Adjustable Patents (Class 623/2.37)
  • Patent number: 11648025
    Abstract: An endoluminal punch and introducer sheath are described wherein the endoluminal punch comprises a guidewire lumen through which a user is capable of placing a guidewire. The endoluminal punch system further comprises a mechanism affixed to the hub which is capable of controlling the axial positioning of the guidewire relative to the endoluminal punch distal end. The control mechanism can be released so that the endoluminal punch can be removed from a patient while retaining the guidewire in place within the patient. The endoluminal punch introducer, including a sheath and dilator, can comprise energy emitting electrodes or transducers for cutting larger size holes in stubborn (friable, scarred, or fibrotic) tissue. In other embodiments, the endoluminal punch can comprise a guidewire or stylet, wherein the guidewire or stylet is capable of emitting energy to cut through tissue.
    Type: Grant
    Filed: August 1, 2022
    Date of Patent: May 16, 2023
    Assignee: Indian Wells Medical, Inc.
    Inventors: Jay Alan Lenker, James Alexander Carroll, Eugene Michael Breznock, Donald J. Kolehmainen, Peter van der Sluis
  • Patent number: 11648120
    Abstract: Implants, implant systems, and methods for treatment of mitral valve regurgitation and other valve diseases generally include a coaptation assist body which remains within the blood flow path as the leaflets of the valve move, the valve bodies often being relatively thin, elongate (along the blood flow path), and/or conformable structures which extend laterally from commissure to commissure, allowing the native leaflets to engage and seal against the large, opposed surfaces on either side of the valve body during the heart cycle phase when the ventricle contracts to empty that chamber of blood, and allows blood to pass around the valve body so that blood flows from the atrium to the ventricle during the filling phase of the heart cycle. Separate deployment of independent anchors near each of the commissures may facilitate positioning and support of an exemplary triangular valve body, with a third anchor being deployed in the ventricle.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: May 16, 2023
    Assignee: Polares Medical Inc.
    Inventors: Alexander Khairkhahan, Michael D. Lesh
  • Patent number: 11642221
    Abstract: An implant includes a frame comprising a tubular body formed by a plurality of interconnected struts that are manufactured to reduce stresses and strains resulting from component interaction during chronic use. At least a portion of a longitudinal corner of one or more struts of the frame may be chamfered, rounded, or otherwise modified to distribute stresses experienced at the strut corner throughout the strut body. Chamfering and/or rounding corners along at least a portion of a strut of the frame may reduce stresses on the frame caused by interactions between the frame and other components of the implant. The implant may be manufactured by cutting (e.g., laser cutting) a plurality of struts from a tubular metal alloy, polymer, or the like forming the tubular body, and softening at least a portion of an edge of the strut by cutting, grinding, and/or micro-blasting the edges of the corner.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: May 9, 2023
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Burns Doran, Kelsey Cooper, Graham Krumpelmann, Ted Pelzer, Joshua Mark Inouye, Mark McPhail
  • Patent number: 11617652
    Abstract: A tissue-engaging element has a distal portion configured to engage a portion of tissue of the heart. A guide member is reversibly coupled to the tissue-engaging element. An elongate implant has a distal end and a proximal end, at least the distal end being slidably coupled to the guide member. A tool is slidable along the guide member distally toward the tissue-engaging element while (i) the tool is coupled to at least the distal end of the elongate implant, and (ii) the guide member is coupled to the tissue-engaging element, such that sliding of the tool along the guide member distally toward the tissue-engaging element while (i) the tool is coupled to at least the distal end of the elongate implant, and (ii) the guide member is coupled to the tissue-engaging element, slides at least the distal end of the elongate implant toward the tissue-engaging element.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: April 4, 2023
    Assignee: Edwards Lifesciences Innovation (Israel) Ltd.
    Inventors: Tal Reich, Eran Miller, Tal Sheps
  • Patent number: 11571307
    Abstract: Apparatus, systems, and methods are provided for percutaneous transcatheter delivery and fixation of annuloplasty rings to heart valves. An annuloplasty ring includes an outer tube, an inner body member, and an anchor deployment system. The outer tube includes a plurality of windows and has an axis along its length. The internal body member includes a plurality of anchors formed perpendicular to the axis. The anchor deployment system selectively rotates the internal body member with respect to the axis of the outer tube. The rotation deploys the plurality of anchors through the plurality of windows.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: February 7, 2023
    Assignee: VALCARE, INC.
    Inventors: Nadav Yellin, Samuel M. Shaolian, Jeffrey P. Dumontelle
  • Patent number: 11571298
    Abstract: An implant includes a prosthetic valve and is transitionable from a compressed to an expanded state. The implant includes a frame assembly including a plurality of struts that collectively define an upstream-frame-assembly-perimeter at an upstream end of the frame assembly and a downstream-frame-assembly-perimeter at a downstream end of the frame assembly. The frame assembly includes a valve frame that defines a lumen, and one or more appendages disposed at and extending in a downstream direction from the downstream-frame-assembly-perimeter. A plurality of prosthetic leaflets are disposed within the valve frame lumen and facilitate one-way upstream-to-downstream fluid flow through the lumen. The implant includes a fabric and, in the expanded state of the implant, the fabric obscures the one or more appendages and defines a downstream perimeter of the fabric at a downstream end of the implant. Additional embodiments are described.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: February 7, 2023
    Assignee: CARDIOVALVE LTD.
    Inventors: Ilia Hariton, Meni Iamberger, Yelena Kasimov, Boaz Harari, Aviram Baum
  • Patent number: 11534300
    Abstract: Disclosed herein are embodiments related to a method for performing a minimally invasive procedure, the method including delivering an annuloplasty ring in a linear shape using a delivery system. In some embodiments, the delivery of the annuloplasty ring may utilize a trans-septal approach or a trans-apical. In some embodiments, the delivery system may position the annuloplasty ring using a flexible stabilizing mechanism and/or activate one or more anchors to extend outward from the annuloplasty ring.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: December 27, 2022
    Assignee: VALCARE, INC.
    Inventors: Nadav Yellin, Yoav Rozen, Samuel Shaolian, Shuki Porath, Troy Thronton, Guy Shimel
  • Patent number: 11523899
    Abstract: A coiled anchor is positioned at a mitral valve by extending and deflecting a catheter such that a distal end portion of the catheter has a curved shape that is disposed in a left atrium and a distal end of the catheter is positioned near a commissure of the mitral valve. A ventricular portion of the coiled anchor is advanced from the catheter under the mitral valve at the commissure and into a left ventricle. An atrial portion of the coiled anchor is deployed in the left atrium by retracting the catheter off the atrial portion of the coiled anchor while maintaining the position of the ventricular portion of the coiled anchor in the left ventricle.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: December 13, 2022
    Assignee: Mitral Valve Technologies Sarl
    Inventors: Mark Chau, Alexander J. Siegel, Paul A. Spence, Landon H. Tompkins
  • Patent number: 11510769
    Abstract: Devices and methods for providing protection from embolisms and microembolisms in a subject undergoing catheter-based intravascular procedures. The embolic protection devices have an expandable support frame comprising U-shaped members and leg members which facilitate proper placements in a defective valve annulus. The filtering devices expand in the vessels and allow blood flow to continue through the vessels, thereby catching and removing debris of the flowing blood. Also disclosed are embolic protection devices for use with a sutureless valve prosthesis which is implanted via catheter-based methods.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: November 29, 2022
    Assignee: JC Medical, Inc.
    Inventor: Ji Zhang
  • Patent number: 11510780
    Abstract: A method of delivering a prosthetic mitral valve includes delivering a distal anchor from a delivery sheath such that the distal anchor self-expands inside a first heart chamber on a first side of the mitral valve annulus, pulling proximally on the distal anchor such that the distal anchor self-aligns within the mitral valve annulus and the distal anchor rests against tissue of the ventricular heart chamber, and delivering a proximal anchor from the delivery sheath to a second heart chamber on a second side of the mitral valve annulus such that the proximal anchor self-expands and moves towards the distal anchor to rest against tissue of the second heart chamber. The self-expansion of the proximal anchor captures tissue of the mitral valve annulus therebetween.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: November 29, 2022
    Assignee: Cephea Valve Technologies, Inc.
    Inventors: Juan F. Granada, Gary Erzberger, Michael P. Corcoran, Dan Wallace, Matteo Montorfano, Alaide Chieffo
  • Patent number: 11508104
    Abstract: A medical image processing apparatus according to an embodiment includes processing circuitry. The processing circuitry is configured to obtain a measurement value related to the shape of a heart valve in medical image data. The processing circuitry is configured to cause a display to display a numerical value related to the shape of an artificial valve to be placed for the heart valve.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: November 22, 2022
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Keisuke Miyaki, Yu Igarashi, Koichiro Kurita
  • Patent number: 11491008
    Abstract: An annuloplasty device is disclosed comprising first and second support rings having a coiled configuration, and respective first and second retention units, the first support ring transitions to the second support ring over a transition section, the transition section is adapted to be arranged at a commissure of the heart valve leaflets, the first and second support rings extend in respective first and second coil planes being essentially perpendicular to the central axis, the transition section bends at least partly along the central axis so that the first coil plane is separated a distance from the second coil plane along the central axis at the transition section.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: November 8, 2022
    Inventors: Olli Keränen, Hans-Reinhard Zerkowski, Johannes Jung, Jani Virtanen
  • Patent number: 11471280
    Abstract: An annuloplasty band and method of implantation. The band is shaped and sized to avoid the adjacent aortic valve structure and better protects against dehiscence along the muscular mitral annulus. The band is asymmetric and when implanted spans more around the side of the mitral annulus having the posterior commissure than the side with the anterior commissure. The band has a saddle shape with a posterior upward bow centered on a minor axis of the mitral annulus, and a span extending clockwise therefrom is longer than a span extending counter-clockwise. A set of rings may have different saddle profiles and different plan view shapes for different sized bands. A method includes implanting so that the band extends over the posterior leaflet and a short distance past the posterior commissure outside of the anterior leaflet.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: October 18, 2022
    Assignee: Edwards Lifesciences, LLC
    Inventor: David H. Adams
  • Patent number: 11452518
    Abstract: A suture construct includes, inter alia, a sheath and a flexible strand threaded through the sheath to configure the sheath in a circular or oblong shape. The suture construct may be utilized in various tissue reconstruction procedures. The suture construct can be connected to a second suture construct to form a surgical assembly.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: September 27, 2022
    Assignee: Arthrex, Inc.
    Inventors: Joshua Best, Tyler Esposito, Colin Baker, Arley Perez, III
  • Patent number: 11446139
    Abstract: A collapsible device, such as an annuloplasty ring or prosthetic heart valve, is configured to be collapsed prior to being introduced into a patient via minimally-invasive access points such as port holes or intercostal incisions. A holder is configured to hold the collapsible device, and to selectively collapse the device for introduction into the patient and then re-enlarge the device at the desired deployment site. Collapsible devices include devices that can hingedly fold about hinge lines, and devices that can elongate to form substantially spiral forms with reduced diameters.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: September 20, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: Teodoro S. Jimenez, Mark M. Dehdashtian, Raffaele Mazzei
  • Patent number: 11446140
    Abstract: A transcatheter atrio-ventricular valve prosthesis for functional replacement of an atrio-ventricular valve in a connection channel, having a circumferential connection channel wall structure, between atrial and ventricular chambers of a heart, including an inner device to be disposed in the interior of the connection channel, the inner device having a circumferential support structure which is radially expandable and having a valve attached to the circumferential support structure, and an outer device to be disposed on the exterior of the connection channel, wherein the outer device at least partly extends around the inner device at a radial distance to the inner device, wherein the inner and outer devices form a securing mechanism for securing the circumferential connection channel wall structure therebetween.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: September 20, 2022
    Assignee: HIGHLIFE SAS
    Inventor: Josef Weber
  • Patent number: 11382748
    Abstract: A device for improving the function of a heart valve comprises a first loop-shaped support, which is configured to abut a first side of the heart valve. A first flange unit is may be configured as a fabric sleeve covering the loop-shaped support. A portion of the fabric sleeve forms a flange that is attached to the annulus when said first loop-shaped support is abutting said heart valve. The flange is provideable by folding at least a portion of said sleeve over itself for forming a double layer of opposing fabrics thereof, such that said sleeve comprises a flange portion extending from said first loop-shaped support configured to overlap a surface of and form a collar around, at least a portion of said annulus.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: July 12, 2022
    Inventors: Olli Keränen, Hans-Reinhard Zerkowski
  • Patent number: 11376124
    Abstract: Various systems, devices and methods associated with the placement of a dock or anchor (72) for a prosthetic valve (120). The anchor (72) may take the form of a helical anchor having multiple coils (104, 108) and/or a stent-like structure. Various methods include different levels of minimal invasive procedures for delivering the prosthetic valve anchor (72) and prosthetic valve (120), as well as tissue anchors for plication or other purposes to the native valve position in the heart (14).
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: July 5, 2022
    Assignee: Mitral Valve Technologies Sarl
    Inventors: Paul A. Spence, Landon H. Tompkins
  • Patent number: 11364120
    Abstract: An apparatus for augmenting the length of native chordae tendineae to restore physiological leaflet coaptation. The apparatus includes a delivery device having a lumen therein which at least partially houses a prosthetic cord. The prosthetic cord has a first end with a first clasp configured to attach to a native chordae tendineae and a second end with a second clasp configured to attach to the native chordae tendineae. The native chordae tendineae is severed between the first clasp and the second clasp, and the length of the prosthetic cord between the first clasp and the second clasp is adjusted until physiological leaflet coaptation is restored.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: June 21, 2022
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventor: Jay Reimer
  • Patent number: 11357629
    Abstract: A method of treating diastolic heart failure includes implanting a cardiac implant in a heart of a subject diagnosed as suffering from diastolic heart failure. A superior portion of a flexible tether of the cardiac implant is anchored to one or more left-atrial sites of one or more walls of the left atrium. An inferior portion of the flexible tether is anchored to a site of a wall of a mid third of the left ventricle, of a wall of an apical third of the left ventricle, and/or of a papillary muscle of the left ventricle. As a result, the flexible tether reduces a volume of the left atrium during at least a portion of ventricular diastole of each cardiac cycle, thereby enhancing ventricular filling. Other embodiments are also described.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: June 14, 2022
    Assignee: RAINBOW MEDICAL LTD.
    Inventor: Yossi Gross
  • Patent number: 11259926
    Abstract: Devices and methods are disclosed for the treatment or repair of regurgitant cardiac valves, such as a mitral valve. An illustrative annuloplasty device can be placed in the coronary sinus to reshape the mitral valve and reduce mitral valve regurgitation. The disclosure also provides improved techniques for cardiac pacing.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: March 1, 2022
    Assignee: Transmural Systems LLC
    Inventors: Nasser Rafiee, Stuart MacDonald, Koosha Rafiee
  • Patent number: 11202709
    Abstract: Apparatus includes an implant including a flexible longitudinal member extending along a longitudinal length of the implant and a flexible contracting member extending alongside the longitudinal member and along the longitudinal length of the implant. The contracting member is configured to facilitate reduction of a perimeter of the implant by applying a contracting force to the longitudinal member in response to an application of force to the contracting member. The contracting member is disposed at a radially outer perimeter of the longitudinal member and configured to apply a pushing force to the longitudinal member responsively to the application of the force to the contracting member.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: December 21, 2021
    Assignee: Valtech Cardio Ltd.
    Inventors: Eran Miller, Amir Gross, Oz Cabiri, Iftah Beinart, Aviram Baum
  • Patent number: 11173029
    Abstract: A method for treating regurgitation of blood flow through a diseased heart valve is provided. The diseased heart valve including an annulus, an anterior valve leaflet, a posterior valve leaflet and a subvalvular apparatus. The method includes providing an apparatus comprising a substantially annular support member, at least one infra-annular support member securely connected thereto, and at least one anchoring element associated with the at least one infra-annular support member. The method further includes attaching the substantially annular support member to the annulus of the diseased heart valve and attaching proximal and distal ends of a prosthetic chordae tendineae to the at least one anchoring element and a papillary muscle, respectively, so that the papillary muscle is caused to move medially.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: November 16, 2021
    Assignee: THE CLEVELAND CLINIC FOUNDATION
    Inventor: Jose L. Navia
  • Patent number: 11166812
    Abstract: Various systems, devices and methods associated with the placement of a dock or anchor for a prosthetic valve. The anchor can take the form of an anchor having multiple coils. The distal end portion of the anchor can be spaced radially outwardly from the next adjacent coil to help direct the anchor around native leaflets of a native valve. Various methods include different procedures for delivering the anchor and prosthetic valve.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: November 9, 2021
    Assignee: Mitral Valve Technologies Sari
    Inventors: Paul A. Spence, Landon H. Tompkins
  • Patent number: 11147671
    Abstract: Disclosed herein are methods, implants and systems for treatment of mitral valve prolapse by subannular fixation of the prolapsed mitral valve. The disclosure relates generally to the field of heart valve repair devices, methods and kits and more specifically to trans catheter methods and devices for insertion of tethers and anchors to the mitral valve leaflets for reduction the prolapsed mitral valve and subannular fixation of the prolapsed leaflet to treat mitral valve regurgitation.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: October 19, 2021
    Assignee: CREATIVE HEART VALVE SOLUTIONS LLC
    Inventors: Valavanur A. Subramanian, Nirav C. Patel
  • Patent number: 11103349
    Abstract: Disclosed herein are various embodiments directed to a device for minimally invasive medical treatment. The device being a hollow tube with a first end, a second end, and one or more anchors configured to extend outward from the exterior of the hollow tube. The hollow tube having a plurality of cutouts on the exterior, wherein the cutouts allow the hollow tube to be flexible. Additionally, the hollow tube may have at least one snap mechanism configured to connect the first end and the second end together.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: August 31, 2021
    Assignee: VALCARE, INC.
    Inventors: Nadav Yellin, Samuel M. Shaolian, Matan Gedulter, Boaz Schwarz, Daniel Rapoport, Avraham Eftel
  • Patent number: 11083580
    Abstract: Methods and devices for transvascular prosthetic chordae tendinea implantation are disclosed. A catheter is advanced into the left atrium. From an atrium side, the catheter can be anchored to a superior surface of a mitral valve leaflet and a leaflet anchor can be advanced into the mitral valve leaflet to secure the mitral valve leaflet to a leaflet suture. A ventricular anchor is anchored to the wall of the ventricle to secure the ventricular wall to a ventricle suture. The leaflet suture and the ventricle suture may be tensioned and connected by a suture lock to form an artificial chordae.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: August 10, 2021
    Assignee: Pipeline Medical Technologies, Inc.
    Inventors: Cameron Paul Purcell, Erik Griswold, Gordon B. Bishop, Stephen McDaniel, Trung Ho Pham
  • Patent number: 11033391
    Abstract: Mitral valve prolapse and mitral regurgitation can be treating by implanting in the mitral annulus a transvalvular intraannular band. The band has a first end, a first anchoring portion located proximate the first end, a second end, a second anchoring portion located proximate the second end, and a central portion. The central portion is positioned so that it extends transversely across a coaptive edge formed by the closure of the mitral valve leaflets. The band may be implanted via translumenal access or via thoracotomy.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: June 15, 2021
    Assignee: Heart Repair Technologies, Inc.
    Inventors: Valavanur A. Subramanian, Michael L. Reo, Gary Hulme, Thomas Afzal, Jeffrey Christian, Maurice Buchbinder
  • Patent number: 11033386
    Abstract: A system for repairing a native heart valve can comprise a first fastener, a second faster, a first leaflet brace, and a second leaflet brace. The first leaflet brace can be configured to extend partially around a first native leaflet. The second leaflet brace can be configured to extend partially around a second native leaflet. The first fastener can be configured to be deployed on respective first end portions of the first and second braces so as to connect the first end portions to each other. The second fastener can be configured to be deployed on respective second end portions of the first and second braces so as to connect the second end portions to each other. When the first end portions are connected to each other and the second end portions are connected to each other, the first and second leaflet braces encircle the first and second native leaflets.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: June 15, 2021
    Assignee: Edwards Lifesciences Corporation
    Inventor: Yaron Keidar
  • Patent number: 11020230
    Abstract: The device (1) is intended to be positioned in a sealed introducer placed in a femoral vein in order to penetrate the left atrium (4) of the heart (3) by passing through the septal wall (5) thereof.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: June 1, 2021
    Assignees: CMI'NOV
    Inventors: Marco Vola, Bernard Pain
  • Patent number: 10980635
    Abstract: An annuloplasty device formed from a Nitinol stent frame that expands into contact with the annulus above the native leaflets. A torus balloon activates barbs along the perimeter to fasten the stent frame to the annulus. A cinch ring is placed under tension to reduce the perimeter of the stent frame. The cinch ring and torus balloon are implanted along with the stent frame.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: April 20, 2021
    Inventors: William Joseph Drasler, William Joseph Drasler, II
  • Patent number: 10966824
    Abstract: A heart valve prosthesis delivery system can include a first sheath, a second sheath, a check valve, a check valve control lines, and a heart valve prosthesis carried within the first sheath or the second sheath. The check valve can be carried within the first sheath or the second sheath. The check valve has a check valve frame and a cover component, and the check valve control lines can be coupled to the check valve frame and configured to be manipulated by a physician to control release of the check valve. In use, the check valve can be configured to be deployed within the native valve structure for minimizing back flow of blood during placement of the valve prosthesis when the native valve leaflets are rendered non-functional by the presence of the delivery system.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: April 6, 2021
    Assignee: Micor Limited
    Inventors: Ji Zhang, Brandon G. Walsh, Cheng Y. Yang, Jinhua Zhu
  • Patent number: 10945837
    Abstract: Systems and methods for docking a heart valve prosthesis. A system can include an anchor formed as multiple coils adapted to support a heart valve prosthesis with coil portions positioned above and below the heart valve annulus. At least one of the coil portions can normally be at a first diameter and be expandable to a second, larger diameter upon application of radial outward force from within the helical anchor. Methods can include delivering an anchor, positioning and implanting a heart valve prosthesis, and expanding the heart valve prosthesis inside the anchor.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: March 16, 2021
    Assignee: Mitral Valve Technologies Sarl
    Inventors: Paul A. Spence, Landon H. Tompkins
  • Patent number: 10925760
    Abstract: A prosthetic implant includes a circumferentially adjustable sealing collar and a rotatable sealer gear. The sealing collar has a central longitudinal axis. The rotatable sealer gear is coupled to and disposed within the sealing collar and configured to adjust the circumference of the sealing collar. The sealer gear is radially offset relative to the central longitudinal axis of the sealing collar. Rotating the sealer gear in a first direction relative to the sealing collar circumferentially expands the sealing collar. Rotating the sealer gear in a second direction relative to the sealing collar circumferentially contracts the sealing collar.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: February 23, 2021
    Assignee: Edwards Lifesciences CardiAQ LLC
    Inventors: Richard George Cartledge, John P. Cartledge
  • Patent number: 10881508
    Abstract: A replacement valve for replacing a damaged heart valve having a plurality of cusps separating an upstream region from a downstream region of a passage. The replacement valve includes a flexible band having biocompatible scaffolding sized for contact with a wall surrounding the passage in the patient's heart. The valve includes a resilient element attached to the flexible band for expanding the flexible band to contact the wall of the passage. The valve includes regenerative struts spaced around the flexible band. Each strut extends from an outboard end joined to an inward face of the flexible band to a central end. The central ends of the struts are joined together. The valve includes a flexible regenerative membrane joined to adjacent struts. The membrane extends outboard to an inward face of the band. An outboard edge of the membrane is free to move between a closed position and an open position.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: January 5, 2021
    Inventor: Robert V. Snyders
  • Patent number: 10874515
    Abstract: A mitral cerclage annuloplasty apparatus comprises a tissue protective device and a knot delivery device. The tissue protective device comprises a first protective tube and a second protective tube. The knot delivery device comprises a tube wherein a loose knot is looped around its distal end through a hole and wherein tight knot is formed when the distal end of the tube is cut open. Alternatively, the knot delivery device comprises an inner tube and outer tube. The inner tube is insertable and rotatable inside the outer tube. When the tubes are in a closed position by rotating either the outer tube or the inner tube, a hole is created near its distal end. When the tubes are in open position by rotating either the outer tube or the inner tube, the hole joins the opening of the outer tube and lengthens.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: December 29, 2020
    Assignee: TAU-PNU MEDICAL CO., LTD.
    Inventor: June-Hong Kim
  • Patent number: 10849749
    Abstract: Systems and methods for modifying a heart valve annulus in a minimally invasive surgical procedure. A helical anchor is provided, having a memory set to a coiled shape or state. The helical anchor is further configured to self-revert from a substantially straight state to the coiled state. The helical anchor is loaded within a needle that constrains the helical anchor to the substantially straight state. The needle is delivered to the valve annulus and inserted into tissue of the annulus. The helical anchor is then deployed from the needle (e.g., the needle is retracted from over the helical anchor). Once deployed, the helical anchor self-transitions toward the coiled shape, cinching engaged tissue of the valve annulus.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: December 1, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Jason Quill, Cynthia Clague, Michael Green, Alexander J. Hill, Ana Menk, Paul Rothstein, Georg Bortlein
  • Patent number: 10849751
    Abstract: A device (100) for supporting a valve annulus is described that includes spaced apart support members (105) and a connecting member (110) extending between and connecting the support members. At least one adjustor (115) is also provided that is engaged with the connecting member and can be actuated to modify a length of the connecting member between two adjacent support members. In addition, each support member may include at least two channels extending through the support members at different heights with respect to an overall thickness of the respective support member. Each channel may receive a portion of the connecting member therethrough, and each support member may further include a passageway between the channels to allow selection of one of the channels. In this way, the device may be adjusted in at least two dimensions to support the valve leaflets and promote sufficient closure of the leaflets.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: December 1, 2020
    Assignee: JCOR-1, INC.
    Inventor: Jeko Metodiev Madjarov
  • Patent number: 10828160
    Abstract: The present teachings provide devices and methods of treating a tricuspid valve regurgitation. Specifically, one aspect of the present teachings provides devices each includes a vascular anchor, an annulus anchor, and at least one tensioning member connecting with the vascular anchor or the annulus anchor. Another aspect of the present teachings provides methods of deploying a vascular anchor at a first treatment location inside the coronary sinus, and deploying an annulus anchor at a second treatment location across the tricuspid annulus. When both the anchors are pulled towards each other, the portion of the annulus between the two anchors is plicated, which improves the coaptation of the tricuspid valve leaflets.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: November 10, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Michael Sutherland, Steven Cahalane
  • Patent number: 10799354
    Abstract: Anchors for securing an implant within a body organ and/or reshaping a body organ are provided herein. Anchors are configured for deployment in a body lumen or vasculature of the patient that are curved or conformable to accommodate anatomy of the patient. Such anchors can include deformable or collapsible structures upon tensioning of a bridging element in a lateral direction, or segmented tubes that can be adjusted by tightening of one or more tethers extending therethrough. Such anchors can be used as a posterior anchor in a blood vessel in implant systems having a tensioned bridging element extending between the posterior anchor and an anterior anchor deployed at another location within or along the body organ. Methods of deploying such anchors, and use of multiple anchors or multiple bridging elements to a single anchor are also provided.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: October 13, 2020
    Assignee: MVRx, Inc.
    Inventors: Timothy R. Machold, David A. Rahdert, Robert T. Chang, Ganesh Manoharan
  • Patent number: 10786215
    Abstract: A portable X-ray imaging apparatus is prevented from losing a connection with a medical member when a detection element is set up in the proximity of the subject to carry out an X-ray imaging. The portable X-ray imaging apparatus 100 comprises an X-ray tube device 4 that irradiates an X-ray to a subject P, an X-ray receiver 6 that detects the X-ray that transmits the subject P, a housing 1b that houses the X-ray receiver 6 capable of being pulled out, and a control element 21 that provides an alarm to prompt paying attention based on the connecting information 30a relative to a connection of the medical member with the subject P.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: September 29, 2020
    Assignee: SHIMADZU CORPORATION
    Inventor: Toshiaki Nakamura
  • Patent number: 10758354
    Abstract: An adjustable annuloplasty device comprising a tube having a basically annular shape or adopted to be brought into an annular shape. At least one portion, preferably three portions, of an outer wall or the whole outer wall of the tube is more rigid than opposite portion(s) of an inner wall or the whole inner wall. The inner wall is arranged nearer to an inside area defined by the annular shape than the outer wall. The inner wall is adapted to be displaced inwardly at least along less rigid portion(s) of the circumference upon actuation by at least one actuation element while the outer wall remains basically constant.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: September 1, 2020
    Assignee: KEPHALIOS S.A.S.
    Inventor: Daniel Hayoz
  • Patent number: 10751172
    Abstract: A heart valve assembly includes a heart valve, a self-expandable and collapsible stent, and a sealing member. The stent includes an inflow end and an outflow end and is configured to support the heart valve internally. The sealing member is connected to and extends circumferentially around the stent. The sealing member includes a plurality of radially outward extending protrusions comprising a fold of material of the sealing member.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: August 25, 2020
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventor: Andrea N. Para
  • Patent number: 10722349
    Abstract: A prosthetic valve including an inner frame, an outer frame, and a connection assembly interconnecting the frames. The inner frame defines an interior volume for receiving a valve structure within the interior volume. The outer frame surrounds the inner frame. The inner and outer frames are each configured to be transitionable between compressed and expanded conditions. The prosthetic heart valve provides a initial deployed state in which the inner and outer frames are in the expanded condition, and a radial shape of the outer frame is adjustable via the connection assembly to a final deployed state. A shape of the outer frame can be adjusted upon implant to enable radial anchoring at the native annulus, while addressing possible non-uniformities of the native annulus and possible anatomical concerns such as LVOT obstruction.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: July 28, 2020
    Assignee: Medtronic Vascular, Inc.
    Inventors: Frank White, Paraic Frisby, James R. Keogh
  • Patent number: 10722363
    Abstract: Apparatus, systems, and methods are provided for percutaneous transcatheter delivery and fixation of annuloplasty rings to heart valves. An annuloplasty ring includes an outer tube, an inner body member, and an anchor deployment system. The outer tube includes a plurality of windows and has an axis along its length. The internal body member includes a plurality of anchors formed perpendicular to the axis. The anchor deployment system selectively rotates the internal body member with respect to the axis of the outer tube. The rotation deploys the plurality of anchors through the plurality of windows.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: July 28, 2020
    Assignee: VALCARE, INC.
    Inventors: Nadav Yellin, Samuel M. Shaolian, Jeffrey P. Dumontelle
  • Patent number: 10687942
    Abstract: Devices and methods are disclosed for the treatment or repair of regurgitant cardiac valves, such as a mitral valve. An annuloplasty device can be placed in the coronary sinus to reshape the mitral valve and reduce mitral valve regurgitation. A protective device can be placed between the annuloplasty device and an underlying coronary artery to inhibit compression of the underlying coronary artery by the annuloplasty device in the coronary sinus. In addition, the protective device can inhibit compression of the coronary artery from inside the heart, such as from a prosthetic mitral valve that exerts radially outward pressure toward the coronary artery. The annuloplasty device can also create an artificial inner ridge or retaining feature projecting into the native mitral valve region to help secure a prosthetic mitral valve.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: June 23, 2020
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES
    Inventors: June-Hong Kim, Robert J. Lederman, Ozgur Kocaturk
  • Patent number: 10667904
    Abstract: Sensor-integrated prosthetic valves that can comprise a variety of features, including a plurality of valve leaflets, a frame assembly configured to support the plurality of valve leaflets and define a plurality of commissure supports terminating at an outflow end of the prosthetic valve, a sensor device associated with the frame assembly and configured to generate a sensor signal, for example, a sensor signal indicating deflection of one or more of the plurality of commissure supports, and a transmitter assembly configured to receive the sensor signal from the sensor device and wirelessly transmit a transmission signal that is based at least in part on the sensor signal.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: June 2, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Salvador Marquez, Da-Yu Chang, Cindy Woo, Hao-Chung Yang, Lynn T. Dang, Javier A. Sanguinetti, Alexander H. Siemons, Yaron Keidar, Virginia Qi Lin, Brian S. Conklin, Donald E. Bobo, Jr.
  • Patent number: 10548729
    Abstract: An implant structure includes a contracting mechanism, including a rotatable structure for contracting the implant structure, and a locking mechanism. A rotation tool is configured to engage and rotate the rotatable structure. A longitudinal guide member is removably coupled to the contracting mechanism, configured to guide the rotation tool to the rotatable structure, and includes a distal force applicator. The rotation tool is axially moveable with respect to the guide member. The contracting mechanism is arranged such that the locking mechanism is (a) unlocked when the guide member is coupled to the contracting mechanism in a first state, thereby allowing the rotatable structure to rotate, and (b) locked when (i) the guide member is coupled to the contracting mechanism in a second state, thereby restricting the rotation of the rotatable structure, and (ii) the guide member is not coupled to the contracting mechanism, thereby restricting the rotation of the rotatable structure.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: February 4, 2020
    Assignee: Valtech Cardio, Ltd.
    Inventors: Yuval Zipory, Oz Cabiri, Yossi Gross, Tal Hammer, Amir Gross, Francesco Maisano, Eran Miller, Yoseph Weitzman, Aram Ayvazian
  • Patent number: 10512536
    Abstract: A collapsible device, such as an annuloplasty ring or prosthetic heart valve, is configured to be collapsed prior to being introduced into a patient via minimally-invasive access points such as port holes or intercostal incisions. A holder is configured to hold the collapsible device, and to selectively collapse the device for introduction into the patient and then re-enlarge the device at the desired deployment site. Collapsible devices include devices that can hingedly fold about hinge lines, and devices that can elongate to form substantially spiral forms with reduced diameters.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: December 24, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: Teodoro S. Jimenez, Mark M. Dehdashtian, Raffaele Mazzei
  • Patent number: 10507097
    Abstract: Sealable and repositionable implant devices are provided with one or more improvements that increase the ability of implants such as endovascular grafts to be precisely deployed or re-deployed, with better in situ accommodation to the local anatomy of the targeted recipient anatomic site, and/or with the ability for post-deployment adjustment to accommodate anatomic changes that might compromise the efficacy of the implant. A surgical implant includes an implant body and a selectively adjustable assembly attached to the implant body, having adjustable elements, and operable to cause a configuration change in a portion of the implant body and, thereby, permit implantation of the implant body within an anatomic orifice to effect a seal therein under normal physiological conditions.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: December 17, 2019
    Assignee: Edwards Lifesciences CardiAQ LLC
    Inventors: Richard George Cartledge, John P. Cartledge