Annuloplasty Device Patents (Class 623/2.36)
  • Patent number: 10973662
    Abstract: A system for reshaping a valve annulus includes an elongate template having a length along a longitudinal axis and at least one concavity in a generally lateral direction along said length. The pre-shaped template is positioned against at least a region of an inner peripheral wall of the valve annulus, and at least one anchor on the template is advanced into a lateral wall of the valve annulus to reposition at least one segment of the region of the inner peripheral wall of the valve annulus into said concavity. In this way, a peripheral length of the valve annulus can be foreshortened and/or reshaped to improve coaption of the valve leaflets and/or to eliminate or decrease regurgitation of a valve.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: April 13, 2021
    Assignee: Elixir Medical Corporation
    Inventors: Motasim Sirhan, Vinayak Bhat, Joseph Paraschac, Benjamyn Serna, John Yan
  • Patent number: 10973637
    Abstract: Apparatus is provided for repairing a cardiac valve, the apparatus can include a flexible annuloplasty structure having a sleeve with an elongated tubular side wall and a distal tip. A first tissue anchor can passing through the distal tip of the sleeve, and a second tissue anchor can pass through a section of the tubular side wall. The first and second tissue anchors can extend in a substantially same direction. A longitudinal portion of the tubular side wall can be disposed between the first and second tissue anchors, and have a first lateral part opposite a second lateral part and closer to the first and second tissue anchors than the second lateral part is to the first and second tissue anchors. The second lateral part can have a degree of tension that is larger than a degree of tension of the first lateral part.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: April 13, 2021
    Assignee: Valtech Cardio, Ltd.
    Inventors: Yuval Zipory, Tal Hammer
  • Patent number: 10966696
    Abstract: Methods and systems for closing an opening or defect in tissue, closing a lumen or tubular structure, cinching or remodeling a cavity or repairing a valve preferably utilizing a purse string or elastic device. The preferred devices and methods are directed toward catheter-based percutaneous, transvascular techniques used to facilitate placement of the devices within lumens, such as blood vessels, or on or within the heart to perform structural defect repair, such as valvular or ventricular remodeling. In some methods, the catheter is positioned within the right ventricle, wherein the myocardial wall or left ventricle may be accessed through the septal wall to position a device configured to permit reshaping of the ventricle. The device may include a line or a plurality of anchors interconnected by a line. In one arrangement, the line is a coiled member.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: April 6, 2021
    Inventor: Laurent Schaller
  • Patent number: 10932907
    Abstract: An annuloplasty ring for attachment to an annulus of a tricuspid valve comprises an elongate tube of suturable material comprising a central segment and first and second end segments. An arcuate stiff ener is received in the central segment of the tube and extends the length thereof. The arcuate stiffener is circumferentially confined within the central segment to prevent circumferential movement of the stiffener relative to the tube. The first and second end segments of the tube lack a stiffener and are axially deformable.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: March 2, 2021
    Assignee: Medtronic, Inc.
    Inventors: David H. Adams, John T. M. Wright
  • Patent number: 10925726
    Abstract: A replacement heart valve may comprise a tubular anchor member actuatable between an elongated delivery configuration and an expanded deployed configuration, a buckle member fixedly attached to the anchor member, a post member axially translatable relative to the buckle member, an actuator member including a suture member forming a loop unreleasably attached to a distal end thereof, the actuator member being releasably connected to a proximal end of the post member by the loop, a release pin extending axially along the actuator member and through the loop in a first position, wherein axial translation of the release pin to a second position proximal the first position disconnects the actuator member from the post member, and a valve leaflet attached to the post member.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: February 23, 2021
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Andrew J. H. Backus, Randy S. Gamarra, Takashi H. Ino, Crissly Valdez Crisostomo
  • Patent number: 10912646
    Abstract: Apparatus for treating blood flow regurgitation through a native heart valve (16) includes a selective occlusion device sized and configured to be implanted in the native heart valve (16) and selectively operating with at least one of the first or second native leaflets (16a, 16b) to allow blood flow through the native heart valve (16) when the heart cycle is in diastole and reduce blood flow regurgitation through the native heart valve (16) when the heart cycle is in systole. A clip structure (50) is coupled with the selective occlusion device. The clip structure (50) is configured to be affixed to a margin of at least one of the first or second native leaflets (16a, 16b) to secure the selective occlusion device to the native heart valve (16).
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: February 9, 2021
    Assignee: InValve Therapeutics, Inc.
    Inventor: Paul A Spence
  • Patent number: 10842625
    Abstract: An annuloplasty implant comprises a plurality of individual wires, each extending in a longitudinal direction of the implant between first and second opposite ends of the implant. A locking unit arranged at at least one of the ends comprises a locking structure connected to the plurality of individual wires, thereby collecting said plurality of individual wires together at at least one of the ends. The locking structure is configured to allow a relative movement between at least two of the plurality of individual wires inside the locking structure.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: November 24, 2020
    Assignee: Medtentia International Ltd Oy
    Inventors: Ger O'Carroll, Mark Pugh, Adrian Moran, Chen Xie
  • Patent number: 10835376
    Abstract: The present invention is directed to prostheses including a support structure having a proximal end and a distal end, and a motion limiting member attached to the distal end of the support structure, wherein the motion limiting member is configured to restrict radial expansion of the distal end of the support structure. Methods for delivering the prosthesis are also provided.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: November 17, 2020
    Assignee: Medtronic Vascular Galway
    Inventors: Igor Kovalsky, Yossi Tuval
  • Patent number: 10828150
    Abstract: An anchoring device that can be positioned within a native valve, such as the native mitral valve, to secure a replacement prosthetic valve in place. The anchoring device can comprise a docking station formed of a super elastic wire-like member defining a continuous, closed shape. The docking station can have an upper or atrial ring with at least two ring portions or half rings that are spaced apart across gaps. Descending bends from the ends of the two ring portions lead to a pair of anchors. The anchors can include oppositely-directed rounded V-shaped arms that extend generally parallel to the upper ring. When installed by a delivery device, the anchors can be located in the subvalvular space or the region/vicinity of the native leaflets and pinch the leaflets and the annulus against the upper ring which is located on the other side of the annulus.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: November 10, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventor: Ilan Tamir
  • Patent number: 10813747
    Abstract: An implant system for capturing a regurgitant jet to effect preserving the atrioventricular pressure gradient and ventricular remodeling in a human heart including an expandable implant for positioning in the atrial/ventricular valve of the human heart and at least partially within the atrium and/or the ventricle, the expandable implant defining a first position for at least partially capturing the atrioventricular pressure gradient and regurgitant trans-valvular blood flow and associated driving forces during systole and a second position for steering flow from the atrium to the ventricle to enhance vorticular flow during diastole; a therapeutic apical base plate attachable to the apex of the heart; and a tethering conduit connected between the expandable implant and the therapeutic apical base plate assembly that transducts the energy and/or forces of captured regurgitant trans-valvular blood flow or atrioventricular pressure to the structures of the ventricle and the ventricular wall.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: October 27, 2020
    Assignee: Harmony Development Group, Inc.
    Inventors: John Wilson, Christopher Seguin, Nikola Cesarovic
  • Patent number: 10806571
    Abstract: An implant system for improving physiological cardiac flow in a human heart is provided including an inflatable implant for positioning at least partially within an atrium, a ventricle and a atrial/ventricular valve of the human heart and defining a surface for intercepting and redirecting hemodynamic flow into the ventricle, the inflatable implant defining a surface to engage the valve; a therapeutic apical base plate assembly attachable to the apex of the heart; and a tether connected between the inflatable implant and the therapeutic apical base plate assembly. The inflatable implant and the therapeutic apical base plate assembly are configured to reshape the ventricular wall by transducting cardiac force and/or energy generated by the heart during systole and diastole when the inflatable implant is engaged with the valve and of the therapeutic apical base plate assembly is attached to the apex.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: October 20, 2020
    Assignee: Harmony Development Group, Inc.
    Inventors: John Wilson, Christopher Seguin, Nikola Cesarovic
  • Patent number: 10799356
    Abstract: A mitral regurgitation treatment system may include an annuloplasty device configured for placement on an atrial side of a mitral valve, a tethering element configured to extend between a first papillary muscle and a second papillary muscle, wherein the tethering element includes a first anchor securing the tethering element to the first papillary muscle and a second anchor securing the tethering element to the second papillary muscle, and a linking element extending from the annuloplasty device to the tethering element. The linking element may include a spring element disposed between the annuloplasty device and the tethering element.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: October 13, 2020
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Patricia McAfee, Aiden Flanagan, Tim O'Connor, Jan Weber, Omar Jarral
  • Patent number: 10792153
    Abstract: An implantable medical device is disclosed including an anchor unit configured to be permanently anchored at a cardiac valve of a patient, at least one locking unit, such as for fixation of tissue of the cardiac valve and/or fixation of at least a part of a shape of the anchor unit, and at least one coupling unit for connecting the anchor unit to at least one of the locking unit. The coupling unit has a first end portion and a second end portion, wherein the first end portion is connectable to the anchor unit, and the second end portion includes the locking unit.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: October 6, 2020
    Assignee: Syntach AG
    Inventors: Kristian Solem, Jan Otto Solem, Daniel Engvall, Victoria Krüger, Martin Wolff, Jonathan Berg, André Spånberg
  • Patent number: 10687943
    Abstract: An annuloplasty device for repairing a heart valve comprises a first and a second support member that overlap each other and form a scissor linkage. The first and second support members are configured to pinch leaflets of the heart valve.
    Type: Grant
    Filed: July 3, 2015
    Date of Patent: June 23, 2020
    Inventors: Olli Keränen, Ger O'Carroll
  • Patent number: 10687815
    Abstract: A clip having a delivery shape and an implanted shape has a first and a second leg joined at their distal ends at a distal point of the clip. The distal point forms a tapered shape of the clip and is adapted to pierce tissue. Proximal ends of the first and second legs are spaced apart in the delivery shape by a first distance. The proximal ends are compressible to the implanted shape in which the legs are spaced apart by a second distance that is shorter than the first distance. A related delivery device, a related system, and a delivery method are also disclosed.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: June 23, 2020
    Inventors: Pugh Mark, Ger O'Carroll, Adrian Moran
  • Patent number: 10646343
    Abstract: A method for improving the function of a valve in the heart of a patient, comprising attaching, to a leaflet of the valve, an element that is responsive to a magnetic field; positioning, outside of the heart of the patient, a coil connected to a source of electric energy; activating the source of electric energy to provide an oscillating current in the coil; and thereby providing an oscillating magnetic field through the coil to effect movement of the element and the leaflet.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: May 12, 2020
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Santosh Prabhu, Jacob L. Greenberg, Koji J. Kizuka, Travis Marsot
  • Patent number: 10639154
    Abstract: An intervalvular implant for a mitral valve having a frame and a membrane covering the frame is provided. The frame includes an elongated base portion formed by two curved or chevron branches connected to two connection areas of the implant for connecting to the annulus of the mitral valve. The frame further includes a longitudinal hoop extending in a plane substantially perpendicular to the plane in which the elongated base portion extends. The membrane is flexible and extends from one branch to the other branch while passing around the longitudinal hoop. The membrane may be connected to the branches without being stretched between the branches and the hoop so that the membrane forms lateral portions on each side of the implant that are able to transition between an outwardly convex, concave shape, and an outwardly concave, recessed shape.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: May 5, 2020
    Inventor: Jacques Seguin
  • Patent number: 10603170
    Abstract: A membrane having at least one strip of a shape memory material and the at least one strip is sandwiched between a first layer and a second layer. A method for guiding bone regeneration which excludes the use of a tenting screw is also disclosed. The membrane may be useful for gradual displacing of the soft tissue covering bones. The gap developing between the bone and the displaced soft tissue may be filled with regenerated bone. The membrane allows the regenerated bone to form while the soft tissue heals. The membrane and method may be useful in dentistry for treating vertical bone defects. The membrane and method may also be useful for regenerating soft tissue between the bone and the displaced soft tissue.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: March 31, 2020
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventor: Osama Abdelkader Zakaria Abdelkader
  • Patent number: 10583008
    Abstract: Mitral valve implants and devices, kits and methods are provided for mitral valve repair. Devices comprise a body attachable onto the mitral valve annulus and a bridge connected to the body by two legs which are configured to support and position the bridge within a left ventricle (LV) of the patient when the device body is implanted, so that the legs and the bridge avoid contact with the LV walls, papillary muscles and chordae during operation of the heart. The bridge may be used to anchor valve leaflet tissue, provide support for leaflet re-modelling, possibly using external tissue, and/or anchor artificial chords used to modify and repair the operation of the mitral valve. Related medical procedures as well as kits and related utensils are also provided.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: March 10, 2020
    Assignee: Innercore Medical Ltd.
    Inventor: Jacob Zeitani
  • Patent number: 10575952
    Abstract: Dislodgment of a constricting cord from an annulus can be prevented by delivering the distal loop portion of the constricting cord to the annulus using a percutaneous delivery tool, and launching anchors into the annulus so as to affix the distal loop portion of the constricting cord to the annulus. The percutaneous delivery tool is withdrawn in a proximal direction after the anchors have been launched. A pushing member is pressed in a distal direction so that the pushing member holds a portion of the constricting cord against the annulus with enough pressure to prevent dislodgment of any of the anchors during the withdrawal of the percutaneous delivery tool.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: March 3, 2020
    Assignee: Cardiac Implants LLC
    Inventor: David Alon
  • Patent number: 10561423
    Abstract: A shunt device for creating a shunt in an atrial septum includes magnets coupled to inner loops of a coil comprising at least two inner loops and two outer loops, with a diameter of each of the inner loops being less than a diameter of the outer loops. The coil is made of a shape memory alloy (SMA) and is adapted to exert a compressive force upon layers of tissue caught between the inner loops of the coil. The magnets are adapted to provide additional compressive force to adjacent inner loops of the coil, thereby further causing the coil to cut through the layers of tissue and create a shunt. The diameter of the resultant shunt is less than the diameter of the outer loops, thereby preventing the outer two loops from passing through the created shunt. At least one end of the coil has a connection means for connecting with a delivery device.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: February 18, 2020
    Inventor: Virender K. Sharma
  • Patent number: 10548703
    Abstract: A hernia repair device is provided which may include a soft tissue repair prosthesis and an expandable device configured to be removably connected with the soft tissue repair prosthesis. When expanded, the expandable device may be configured to position the soft tissue repair prosthesis adjacent a hernia defect. The soft tissue repair prosthesis may include at least one loop or slit configured to receive a portion of the expandable device. The prosthesis may include a tether to hoist, locate or position the soft tissue repair prosthesis. The expandable device may include indicia for positioning the prosthesis relative to the edge of the hernia defect.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: February 4, 2020
    Assignee: C.R. Bard, Inc.
    Inventors: Roger E. Darois, John Peter Groetelaars, Michael F. Jacene, Anthony Colesanti, Michael J. Lee, Richard V. Longo, Tara Smith, James M. Brann
  • Patent number: 10543089
    Abstract: A prosthetic remodeling annuloplasty ring for use in tricuspid or mitral valve repairs to provide support after annuloplasty surgery. The annuloplasty ring includes a relatively rigid core extending around an axis that is discontinuous to define two free ends. A suture-permeable interface surrounding the core includes floppy regions adjacent both free ends of the core. Sutures are used to attach the annuloplasty ring to the annulus, including at least one suture through each of the floppy regions to secure the free ends of the ring and minimize the risk of ring dehiscence, or pull through of the sutures through the annulus tissue. The floppy regions may project from each free end into the gap toward each other, be radially enlarged such as paddle-like extensions, or may comprise outwardly lateral extensions at the free ends of the core.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: January 28, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: William C. Brunnett, Alison S. Curtis
  • Patent number: 10531956
    Abstract: An apparatus for repairing a heart valve and methods of use thereof are provided. The apparatus includes a radially expandable body and a blood-permeable member attached to the body at a first end and having at least one cord at a second end. The length or tension of the at least one cord is adjustable when the apparatus is implanted in a heart such that that the extent of atrial displacement of the heart's mitral leaflets during ventricular contraction can be adjusted. To implant the apparatus in a heart, the apparatus is inserted into a retaining sheath and the retaining sheath is then inserted into the heart. The retaining sheath is retracted from the apparatus and the apparatus is positioned inside the heart. The length or tension of the at least one cord is adjusted to adjust the extent of atrial displacement of the heart's mitral leaflets during ventricular contraction.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: January 14, 2020
    Assignee: Vesalous Cardiovascular Inc.
    Inventor: Peter Lloyd Skarsgard
  • Patent number: 10524911
    Abstract: An annuloplasty repair segment for heart valve annulus repair. In one embodiment a multi-stranded cable replaces solid core wire for both the tricuspid and mitral valves. Cable allows for greater deployment flexibility for minimally-invasive surgical (MIS) implant, while still maintaining the required strength and similar tensile properties of solid-core wire. In addition, selective placement of point-welds or other such control points locally control other parameters such as the amount and direction of displacement as the ring undergoes external loading. Cable with well-placed control points result in a MIS annuloplasty ring with sufficient flexibility in the x-y plane to allow a surgeon to squeeze the ring into a small incision, such as for example 1 cm×1 cm, while maintaining structural rigidity under forces exerted on the implanted ring by the cardiac cycle and allowing for asymmetrical deflection to be designed into the product.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: January 7, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: John F. Migliazza, Bob Crockett, Tim Abram
  • Patent number: 10517719
    Abstract: Apparatus includes a tube and an implant moveable at least in part through a lumen of the tube. The implant includes a longitudinal member and a locking mechanism coupled to the longitudinal member. The locking mechanism has (i) an unlocked state in which the locking mechanism is configured to facilitate adjustment of tension of the longitudinal member, and (ii) a locked state in which the locking mechanism is configured to restrict adjustment of the tension of the longitudinal member. A tool maintains the locking mechanism in the unlocked state via contact of the tool with the locking mechanism in the heart, and moves the locking mechanism into the locked state. The locking mechanism is disposed distally to the distal end of the tube while the longitudinal member is disposed entirely within the tube. Other applications are also described.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: December 31, 2019
    Assignee: Valtech Cardio, Ltd.
    Inventors: Eran Miller, Oz Cabiri, Yossi Gross, Amir Gross, Tal Reich
  • Patent number: 10517598
    Abstract: The present disclosure describes interventional devices, systems, and methods for closing a regurgitant gap in a cardiac valve. Interventional devices are configured to be deployed between two previously placed implants or between a previously placed implant and a valve commissure. The interventional devices compress captured leaflet tissue and/or apply a tensioning force along the line of coaptation to assist in closing the gap and reducing regurgitant flow through the gap.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: December 31, 2019
    Assignee: EVALVE, INC.
    Inventor: Michael F. Wei
  • Patent number: 10470884
    Abstract: A catheter member for interacting with a circumferential tissue structure includes: an elongate primary catheter having at least one inner lumen and extending along a longitudinal axis; first and second elongate secondary catheters, each having an inner lumen, and each positionable in an inner lumen of the primary catheter to be moveable relatively thereto and exposable therefrom; and a first flexing mechanism to provide a distal end portion of the first and/or second secondary catheter with a tendency to assume a first secondary bent shape. The distal end portion of the first and/or second secondary catheters is provided so as to be able to be flexed by the first flexing mechanism to form an arm portion substantially transverse to the direction of the longitudinal axis of the primary catheter so as to assume the first secondary bent shape when exposed from a distal end portion of the primary catheter.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: November 12, 2019
    Assignee: HIGHLIFE SAS
    Inventors: Georg Bortlein, Malek Nasr
  • Patent number: 10426610
    Abstract: Embodiments of the present disclosure are directed to prosthetic valves and methods of use thereof. In one implementation, an expandable annular valve body may include a plurality of atrial anchoring arms and ventricular anchoring legs extending therefrom. The anchoring arms and anchoring legs may be configured to assume a delivery configuration in which they are radially constrained, such as within a delivery device, and a deployed configuration, in which they may deflect radially outward. The anchoring legs may deflect radially outward by less than 90° when transitioning from the delivery configuration to the deployed configuration. Portions of the anchoring arms may deflect radially outward by at least 90° when transitioning from the delivery configuration to the deployed configuration.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: October 1, 2019
    Assignee: CARDIOVALVE LTD.
    Inventors: Ilia Hariton, Boaz Harari
  • Patent number: 10420658
    Abstract: Embodiments of the present disclosure are related to devices and techniques for para-valve sealing of an expandable stent-valve implanted using a catheter. In some embodiments, a stent-valve is provided which comprises a seal sleeve/cuff containing material that swells when contacted by blood. A piercing tool may be included and used to permit a user to puncture the sleeve/cuff prior to introduction into a patient's body. In some embodiments, the sleeve/cuff has an integral tubular structure configured to withstand balloon expansion of the stent-valve during or after implantation. In some embodiments, the seal is provided as a separate component from the stent-valve.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: September 24, 2019
    Assignee: SYMETIS SA
    Inventors: Stéphane Delaloye, Jacques Essinger, Jean-Luc Hefti, Youssef Biadillah, Luc Mantanus, Fabien Lombardi, Lionel Flaction, Yutit Wanakoht
  • Patent number: 10398437
    Abstract: Implants or systems of implants and methods apply a selected force vector or a selected combination of force vectors within or across the left atrium, which allow mitral valve leaflets to better coapt. The implants or systems of implants and methods make possible rapid deployment, facile endovascular delivery, and full intra-atrial retrievability. The implants or systems of implants and methods also make use of strong fluoroscopic landmarks. The implants or systems of implants and methods make use of an adjustable implant and a fixed length implant. The implants or systems of implants and methods may also utilize a bridge stop to secure the implant, and the methods of implantation employ various tools.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: September 3, 2019
    Assignee: MVRx, Inc.
    Inventors: Timothy R. Machold, Robert T. Chang, David A. Rahdert, David Scott, David R. Tholfsen
  • Patent number: 10390952
    Abstract: Embodiments of the present disclosure are directed to prosthetic valves and methods of use thereof. In one implementation, an expandable annular valve body may include a plurality of atrial anchoring arms and ventricular anchoring legs extending radially outward therefrom. At least one atrial anchoring arm may include a rigid portion and a flexible portion positioned radially outwards from the rigid portion. At least part of the flexible portion may be configured for placement at a location radially outward from an outer diameter defined by terminal ends of the ventricular anchoring legs.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: August 27, 2019
    Assignee: CARDIOVALVE LTD.
    Inventors: Ilia Hariton, Boaz Harari
  • Patent number: 10363136
    Abstract: A method is provided for use with an implant structure, a first tool, a second tool, and a longitudinal guide member. The implant structure is delivered to a heart of a subject, the implant structure including: (i) a first adjustment mechanism to which the first tool is coupled, and (ii) a second adjustment mechanism to which the longitudinal guide member is coupled. The implant structure is then coupled to tissue of the heart. Subsequently, the second tool is advanced along the longitudinal guide member to the second adjustment mechanism.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: July 30, 2019
    Assignee: Valtech Cardio, Ltd.
    Inventors: Eran Miller, Tal Reich, Amir Gross, Tal Sheps, Oz Cabiri
  • Patent number: 10363138
    Abstract: An interventional curvature device for temporarily adjusting the structure of a heart during a heart valve repair procedure in order to enhance the effectiveness of the heart valve repair procedure. The curvature device is adjustable between a collapsed configuration with a profile suitable for delivery of the device to a coronary sinus and great cardiac vein of a patient, and an expanded configuration for lodging of the device at the coronary sinus and great cardiac vein. The curvature device has a distal section that anchors within the great cardiac vein, and a proximal section that anchors within the coronary sinus. A tether is coupled to the distal end of the device and extends through the device and past the proximal end. An increase in tension in the tether increases the curvature of the device.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: July 30, 2019
    Assignee: EVALVE, INC.
    Inventor: Santosh V. Prabhu
  • Patent number: 10357358
    Abstract: A heart valve prosthesis comprising: a support structure comprising a framework deformable between an expanded state and a compressed state and vice versa; and a flow-control structure, supported by the support structure, for permitting blood flow in a first direction, and for restricting blood flow in a direction opposite to the first direction. At least one end of the support structure comprises a plurality of apexes of the framework. The support structure is collapsible into the compressed state by pulling on the apexes, to enable it to be drawn into a sheath having an inner radial dimension smaller than the radial dimension of the support structure in the expanded state.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: July 23, 2019
    Assignee: UCL BUSINESS PLC
    Inventors: Gaetano Burriesci, Alexander M. Seifalian, Constantinos Zervides
  • Patent number: 10327891
    Abstract: An intra-annular mounting frame for an aortic valve having native aortic cusps is provided which includes a frame body with native leaflet reorienting curvatures and interconnecting points; the curvatures shaped to be received inside the valve below the native aortic cusps and to reorient the native aortic cusps within the aortic valve, where each of the curvatures extends concavely upward from a reference latitudinal plane tangential to each curvature's base.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: June 25, 2019
    Assignee: BIOSTABLE SCIENCE & ENGINEERING, INC.
    Inventor: J. Scott Rankin
  • Patent number: 10314707
    Abstract: An annuloplasty band and method of implantation. The band is shaped and sized to avoid the adjacent aortic valve structure and better protects against dehiscence along the muscular mitral annulus. The band is asymmetric and when implanted spans more around the side of the mitral annulus having the posterior commissure than the side with the anterior commissure. The band has a saddle shape with a posterior upward bow centered on a minor axis of the mitral annulus, and a span extending clockwise therefrom is longer than a span extending counter-clockwise. The longer span may be about 150° while the shorter span extends about 90°. A set of rings may have different saddle profiles and different plan view shapes for different sized bands. A method includes implanting so that the band extends over the posterior leaflet and a short distance past the posterior commissure outside of the anterior leaflet.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: June 11, 2019
    Assignee: Edwards LifeSciences, LLC
    Inventor: David H. Adams
  • Patent number: 10265170
    Abstract: A method is provided including introducing into a heart atrium, an annuloplasty structure having a sleeve with an elongated tubular side wall, anchoring a first section of the sleeve by deploying a first tissue anchor through the first section and into a first portion of annulus tissue, and anchoring a second section of the sleeve by deploying a second tissue anchor through the second section and into a second portion of annulus tissue. A longitudinal portion of the tubular side wall is disposed between the first and second tissue anchors and has first and second lateral parts. The first lateral part is closer to the annulus than the second lateral part is to the annulus, and the second lateral part is opposite the first lateral part and has a larger degree of tension than a degree of tension of the first lateral part.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: April 23, 2019
    Assignee: Valtech Cardio, Ltd.
    Inventors: Yuval Zipory, Tal Hammer
  • Patent number: 10238490
    Abstract: Systems, devices and methods for repairing a native heart valve. In one embodiment, a repair device for repairing a native mitral valve having an anterior leaflet and a posterior leaflet between a left atrium and a left ventricle comprises a support having a contracted configuration and an extended configuration, and an appendage, such as a flap or apron extending from the support. In the contracted configuration, the support is sized to be inserted under the posterior leaflet between a wall of the left ventricle and chordae tendineae. In the extended configuration, the support is configured to project anteriorly with respect to a posterior wall of the left ventricle by a distance sufficient to position at least a portion of the posterior leaflet toward the anterior leaflet, and the appendage is configured to extend beyond an edge of the posterior leaflet toward the anterior leaflet.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: March 26, 2019
    Assignee: Twelve, Inc.
    Inventor: Hanson Gifford, III
  • Patent number: 10206778
    Abstract: In one embodiment, the present invention relates to a tissue shaping device adapted to be disposed in a vessel near a patient's heart to reshape the patient's heart. Such tissue shaping device can include an expandable proximal anchor; a proximal anchor lock adapted to lock the proximal anchor in an expanded configuration; an expandable distal anchor; a distal anchor lock adapted to lock the distal anchor in an expanded configuration; and a connector disposed between the proximal anchor and the distal anchor, the connector having a substantially non-circular cross-section.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: February 19, 2019
    Assignee: Cardiac Dimensions Pty. Ltd.
    Inventors: Gregory Nieminen, Nathan Aronson
  • Patent number: 10188518
    Abstract: An annuloplasty ring having a three-dimensional discontinuous form generally arranged about an axis with two free ends that are axially offset. The ring is particularly suited for repair of the tricuspid valve, and more closely conforms to the annulus shape. The ring is more flexible in bending about radially extending axes than about the central axis. The ring may have an inner structural support covered by a pliable sleeve and/or a fabric tube. The structural support may have a varying cross-section, such as a C-shaped cross-section in a mid-section between two free ends and a rectangular cross-section at the free ends. A deliver template having a mounting ring with about the same shape as the ring facilitates implant, and may be releasably attached to a delivery handle. The deliver template may include a plurality of cutting guides for releasably attaching the annuloplasty ring thereto while presenting maximum outer surface area of the ring.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: January 29, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: Patrick M. McCarthy, Richard S. Rhee, Stefan Schreck
  • Patent number: 10179248
    Abstract: Provided is an implantable spacer that can be placed in a body and can be easily removed after placement. The implantable spacer includes a tube which is folded or bent at one or a plurality of positions to form partial sections adjacent to each other; fixing threads which are disposed along a direction transverse to the partial sections in order to maintain the shape of the tube; and a trigger thread for catching the fixing threads being in a releasable state.
    Type: Grant
    Filed: December 25, 2014
    Date of Patent: January 15, 2019
    Assignee: National University Corporation Gunma University
    Inventor: Takayuki Asao
  • Patent number: 10166098
    Abstract: The invention relates to a device for use in the transcatheter treatment of mitral valve regurgitation, specifically a coaptation assistance devices for implantation across the valve; a system including the coaptation enhancement element and anchors for implantation; a system including the coaptation enhancement element, and one or more of the following: transseptal sheath, anchor delivery catheter, implant delivery catheter, and clip delivery catheter; and methods for transcatheter implantation of a coaptation element across a heart valve.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: January 1, 2019
    Assignee: Middle Peak Medical, Inc.
    Inventors: Alexander K. Khairkhahan, Michael D. Lesh, Alan R. Klenk
  • Patent number: 10166101
    Abstract: Methods of remodeling an abnormal mitral valve with an annuloplasty ring having a reduced anterior-to-posterior dimension to restore coaptation between the mitral leaflets in mitral valve insufficiency (IMVI). The ring has a generally oval shaped body with a major axis perpendicular to a minor axis. An anterior section lies between anteriolateral and posteriomedial trigones, while a posterior section defines the remaining ring body and is divided into P1, P2, and P3 segments. The anterior-to-posterior dimension of the ring body is reduced from conventional rings; such as by providing, in atrial plan view, a pulled-in P3 segment. The ring body may have a downwardly deflected portion in the posterior section. The downwardly deflected portion may have an apex which is the lowest elevation of the ring body and may be offset with respect to the center of the downwardly deflected portion toward the P3 segment.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: January 1, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: Ottavio Alfieri, Alain F. Carpentier, Francesco Maisano, Alberto Redaelli, Patrick M. McCarthy
  • Patent number: 10123872
    Abstract: Devices and methods are provided for surgical repair of dilated aortic root to restore aortic valve competence while preserving native leaflets. In one aspect of the invention an expandable annuloplasty ring is provided for external placement at the base of a dilated aortic root. The expandable ring is capable of elastically expanding between a first diastolic diameter and a larger second systolic diameter to provide a physiologically representative surgical repair of the aortic root. In a further aspect of the invention, is provided a holder assembly for aortic annuloplasty ring and suitable for other cardiac valve prosthesis. The holder assembly consists of a holder body pivotingly coupled to a handle member through a ball-and-socket arrangement.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: November 13, 2018
    Assignee: Coroneo, Inc.
    Inventors: Neil Bulman-Fleming, Emmanuel Lansac, Trong Tin Nguyen, Anthony Paolitto, Jonathan Paquette, Adrian Ranga, Valerio Valentini
  • Patent number: 10111747
    Abstract: Systems, devices and methods for repairing a native heart valve. In one embodiment, a repair device (100) for repairing a native mitral valve having an anterior leaflet and a posterior leaflet between a left atrium and a left ventricle comprises a support (110) having a contracted configuration and an extended configuration. In the contracted configuration, the support is sized to be inserted under the posterior leaflet between a wall of the left ventricle and chordae tendineae. In the extended configuration, the support is configured to project anteriorly with respect to a posterior wall of the left ventricle by a distance sufficient to position at least a portion of the posterior leaflet toward the anterior leaflet.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: October 30, 2018
    Assignee: TWELVE, INC.
    Inventor: Hanson Gifford, III
  • Patent number: 10080660
    Abstract: An implantable intracardiac device to prevent systolic anterior motion of the anterior mitral valve leaflet into the left ventricular outflow tract is described. The device comprises a blocking member configured for implantation within the left ventricle of the heart and in-situ blocking of systolic anterior motion of the mitral valve into the left ventricular outflow tract when anchored into the left ventricle of the heart. The device may be configured for radial expansion from a contracted orientation suitable for transluminal delivery to the left ventricle of the heart within a suitable delivery vehicle and an expanded orientation suitable for deployment within the left ventricle of the heart. The device comprises anchors configured for anchoring the device in-situ within the left ventricle to a wall of the left ventricle.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: September 25, 2018
    Assignee: Paradox Medical Limited
    Inventor: David Keane
  • Patent number: 10076414
    Abstract: A method for beneficially displacing a papillary muscle, the method comprising: anchoring one end of an implant suture to a trigone or central fibrous body of the mitral valve; passing another end of the implant suture through a papillary muscle so that the implant suture extends between a trigone or central fibrous body of the mitral valve and the papillary muscle; tensioning the implant suture while displacing the papillary muscle toward the trigone or central fibrous body of the mitral valve; and securing the tensioned implant suture to the displaced papillary muscle so as to maintain the displaced papillary muscle in position relative to the trigone or central fibrous body of the mitral valve; wherein the foregoing steps of anchoring, passing, tensioning and securing are all effected while the heart is beating.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: September 18, 2018
    Inventors: Jonathan M. Rourke, Stanley B. Kyi, Robert B. Fishman, Showna H. Chang
  • Patent number: 10052199
    Abstract: Prosthetic mitral heart valves and anchors for use with such valves are provided that allow for an improved implantation procedure. In various embodiments, a helical anchoring device is formed as a coiled or twisted anchor that includes one or more turns that twist or curve around a central axis. Curved arms attached to the frame of the valve guide the helical anchoring device into position beneath the valve leaflets and around the mitral valve annulus as it exits the delivery catheter, and the expandable prosthetic mitral valve is held within the coil of the anchoring device. The anchoring device and the valve can be delivered together, simplifying the valve replacement procedure.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: August 21, 2018
    Assignee: Mitral Valve Technologies Sarl
    Inventors: Paul A. Spence, Landon H. Tompkins
  • Patent number: 10045766
    Abstract: Several unique intracardiac pressure vents, placement catheters, methods of placement and methods of treating heart failure are presented. The intracardiac pressure vents presented allow sufficient flow from the left atrium to the right atrium to relieve elevated left atrial pressure and resulting patient symptoms but also limit the amount of flow from the right atrium to the left atrium to minimize the potential for thrombus or other embolic material from entering the arterial circulation.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: August 14, 2018
    Assignee: Corvia Medical, Inc.
    Inventors: Edward McNamara, David Celermajer, Stephen J. Forcucci, Hiroatsu Sugimoto, Matthew J. Finch