybutyrate or copolymer thereof, are made by centrifugal spinning. The micro-fibers have average diameters ranging from 0.01 to 100 ?m and contain crimped fibers with a higher elongation at break fibers when compared to fibers derived by melt-blown extrusion, dry spinning and electrospinning. The fibers of the micro-fiber webs have a high degree of orientation. These micro-fiber webs can be used for a variety of purposes including fabrication of medical devices.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: October 4, 2016
    Assignee: Tepha, Inc.
    Inventors: David P. Martin, Said Rizk
  • Patent number: 9452243
    Abstract: The invention relates to an implant comprising an active-agent-containing coating which covers the implant at least in sections. The coating is composed of at least two subsections; a first subsection contains the at least one active substance, and a second subsection contains an auxiliary agent.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: September 27, 2016
    Assignee: BIOTRONIK AG
    Inventors: Matthias Gratz, Alexander Borck, Alexander Rzany, Robert Schmiedl, Matthias Fringes, Claus Harder
  • Patent number: 9321216
    Abstract: A medical device consists of a stent having a first surface and a second surface parallel to the first surface; a single expanded polytetrafluoroethylene (ePTFE) layer contacting the first surface of the stent; and an elastomeric layer applied to at least one surface of the stent. In at least one embodiment, the elastomeric layer is silicone. In at least one embodiment, the medical device is manufactured by positioning the ePTFE layer such that a first surface of the ePTFE layer contacts a first surface of the stent to form a stent-ePTFE assembly; and applying an elastomeric solution to the first surface of the ePTFE layer and at least one surface of the stent.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: April 26, 2016
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Kurt A. Geitz, Paul K. Norton, Michael Madden, Ralph J. Barry, Jr., Claude O. Clerc, Gerald Fredrickson
  • Patent number: 9273191
    Abstract: Implantable medical devices include a substrate having applied thereto a coating including a polymeric material possessing a core and at least one functional group known to have click reactivity.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: March 1, 2016
    Assignees: Sofradim Production, Covidien LP
    Inventors: Sébastien Ladet, Ahmad Robert Hadba
  • Patent number: 9198968
    Abstract: A method and device for local delivery of water-soluble or water-insoluble therapeutic agents to the surface of a normal or diseased body lumen is disclosed. An expandable structure of a medical disposable device, such as a balloon of a balloon catheter, is coated with an amphiphilic polymer coating comprising a therapeutic agent and an amphiphilic polymer or co-polymer. The medical disposable device is inserted into a body lumen, and expanded to contact the amphiphilic polymer coating against the body lumen. The total solubility of the polymer or co-polymer in vivo prevents any embolic hazard associated with the amphiphilic polymer coating.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: December 1, 2015
    Assignee: The Spectranetics Corporation
    Inventors: Eugene T. Michal, Daniel J. Lerner, Matthew J. Pollman
  • Patent number: 9132003
    Abstract: A stent assembly including a stent configured to be positioned in a body lumen, and a knitted stent jacket including an expansible mesh structure having a coverage area of less than 25%, having approximate aperture diameters greater than 20 micrometers, and surrounding an external surface of the stent and coaxially associated therewith, wherein the stent assembly elutes an amount of an active pharmaceutical agent.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: September 15, 2015
    Assignee: INSPIREMD, LTD.
    Inventors: Eli Bar, Asher Holzer, Ofir Paz
  • Patent number: 9040111
    Abstract: A method of making a stent, including preparing a solution containing a composition, the composition comprising a biodegradable polymer and a vascular intimal hyperplasia inhibitor of a kind, including argatroban, which does not inhibit proliferation of endothelial cells, the weight compositional ratio of the polymer to the vascular intimal hyperplasia inhibitor being within the range of 8:2 to 3:7, the composition dissolved in a solvent selected from the group consisting of a mixture of a lower alkyl ketone and methanol, a mixture of a lower alkyl ester and methanol or a mixture of a lower halogenated hydrocarbon and methanol; coating at least an outer surface of a stent body of a cylindrical configuration having outer and inner surfaces with a diamond-like thin film coated on the surfaces; and after the coating, removing the solvent to complete a first coated layer.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: May 26, 2015
    Assignees: JAPAN STENT TECHNOLOGY CO., LTD., TOKAI UNIVERSITY EDUCATIONAL SYSTEM, TOYO ADVANCED TECHNOLOGIES CO., LTD.
    Inventors: Ikuo Omura, Zhen Yu Jin, Shuzo Yamashita, Hiroo Iwata, Akira Mochizuki
  • Publication number: 20150134048
    Abstract: The present invention is directed to polymeric materials comprising biodegradable, dioxanone-based copolymers and implantable devices (e.g., drug-delivery stents) formed of such materials. The polymeric materials can also contain at least one additional biocompatible moiety, at least one non-fouling moiety, at least one biobeneficial material, at least one bioactive agent, or a combination thereof. The polymeric materials are designed to improve the mechanical, physical and biological properties of implantable devices formed thereof.
    Type: Application
    Filed: January 22, 2015
    Publication date: May 14, 2015
    Inventor: Ni Ding
  • Patent number: 9028543
    Abstract: The invention provides a stent made from a material operable to perform a stent's desired therapeutic functions, and also made from a material that has a radiopacity that substantially preserves the appearance of the stent when the stent is viewed under a CT imaging beam. Such a stent can allow for follow-up of the stent and the surrounding blood-vessel on CT.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: May 12, 2015
    Assignee: Kieran Murphy, LLC
    Inventor: Kieran P. Murphy
  • Publication number: 20150112426
    Abstract: The invention relates to a method for grafting an organic film onto an electrically conductive or semiconductive surface by electro-reduction of a solution, wherein the solution comprises one diazonium salt and one monomer bearing at least one chain polymerizable functional group. During the electrolyzing process, at least one protocols consisting of an electrical polarization of the surface by applying a variable potential over at least a range of values which are more cathodic that the reduction or peak potential of all diazonium salts in said solution is applied. The invention also relates to an electrically conducting or semiconducting surface obtained by implementing this method. The invention further relates to electrolytic compositions.
    Type: Application
    Filed: June 11, 2014
    Publication date: April 23, 2015
    Applicants: ALCHIMER, ALCHIMEDICS, INC.
    Inventor: CHRISTOPHE BUREAU
  • Publication number: 20150109573
    Abstract: A functionalized polymer system is described herein for preparing and/or modifying biological implants and prostheses. In one aspect, the polymer system once applied to the surface of a biological implant or prosthesis, or once used in preparing a biological implant or prosthesis comprises a surface that is more hydrophilic, more wettable, more comfortable, resists cell adhesion, resists protein deposition, or a combination thereof. In one embodiment, a coated biological implant or prosthetic is described herein. The coated biological implant or prosthetic comprises a substrate forming the basic structure of the implant or prosthetic, and a coating comprising a polymer, where the coating is capable of resisting cell adhesion, protein deposition, or a combination thereof.
    Type: Application
    Filed: May 3, 2013
    Publication date: April 23, 2015
    Inventor: Dong Xie
  • Patent number: 9011519
    Abstract: An implantable medical device (10) comprises reservoirs (30) for receiving a water-soluble active agent or medicament (36) in the form of a solid deposit; and at least one biocompatible and biodegradable protecting/retaining layer (38) for protecting the active agent or medicament (36) until it reaches its site of implantation, said biocompatible and biodegradable protecting layer (38) comprising at least one biocompatible and biodegradable film-forming agent, and at least one hydrophobic, biocompatible, agent for controlling the disintegration rate of the protecting/retaining layer. The invention provides better protection of the active agent or medicament and better control of the disintegration rate of the protecting/retaining layer.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: April 21, 2015
    Assignees: Hexacath
    Inventors: Gilles Ascher, Edoardo Camenzind
  • Patent number: 9005695
    Abstract: An endoprosthesis comprising a stent, a cover fully covering the stent wherein the cover has variable porosity in the radial direction; and an adhesion layer connecting the stent to the cover. Another aspect of the invention is a method of implanting an endoprosthesis which includes a stent, providing a cover with variable porosity in the radial direction, connecting the stent to the cover with an adhesion layer to form a covered stent, and implanting the covered stent within a body lumen of a patient.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: April 14, 2015
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Peter J. Shank, Sheng-Ping Zhong, Kinh-Luan D. Dao, F. Anthony Headley, Jr.
  • Patent number: 9005356
    Abstract: The invention provides methods, compositions, and devices for promoting adhesion or migration of endothelial cells.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: April 14, 2015
    Assignee: University of Utah Research Foundation
    Inventors: Dean Y. Li, Brent D. Wilson, Lise Sorensen Brunhart
  • Patent number: 8999456
    Abstract: A method for manufacturing a drug-releasing stent is provided. The method includes providing a titanium precursor, a carrier gas and a reactant gas in a plasma vacuum chamber, and generating a plasma for 1 to 6 hours to form a titanium oxide thin film on the surface of a stent. The method further includes providing steam or oxygen and hydrogen in the plasma vacuum chamber and generating a low-temperature plasma for 10 minutes to 2 hours to modify the surface of the titanium oxide thin film. The method further includes reacting the titanium oxide thin film of the stent with a drug in an acidic solution and under an inert gas atmosphere at room temperature to 100° C. for 30 minutes to 4 hours to attach the drug.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: April 7, 2015
    Assignee: Industry Foundation of Chonnam National University
    Inventors: Dong Lyun Cho, Sun-Jung Song, Myung Ho Jeong, Kyoung Seok Kim, Yu Jeong Park
  • Publication number: 20150094797
    Abstract: Vascular grafts for treating, reconstructing and replacing damaged or diseased cardiovascular vessels that are formed from decellularized extracellular matrix (ECM). The vascular grafts include outer or outer and inner coatings that provide structural reinforcement.
    Type: Application
    Filed: December 10, 2014
    Publication date: April 2, 2015
    Inventor: Robert G. Matheny
  • Patent number: 8992603
    Abstract: The present invention relates generally to the maintenance of blow flood using drug eluting stents and/or other coated medical devices to increased length of time of blood flow. Further, the present invention relates to drug-releasing coated devices for reducing smooth muscle cell proliferation and platelet activity to further limit restenosis utilizing resveratrol and quercetin, polyphenols that are linked to the cardioprotection of red wine consumption. The present invention also provides products and methods for treating or preventing atherosclerosis, stenosis, restenosis, smooth muscle cell proliferation, platelet cell activation and other clotting mechanisms, occlusive disease, or other abnormal lumenal cellular proliferation condition in a location within the body of a patient.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: March 31, 2015
    Assignees: Nanocopoeia, Inc., Louisiana State University Health Sciences Center Office of Research
    Inventors: Tammy R. Dugas, Alok Khandelwal, James John Kleinedler, John Devlin Foley
  • Patent number: 8992471
    Abstract: The present invention relates generally to the maintenance of blow flood using drug eluting stents and/or other coated medical devices to increased length of time of blood flow. Further, the present invention relates to drug-releasing coated devices for reducing smooth muscle cell proliferation and platelet activity to further limit restenosis utilizing resveratrol and quercetin, polyphenols that are linked to the cardioprotection of red wine consumption. The present invention also provides products and methods for treating or preventing atherosclerosis, stenosis, restenosis, smooth muscle cell proliferation, platelet cell activation and other clotting mechanisms, occlusive disease, or other abnormal lumenal cellular proliferation condition in a location within the body of a patient.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: March 31, 2015
    Assignees: Nanocopoeia, Inc., Louisiana State University Health Sciences Center Office of Research
    Inventors: Tammy R. Dugas, Alok Khandelwal, James John Kleinedler, III, John Devlin Foley
  • Patent number: 8986775
    Abstract: A system for delivery of a beneficial agent in the form of a viscous liquid or paste allows holes in a medical device to be loaded in a single step process. The loading of a beneficial agent in a paste form also provides the ability to deliver large and potentially sensitive molecules including proteins, enzymes, antibodies, antisense, ribozymes, gene/vector constructs, and cells including endothelial cells.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: March 24, 2015
    Assignee: Innovational Holdings LLC
    Inventors: John F. Shanley, Stephen Hunter Diaz, Theodore L. Parker
  • Patent number: 8980364
    Abstract: Various embodiments of methods for coating stents are described herein. Applying a composition including polymer component and solvent to a stent substrate followed by exposing the polymer component to a temperature equal to or greater than a Tg of the polymer component is disclosed. Repeating the applying and exposing one or more times to form a coating with the result that the solvent content of the coating after the final exposing step is at a level suitable for a finished stent is further disclosed.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: March 17, 2015
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Yung-Ming Chen, Jason Van Sciver, Syed F. A. Hossainy, Stephen D. Pacetti
  • Patent number: 8979921
    Abstract: Absorbable stents and absorbable stent coatings have been developed with improved properties. These devices preferably comprise biocompatible copolymers or homopolymers of 4-hydroxybutyrate, and optionally polylactic acid and other absorbable polymers and additives. Compositions of these materials can be used to make absorbable stents that provide advantageous radial strengths, resistance to recoil and creep, can be plastically expanded on a balloon catheter, and can be deployed rapidly in vivo. Stent coatings derived from these materials provide biocompatible, uniform coatings that are ductile, and can be expanded without the coating cracking and/or delaminating and can be used as a coating matrix for drug incorporation.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: March 17, 2015
    Assignee: Tepha, Inc.
    Inventors: Klaus-Peter Schmitz, Detlef Behrend, Katrin Sternberg, Niels Grabow, David P. Martin, Simon F. Williams
  • Patent number: 8974520
    Abstract: The invention relates to a method for producing a bioactive surface on the balloon (3) of a balloon catheter (1). According to said method, the surface of the balloon (3) is at least partially wetted with a first solution of an active substance (8) and the section of the surface of the balloon (3) wetted with the first solution of an active substance (8) is then wetted with a second, saturated solution of the active substance (28). The invention further relates to a balloon (3) of a balloon catheter (1) the surface of which is at least partially coated with an active substance (11), the coating (11) being homogeneous and brittle in the entire coated region.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: March 10, 2015
    Inventor: Alexander Rübben
  • Patent number: 8974522
    Abstract: A coated medical device (10) including a structure (12) adapted for introduction into a passage or vessel of a patient. The structure is formed of preferably a non-porous base material (14) having a bioactive material layer (18) disposed thereon. The medical device is preferably an implantable stent or balloon (26) of which the bioactive material layer is deposited thereon. The stent can be positioned around the balloon and another layer of the bioactive material posited over the entire structure and extending beyond the ends of the positioned stent. The ends of the balloon extend beyond the ends of the stent and include the bioactive material thereon for delivering the bioactive material to the cells of a vessel wall coming in contact therewith. The balloon further includes a layer of hydrophilic material (58) positioned between the base and bioactive material layers of the balloon.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: March 10, 2015
    Assignee: Cook Medical Technologies LLC
    Inventors: Brian L. Bates, Anthony O. Ragheb, Joseph M. Stewart, IV, William J. Bourdeau, Brian D. Choules, James D. Purdy, Neal E. Fearnot
  • Patent number: 8968765
    Abstract: The present disclosure provides a brush polymer, including: a linear polymer main chain; and brush structural side chains, including: a hydrophobic molecular branch, and a hydrophilic molecular branch and/or an anti-biofilm/or an anti-microbial molecular branch, wherein the linear polymer main chain is conjugated to the side chains by covalent bonds formed between a hydroxyl group and a reactive functional group, wherein the reactive functional group includes: isocyanate, carboxyl, or epoxy. The present disclosure also provides a medical application of the brush polymer.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: March 3, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Jui-Hsiang Chen, Jean-Dean Yang, Yu-Hua Chen, Ting-Yu Shih, Chia-wei Hong, Chao-Chen Tien
  • Patent number: 8968392
    Abstract: A method of inhibiting vascular intimal hyperplasia including: placing a stent within a blood vessel, the stent having a stent body of a cylindrical configuration having outer and inner surfaces with a diamond-like thin film coated on the surfaces, a first coated layer coating at least the outer surface of the stent body, the first coated layer being prepared of a first composition comprising a biodegradable polymer and a vascular intimal hyperplasia inhibitor of a kind, comprising argatroban, which does not inhibit proliferation of endothelial cells, the weight composition ratio of the polymer to the vascular intimal hyperplasia inhibitor being within the range of 8:2 to 7:3, and a second coated layer; and causing argatroban to be released from the stent to thereby inhibit the vascular intimal hyperplasia without inhibiting proliferation of endothelial cells.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: March 3, 2015
    Assignees: Japan Stent Technology Co., Ltd., Tokai University Educational System, Toyo Advanced Technologies Co., Ltd., Hiroo Iwata
    Inventors: Ikuo Omura, Zhen Yu Jin, Shuzo Yamashita, Hiroo Iwata, Akira Mochizuki
  • Patent number: 8961591
    Abstract: Absorbable stents and absorbable stent coatings have been developed with improved properties. These devices preferably comprise biocompatible copolymers or homopolymers of 4-hydroxybutyrate, and optionally poly-L-lactic acid and other absorbable polymers and additives. Compositions of these materials can be used to make absorbable stents that provide advantageous radial strengths, resistance to recoil and creep, can be plastically expanded on a balloon catheter, and can be deployed rapidly in vivo. Stent coatings derived from these materials provide biocompatible, uniform coatings that are ductile, and can be expanded without the coating cracking and/or delarmnating and can be used as a coating matrix for drug incorporation.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: February 24, 2015
    Assignee: Tepha, Inc.
    Inventors: Klaus-Peter Schmitz, Detlef Behrend, Katrin Sternberg, Niels Grabow, David P. Martin, Simon F. Williams
  • Patent number: 8961592
    Abstract: At least some embodiments of the invention relates to an implant having a coating that contains or is composed of a functionalized RGD peptidomimetic RGD-P1 having the formula (1) and/or a functionalized RGD peptidomimetic RGD-P2 having the formula (2), and an associated manufacturing method.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: February 24, 2015
    Assignee: Biotronik AG
    Inventors: Alexander Borck, Matthias Gratz, Horst Kessler, Michael Joner, Florian Rechenmacher, Stefanie Neubauer
  • Patent number: 8961589
    Abstract: The present invention relates to implantable medical devices coated with polymer having tunable hydrophobicity and their use in the treatment of vascular diseases.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: February 24, 2015
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Lothar W. Kleiner, John Stankus, Nam D. Pham, Michael H. Ngo, Bozena Zofia Maslanka, Syed Faiyaz Ahmed Hossainy, Mikael Trollsas, Yiwen Tang
  • Patent number: 8956403
    Abstract: A medical implant includes a metallic base, a tie layer, and at least a first layer overlying an outer surface of the tie layer. The tie layer is bonded to at least a portion of a surface of the metallic base. The tie layer includes magnesium or a magnesium-based alloy. The tie layer can have an outer surface comprising dendritic grains. The tie layer can have a rough outer surface defined by pores, projecting grain structures, and/or projecting particles. A method of producing a tie layer on a medical device includes applying magnesium or a magnesium-based alloy to the medical device and cooling the magnesium or the magnesium-based alloy to produce a rough outer surface.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: February 17, 2015
    Assignee: Boston Scientific SciMed, Inc.
    Inventors: Daniel J. Gregorich, Michael P. Meyer, Jonathan S. Stinson
  • Patent number: 8940039
    Abstract: A vascular prosthesis includes a prosthesis wall whose outer surface has at least one reinforcing means, the surface of the prosthesis wall and the surface of the at least one reinforcer being coated, at least in part, with an antimicrobial layer.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: January 27, 2015
    Assignee: Aesculap AG
    Inventors: Helmut Goldmann, Dennis Langanke
  • Patent number: 8936826
    Abstract: A method of coating a stent involves modifying a spray coating parameter until a target mass per coating layer is achieved. A method for coating involves spraying a batch of stents according to spraying parameters that were previously determined to provide a target mass per coating layer.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: January 20, 2015
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Kevin Jow, Daniel A. Castro
  • Patent number: 8932345
    Abstract: Medical device coatings are provided that simultaneously release a therapeutic agent at different rates from different portions of the medical device coating. In a first embodiment, medical device coatings are provided that include particles comprising a therapeutic agent with two or more different particles sizes within a single layer on a surface of the implantable device. In a second embodiment, medical device coatings are provided having a higher concentration of the therapeutic agent in a first region of the coating than in a second region of the coating. In a third embodiment, medical device coatings are provided that are formed by certain coating processes wherein the droplet size of a spray coating solution is changed during the coating process. These coating processes preferably include applying a solution comprising a therapeutic agent and a suitable solvent to a surface of an implantable medical device.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: January 13, 2015
    Assignee: Cook Medical Technologies LLC
    Inventors: William F. Moore, Gary Bradford Shirley
  • Patent number: 8932346
    Abstract: An expandable medical device having a particle layer disposed over a reservoir containing a therapeutic agent. The particle layer has a first porosity when the medical device is in the unexpanded configuration and a second porosity when the medical device is in the expanded configuration. The particle layer comprises a plurality of micron-sized or nano-sized particles. In certain embodiments, the particles are not connected to each other, and as such, the different porosities are provided by changes in the spacing between the particles as the medical device is expanded/unexpanded. Also disclosed are medical devices having a particle layer, wherein the particle layer comprises a plurality of encapsulated particles, and methods of coating medical devices with particles.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: January 13, 2015
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Michael Kuehling, Dominique Seidel, Torsten Scheuermann, Jan Weber
  • Patent number: 8932347
    Abstract: Implantable materials having engineered surfaces and method of making same comprising geometric features on at least one surface of the material having at least one of chemical, physiochemical and electrochemical activity different than regions of the at least one surface without the features.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: January 13, 2015
    Assignee: Advanced Bio Prosthetic Surfaces, Ltd.
    Inventors: Animesh Choubey, Julio C. Palmaz
  • Patent number: RE45500
    Abstract: Methods of making a coating on a medical device are disclosed, including associating a composition with at least a portion of the device to form a layer. In some embodiments, a composition may include a copolymer prepared from a room temperature melt of a plurality of monomer units that comprises a first monomer unit and a second monomer unit, wherein the second monomer unit has a glass transition temperature that is at least about 30 degrees Centigrade higher than the glass transition temperature of the first monomer unit, with a glass transition temperature of a monomer unit being defined as a glass transition temperature of a homopolymer of that monomer unit.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: April 28, 2015
    Assignee: BioInteractions Ltd.
    Inventors: Ajay K. Luthra, Shivpal S. Sandhu