Devitrifying Glass Or Vitrifying Crystalline Glass (e.g., Starting With Or Forming Crystalline Glass, Etc.) Patents (Class 65/33.1)
  • Publication number: 20150111030
    Abstract: A process for producing a chemically strengthened glass is provided. The method for producing a chemically strengthened glass includes subjecting a phase-separated glass to an ion exchange treatment. A chemically strengthened glass which is obtained by the process and a phase-separated glass which has been subjected to the ion exchange treatment are also provided.
    Type: Application
    Filed: October 27, 2014
    Publication date: April 23, 2015
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Junko MIYASAKA, Takahiro SAKAGAMI, Seiki OHARA, Kosho AKATSUKA, Manuel Diaz REYES, Kazutaka ONO, Hiroyuki HIJIYA
  • Publication number: 20150110701
    Abstract: A low cost process is provided for creating high purity silicon from agricultural waste, particularly rice hull ash. The process uses a series of chemical and thermal steps to yield high purity silica while using less energy and more efficient chemical processes. The high purity silicon features fewer impurities that negatively affect the use of high purity for PV cells and reduces capital and operating costs of processes to yield ultra-pure silicon.
    Type: Application
    Filed: October 20, 2014
    Publication date: April 23, 2015
    Inventors: Richard M. Laine, Julien C. Marchal
  • Patent number: 8986841
    Abstract: A process for reinforcing a glass-ceramic article, into which a maximum tension is introduced beneath the surface of the glass-ceramic, advantageously in proximity to said surface. The invention also relates to an enamel that can be used for this reinforcement, this enamel being formed from a glass frit having the following composition, the proportions being expressed as weight percentages: SiO2 50-66% MgO 3-8% Na2O ?7-15% K2O 0-3% Li2O ?0-12% CaO ?0-10% BaO ?0-15% Al2O3 0-3% ZrO2 0-3% ZnO 0-5% B2O3 0-8% the sum of the alkaline-earth metal oxides CaO+BaO moreover being between 8 and 15%, and the sum of the alkali metal oxides Na2O+K2O+Li2O moreover being between 7 and 20%. The reinforced glass-ceramics obtained by the process.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: March 24, 2015
    Assignee: Eurokera S.N.C.
    Inventors: Stephanie Pelletier, Marie-Helene Chopinet, Caroline Faillat, Marie-Helene Rouillon, Pablo Vilato
  • Patent number: 8959954
    Abstract: A process for producing proppants from waste mineralogical material. The process can include providing the waste mineralogical material in a form such as particles, fines, dust, powders, and the like, and forming a plurality of “green” pellets from the waste mineralogical material. Thereafter, the plurality of green pellets are fed into a provided flame drop tower that has a combustion flame, a hot zone, and a collection basin located downstream from the hot zone. The plurality of green pellets pass through the hot zone, are melted and subsequently solidified in the shape of a sphere downstream from the hot zone to form vitrified glass spheres. In some instances, the vitrified glass spheres are subjected to a devitrification step.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: February 24, 2015
    Assignee: The Penn State Research Foundation
    Inventors: Ryan P. Koseski, John R. Hellmann, Barry E. Scheetz
  • Patent number: 8936732
    Abstract: A white light emitting glass-ceramic. The chemical formula of the glass-ceramic is aSiO2.bAl2O3.cNaF.dCeF3.nDyF3.mAg, wherein a, b, c, d, n and m are, by mol part, 25-50, 15-30, 10-30, 10-25, 0.01-1 and 0.01-1, respectively, and a+b+c+d-100. A method for producing said glass-ceramic is also provided. Silver ion is doped in the glass-ceramic in the form of silver particles by means of sintering and reduction annealing treatment, and thus the luminescence properties of rare earth ion is improved.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: January 20, 2015
    Assignee: Ocean's King Lighting Science & Technology Co., Ltd.
    Inventors: Mingjie Zhou, Wenbo Ma, Fangyi Weng
  • Patent number: 8893525
    Abstract: An apparatus for manufacturing tempered glass. A transportation unit transports a glass substrate that is intended to be tempered. An ionizer ionizes alkali oxides in the glass substrate by radiating energy onto the glass substrate. A dielectric heating unit increases the temperature of the inner portion of the glass substrate in which the alkali oxides are ionized by the ionizer.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: November 25, 2014
    Assignee: Samsung Corning Precision Materials Co., Ltd.
    Inventors: Hoikwan Lee, Seo-Yeong Cho, Yoon Young Kwon, Kyungwook Park, Kyungmin Yoon, Jongsung Lee, Jaeyoung Choi, Gennady Kizevich
  • Patent number: 8883330
    Abstract: A glass for use in chemical reinforcement for use in a substrate of an information recording medium, having a composition comprising, denoted as mol %: SiO2 47 to 70%? Al2O3 1 to 10% (where the total of SiO2 and Al2O3 is 57 to 80%) CaO 2 to 25% BaO 1 to 15% Na2O 1 to 10% K2O 0 to 15% (where the total of Na2O and K2O is 3 to 16%) ZrO2 1 to 12% MgO 0 to 10% SrO 0 to 15% (where the ratio of the content of CaO to the total of MgO, CaO, SrO, and BaO is greater than or equal to 0.5) ZnO 0 to 10% (where the total of MgO, CaO, SrO, BaO, and ZnO is 3 to 30%) TiO2 0 to 10% and the total content of the above-stated components is greater than or equal to 95%. A glass for use in chemical reinforcement for use in the substrate of an information recording medium employed in a perpendicular magnetic recording system, in which the glass exhibits the glass transition temperature is greater than or equal to 600° C.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: November 11, 2014
    Assignee: Hoya Corporation
    Inventors: Mikio Ikenishi, Xuelu Zou
  • Publication number: 20140318184
    Abstract: Provided herein is a method for producing glass-ceramic sheets. The method includes texturing at least one surface of a first glass sheet, and stacking the first glass sheet and a second glass sheet. The first glass sheet and the second glass sheet are stacked so that the textured surface of the first glass sheet contacts a surface of the second glass sheet. The first and second glass sheets are cerammed. After cooling, the cerammed first and second glass sheets are separated. Also provided is a pre-form for producing glass-ceramic sheets. The pre-form includes a first glass sheet having a textured surface, and a second glass sheet contacting the first glass sheet. The textured surface of the first glass sheet is in contact with a surface of the second glass sheet.
    Type: Application
    Filed: April 30, 2013
    Publication date: October 30, 2014
    Applicant: Corning Incorporated
    Inventors: Sumalee Likitvanichkul, William Edward Lock, Sophie Peschiera
  • Patent number: 8815403
    Abstract: A method for producing a silica container having a rotational symmetry is provided. The method includes forming a preliminarily molded article by feeding a powdered substrate's raw material to an inner wall of an outer frame having aspiration holes with rotating the frame, and forming a silica substrate. The preliminarily molded article is aspirated from an outer peripheral side with controlling a humidity inside the outer frame by ventilating gases present in the outer frame with charging from inside the preliminarily molded article a gas mixture comprised of an O2 gas and an inert gas and made below a prescribed dew-point temperature by dehumidification, and at the same time heated from inside the preliminarily molded article by a discharge-heat melting method with carbon electrodes, thereby making an outer peripheral part of the preliminarily molded article to a sintered body while an inner peripheral part to a fused glass body.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: August 26, 2014
    Assignee: Shin-Etsu Quartz Products Co., Ltd.
    Inventors: Shigeru Yamagata, Tomomi Usui
  • Publication number: 20140228196
    Abstract: Lithium silicate glass ceramics and glasses containing specific oxides of divalent elements are described which crystallize at low temperatures and are suitable in particular as dental materials.
    Type: Application
    Filed: October 11, 2012
    Publication date: August 14, 2014
    Applicant: Ivoclar Vivadent AG
    Inventors: Christian Ritzberger, Elke Apel, Wolfram Höland, Volker Rheinberger
  • Publication number: 20140190211
    Abstract: A method of forming fused quartz glass is provided. The method includes the steps of: (a) providing a starting body made of fused quartz glass; (b) positioning the fused quartz glass starting body on a base plate; (c) inserting a first insert device into an interior cavity of the starting body to form an assembled structure; (d) heating the assembled structure to a predetermined temperature at which the fused quartz glass has a viscosity in a range of 105 to 1013 poise; and (e) deforming the fused quartz glass of the starting body at the predetermined temperature or in the viscosity range of 105 to 1013 poise around the first insert device to change a shape of the starting body. A method for making a large fused quartz glass vessel and a forming assembly for forming fused quartz glass are also provided.
    Type: Application
    Filed: January 8, 2013
    Publication date: July 10, 2014
    Applicant: HERAEUS QUARTZ AMERICA LLC
    Inventor: Matthew Donelon
  • Patent number: 8771530
    Abstract: A method for producing a polarizing element includes: forming particulate materials of a metal halide on a glass substrate; forming a protective film that covers the particulate materials in a non-plasma environment; stretching the particulate materials by heating and stretching the glass substrate; and forming acicular metal particles by reducing the metal halide constituting the stretched particulate materials.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: July 8, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Yoshitomo Kumai
  • Publication number: 20140141205
    Abstract: A method for producing a conversion element for an optical and/or optoelectronic component is provided. The method may include at least: providing a transparent substrate, applying a layer, which contains powdered glass solder, vitrifying the layer by a first temperature treatment, whereby the glass solder of the layer is vitrified and thus converted into a transparent glass material having little intrinsic coloration, applying a phosphor-containing material to the layer, and performing a second temperature treatment, whereby phosphor of the phosphor-containing material sinks into the glass material of the layer.
    Type: Application
    Filed: July 4, 2012
    Publication date: May 22, 2014
    Applicant: OSRAM GMBH
    Inventors: Angela Eberhardt, Christina Wille
  • Patent number: 8728961
    Abstract: A method is described for making a float glass convertible into a glass ceramic, by which a largely crystal fault-free glass can be produced. In this method the glass is cooled from a temperature (TKGmax), at which a crystal growth rate is at a maximum value (KGmax), to another temperature (TUEG), at which practically no more crystal growth occurs, with a cooling rate, KR, in ° C. min?1 according to: KR UEG KGmax ? ? ? ? T UEG KGmax 100 · KG ? ? max , wherein ?T=TKGmax?TUEG, and KGmax=maximum crystal growth rate in ?m min?1. The float glass has a thickness below an equilibrium thickness, a net width of at least 1 m and has no more than 50 crystals with a size of more than 50 ?m, especially no crystals with a size of more than 10 ?m, per kilogram of glass within the net width.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: May 20, 2014
    Assignee: Schott AG
    Inventors: Gerhard Lautenschlaeger, Andreas Langsdorf, Ulrich Lange, Bernd Ruedinger, Klaus Schneider, Michael Jacquorie, Friedrich Siebers, Wolfgang Schmidbauer
  • Publication number: 20140128241
    Abstract: Glass-ceramics comprising Al2O3 and rare earth oxide, yttrium oxide, and/or alkaline earth oxide. Uses of the glass-ceramics include dental articles, orthodontic appliances, abrasive particles, cutting tools, infrared windows, and ceramic bearings.
    Type: Application
    Filed: June 22, 2012
    Publication date: May 8, 2014
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Anatoly Z. Rosenflanz, Jean A. Tangeman
  • Publication number: 20140119050
    Abstract: A light-diffusing plate, a method of fabricating the same and a light-emitting diode (LED) illumination device including the same. The light-diffusing plate allows incident light to pass through, with the incident light diffused and scattered by the light-diffusing plate. The light-diffusing plate is made of crystallized glass in which crystals that diffuse and scatter the incident light are formed.
    Type: Application
    Filed: October 25, 2013
    Publication date: May 1, 2014
    Applicant: Samsung Corning Precision Materials Co., Ltd.
    Inventors: Kiyeon Lee, Jhee-Mann Kim, Jaeho Lee
  • Patent number: 8650907
    Abstract: The method produces a reshaped glass-ceramic article by forced reshaping of a flat green glass part during a ceramicizing process with temporarily lowered viscosity due to crystallization heat. To perform the forced reshaping economically the forced reshaping takes place in a continuous oven for ceramicizing and in an oven section in which the viscosity of the green glass part is temporarily lowered as a result of crystallization heat. An apparatus for performing the process is provided in the continuous oven including different active reshaping devices and/or a hollow mold. The method produces glass-ceramic articles with undamaged surfaces corresponding to surfaces produced during the making of the green glass part (smooth or structured, e.g. knobbed).
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: February 18, 2014
    Assignee: Schott AG
    Inventors: Martin Taplan, Herwig Scheidler, Ioannis Kosmas, Friedrich-Georg Schroeder, Wolfgang Schmidbauer, Torsten Gabelmann, Dieter Schoenig
  • Publication number: 20140000314
    Abstract: Lithium silicate glass ceramics and glasses are described which can advantageously be applied to zirconium oxide ceramics in particular by pressing-on in the viscous state and form a solid bond with these.
    Type: Application
    Filed: September 6, 2013
    Publication date: January 2, 2014
    Applicant: Ivoclar Vivadent AG
    Inventors: Christian Ritzberger, Ricardo Dellagiacomo, Marcel Schweiger, Harald Bürke, Wolfram Höland, Volker Rheinberger
  • Publication number: 20130334957
    Abstract: The invention provides a tin phosphate glass containing embedded luminescent material particles, wherein the luminescent material particles comprise luminescent material from the class of CaAlSiN 3:Eu 2+ and optionally other luminescent material particles. The invention further provides a method for the production of such glass as well as a lighting unit using such glass as (part of) a light conversion unit.
    Type: Application
    Filed: February 28, 2012
    Publication date: December 19, 2013
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Lucas Johannes Anna Maria Beckers, Paulus Hubertus Gerardus Offermans
  • Publication number: 20130283858
    Abstract: Methods for selecting titania-doped quartz glass which experiences a reduction in OH group concentration of less than or equal to 100 ppm upon heat treatment at 900° C. for 100 hours as suitable material for the EUV lithography member.
    Type: Application
    Filed: June 18, 2013
    Publication date: October 31, 2013
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Shigeru Maida, Hisatoshi Otsuka, Tetsuji Ueda, Masanobu Ezaki
  • Publication number: 20130274085
    Abstract: Crystallizable glasses, glass-ceramics, IXable glass-ceramics, and IX glass-ceramics are disclosed. The glass-ceramics exhibit ?-spodumene ss as the predominant crystalline phase. These glasses and glass-ceramics, in mole %, include: 62-75 SiO2; 10.5-17 Al2O3; 5-13 Li2O; 0-4 ZnO; 0-8 MgO; 2-5 TiO2; 0-4 B2O3; 0-5 Na2O; 0-4 K2O; 0-2 ZrO2; 0-7 P2O5; 0-0.3 Fe2O3; 0-2 MnOx; and 0.05-0.2 SnO2. Additionally, these glasses and glass-ceramics exhibit the following criteria: a. a ratio: [ Li 2 ? O + Na 2 ? O + K 2 ? O + MgO + ZnO ] [ Al 2 ? O 3 + B 2 ? O 3 ] ?between 0.7 to 1.5; b. a ratio: [ TiO 2 + SnO 2 ] [ SiO 2 + B 2 ? O 3 ] ?greater than 0.04. Furthermore, the glass-ceramics exhibit an opacity ?about 85% over the wavelength range of 400-700 nm for an about 0.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 17, 2013
    Inventors: George Halsey Beall, Marie Jacqueline Monique Comte, George Owen Dale, Linda Ruth Pinckney, Charlene Marie Smith, Ronald Leroy Stewart, Steven Alvin Tietje
  • Patent number: 8536078
    Abstract: Lithium silicate glass ceramics and glasses containing at least 6.1 wt.-% ZrO2 are provided which can advantageously be applied to zirconium oxide ceramics in particular by pressing-on in the viscous state and forming a solid bond with the zirconium oxide ceramics.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: September 17, 2013
    Assignee: Ivoclar Vivadent AG
    Inventors: Christian Ritzberger, Ricardo Dellagiacomo, Marcel Schweiger, Harald Burke, Wolfram Holand, Volker Rheinberger
  • Publication number: 20130237400
    Abstract: A glass-ceramic having at least two crystal phases, wherein at least one crystal phase has a positive temperature dependence of the resonance frequency ?f, at least one crystal phase has a negative temperature dependence of the resonance frequency ?f and the glass-ceramic has a resulting temperature dependence of the resonance frequency ?f of 0 ppm/K with a maximum deviation of +/?20 ppm/K, is described. Furthermore, a process for producing such a glass-ceramic and the use of the glass-ceramic are described.
    Type: Application
    Filed: March 12, 2012
    Publication date: September 12, 2013
    Applicant: SCHOTT AG
    Inventors: Martin Letz, Stephan Knoener, Martina Dressler, Daniela Seiler, Bernd Hoppe, Michael Kluge
  • Publication number: 20130224493
    Abstract: A lithium-containing, transparent glass-ceramic material is provided. The material has low thermal expansion and has an amorphous, lithium-depleted, vitreous surface zone. The zone is at least 50 nm thick on all sides and encloses a crystalline interior, which has high transmission. The material includes a transition region connecting the zone and the interior.
    Type: Application
    Filed: July 7, 2011
    Publication date: August 29, 2013
    Applicant: SCHOTT AG
    Inventors: Falk Gabel, Otmar Becker, Michael Glasenapp, Jan-Peter Ortmann, Petra Grewer, Veit Luther, Harald Striegler, Dietmar Wennemann, Thomas Schuler, Thoralf Johansson, Helga Goetz, Michael Bug, Guenther Benhaar, Gerhard Hahn, Friedrich-Georg Schroeder
  • Patent number: 8516851
    Abstract: In order to obtain glass or glass ceramic materials having increased strength, the invention provides a method for producing glass or glass ceramic articles, which comprises the steps: producing an initial glass body (11), mounting the initial glass body (11) on a gas cushion (13) between a levitation support (1) and the initial glass body (11), and at least partially ceramizing the initial glass body (11) on the levitation support (1). The levitation support comprises at least one continuous surface region (3) having at least one gas feed region (151, 152, 153) where levitation gas for the gas cushion (13) is fed out from the levitation support, and at least one gas discharge region (171 172, 173) where gas from the gas cushion (13) is at least partially discharged into the levitation support.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: August 27, 2013
    Assignee: Schott AG
    Inventors: Sybill Nuettgens, Wolfgang Schmidbauer, Roland Dudek, Friedrich Georg Schroeder, Gerhard Hahn, Markus Borrmann, Helga Goetz
  • Publication number: 20130209963
    Abstract: Lithium silicate materials are described which can be easily processed by machining to dental products without undue wear of the tools.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 15, 2013
    Inventor: Ivoclar Vivadent AG
  • Publication number: 20130167589
    Abstract: A fused silica body comprising a layer of vitreous silica adjacent at least a portion of an inner surface is described in embodiments herein. In other embodiments, a method of making a fused silica body with a layer of vitreous silica adjacent at least a portion of an inner surface is described herein, comprising heating at least a portion of the inner surface to the point of vitrification. In certain embodiments, the method involves passing a linear local heat source over the inner surface in a particular manner, such as a helical fashion transverse to the linear shape, and may involve creating on the inner surface of the body overlapping swaths of temporarily melted silica material.
    Type: Application
    Filed: March 1, 2013
    Publication date: July 4, 2013
    Applicant: RAYTHEON COMPANY
    Inventor: RAYTHEON COMPANY
  • Patent number: 8461068
    Abstract: Described herein are glass ceramic compositions with bulk scattering properties that have improved light extraction properties due to high levels of diffuse transmission, and methods of making such glass ceramic compositions. The compositions are based on Li2O—Al2O3—SiO2 glass ceramics and with the proper crystal size, exhibit good volume scattering characteristic for visible light and enhance the outcoupling from the substrate to the air in optical devices, such as light emitting diodes.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: June 11, 2013
    Assignee: Corning Incorporated
    Inventors: Etienne Almoric, Marie Jacqueline Monique Comte, Micaela Nazaraly, Lothar Wondraczek
  • Publication number: 20130133377
    Abstract: A known method for producing synthetic quartz glass comprises the method steps of: forming a stream of a SiO2 feedstock material which contains octamethylcyclotetrasiloxane (D4) as the main component which has a reference molecular mass assigned to it, feeding the stream to a reaction zone in which the feedstock material is converted under formation of amorphous SiO2 particles by pyrolysis or hydrolysis into SiO2, depositing the amorphous SiO2 particles on a deposition surface while forming a porous SiO2 soot body, and vitrifying the SiO2 soot body while forming the synthetic quartz glass.
    Type: Application
    Filed: November 23, 2012
    Publication date: May 30, 2013
    Applicant: HERAEUS QUARZGLAS GMBH & CO. KG
    Inventors: Heinz Fabian, Juergen Roeper
  • Publication number: 20130130886
    Abstract: A matrix for a thermostructural fibrous composite material obtained by geopolymer synthesis based on nanocrystalline cristobalite resulting from the crystallization of geopolymer micelles of potassium polysiloxonate K—(Si—O—Si—O)n. The nanocrystalline cristobalite is in the form of micelles and/or microspheres having dimensions of less than 1 micron, preferably of less than 500 nanometers, connected together by an amorphous phase. The matrix 4 contains at least 85 percent by weight of oxide SiO2 with at most 15%, preferably at most 10%, by weight of alkali metal oxide K2O. The nanocrystalline cristobalite results from the crystallization of geopolymer micelles of potassium polysiloxonate by a heat treatment at a temperature preferably between 600° C. and 800° C., for a time of less than 30 minutes. The fibrous composite material impregnated with this matrix is thermostructural.
    Type: Application
    Filed: March 28, 2011
    Publication date: May 23, 2013
    Applicant: PYROMERAL SYSTEMS S.A.
    Inventor: M. Michel Davidovics
  • Publication number: 20130055764
    Abstract: A crystal growth furnace is disclosed herein and includes a top cover, a body and a bottom portion. The top cover is configured to be moved by a top cover shifting mechanism. The body is configured to be moved vertically by a body shifting mechanism. The bottom portion is configured to be moved from the bottom of the crystal growth furnace by a bottom portion shifting mechanism and used to carry a crucible. When the top cover, the body and the bottom portion are connected together to be the crystal growth furnace, a silicon material disposed within the crucible is grown to be an ingot.
    Type: Application
    Filed: September 6, 2011
    Publication date: March 7, 2013
    Applicant: REAL GREEN MATERIAL TECHNOLOGY CORP.
    Inventor: Wen-Yuan Chang
  • Patent number: 8359886
    Abstract: A process for increasing toughness of glass particulates is provided. The process includes providing an aluminosilicate glass particulate, the glass particulate generally having the form of a sphere, and heating the glass particulate to a temperature greater than 600° C. for a predetermined time. Thereafter, the glass particulate can be cooled to ambient temperature and the heating step can alter the failure mechanism of the glass particulate from a high energy failure that produces generally fine powder to a lower energy failure that produces generally large fragments. The glass particulate can be an amorphous glass particulate and may or may not have a nominal composition that corresponds to rhyolite, basalt, tholeiite, olivine and/or andesite.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: January 29, 2013
    Assignee: The Penn State Research Foundation
    Inventors: Ryan P. Koseski, John R. Hellmann, Barry E. Scheetz
  • Publication number: 20120297830
    Abstract: A method for improving the thermo-mechanical properties of an aluminum-titanate composite, the composite including at least one of strontium-feldspar, mullite, cordierite, or a combination thereof, including: combining a glass source and an aluminum-titanate source into a batch composition; and firing the combined batch composite composition to produce the aluminum-titanate composite. Another method for improving the thermo-mechanical properties of the composite dips a fired composite article into phosphoric acid, and then anneal the dipped composite article. The resulting composites have a thin glass film situated between the ceramic granules of the composite, which can arrest microcrack propagation.
    Type: Application
    Filed: May 27, 2011
    Publication date: November 29, 2012
    Inventors: Monika Backhaus-Ricoult, Christopher Raymond Glose
  • Publication number: 20120291492
    Abstract: A consecutive molding method for crystallized glass comprises: a melting process to obtain molten glass by melting glass raw materials; a molding process to obtain a band-shaped plate glass by roll forming the molten glass to become band-shaped; a crystallization process to obtain a band-shaped crystallized glass plate by conducting thermal treatment on the band-shaped plate glass to crystallize it; and a cutting process to cut the band-shaped crystallized glass plate, wherein the crystallization process includes: a temperature-raising process to produce the band-shaped crystallized glass plate by disposing the band-shaped plate glass obtained in the molding process, in the atmosphere of a crystal nucleus-formation temperature and raising the temperature to a crystal-growth temperature or above to grow crystals as well as form crystal nuclei; and a slow-cooling process to slowly cool down the band-shaped crystallized glass plate.
    Type: Application
    Filed: March 9, 2012
    Publication date: November 22, 2012
    Applicants: Ta Hsiang Containers Ind. Co., Ltd., a Taiwan Corporation, Huzhou Ta Hsiang Glass Products Co., Ltd., a China Corporation
    Inventors: Kuo-Chuan Hsu, Yan-Bin Jiang, Chao Qu
  • Patent number: 8283060
    Abstract: To provide a substrate for information recording medium having various properties, in particular higher fracture toughness, required for application of the substrate for information recording medium of the next generation such as perpendicular magnetic recording system, etc. and a material with excellent workability for such purpose. A crystallized glass substrate for information recording medium, consisting of a crystallized glass which comprises one or more selected from RAl2O4 and R2TiO4 as a main crystal phase, in which R is one or more selected from Zn, Mg and Fe, and in which the main crystal phase has a crystal grain size in a range of from 0.5 nm to 20 nm, a degree of crystallinity of 15% or less, and a specific gravity of 3.00 or less.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: October 9, 2012
    Assignee: Ohara Inc.
    Inventors: Toshitaka Yagi, Naoyuki Goto
  • Publication number: 20120251745
    Abstract: A fused silica body comprising a layer of vitreous silica adjacent at least a portion of an inner surface is described in embodiments herein. In other embodiments, a method of making a fused silica body with a layer of vitreous silica adjacent at least a portion of an inner surface is described herein, comprising heating at least a portion of the inner surface to the point of vitrification. In certain embodiments, the method involves passing a linear local heat source over the inner surface in a particular manner, such as a helical fashion transverse to the linear shape, and may involve creating on the inner surface of the body overlapping swaths of temporarily melted silica material.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Inventors: Derrick J. Rockosi, Richard Gentilman, Chrostopher K. Solecki, Allen L. Kelly, William C. Strauss, Brian Gahan
  • Publication number: 20120247151
    Abstract: An apparatus for producing a layer of vitreous silica adjacent at least a portion of an inner surface of a fused silica body is described, comprising a heat source disposed to apply sufficient heat to at least a portion of the inner surface to cause a layer of said at least a portion of the inner surface to vitrify. In certain embodiments the heat source is configured to heat at one time a relatively small area of the inner surface, and the apparatus comprises a positioning mechanism for moving the heat source with respect to the inner surface. In certain embodiments the heat source is a hydrogen-oxygen surface-mix fueled torch that is moved helically with respect to the inner surface of the body under the control of a programmed CNC motion control system.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Inventors: Allen L. Kelly, Christopher K. Solecki, Kevin M. Chapla, William C. Strauss
  • Publication number: 20120228561
    Abstract: Provided is the method for producing, by heat treating raw material powder, a lithium ion secondary battery positive electrode material which contains an olivine-structure crystal represented by general formula LiMxFe1-xPO4 (where 0?x<1 and M is at least one type selected from Nb, Ti, V, Cr, Mn, Co and Ni), wherein the raw material powder contains trivalent iron compound. The present invention allows for stably producing at reduced cost a lithium ion secondary battery positive electrode material which contains olivine-type LiMxFe1-xPO4 crystal.
    Type: Application
    Filed: November 11, 2010
    Publication date: September 13, 2012
    Applicants: NATIONAL UNIVERSITY CORPORATION NAGAOKA UNIVERSITY OF TECHNOLOGY, NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Tomohiro Nagakane, Akihiko Sakamoto, Tsuyoshi Honma, Takayuki Komatsu
  • Patent number: 8241395
    Abstract: Disclosed are processes for preparing conductive glass-ceramic membranes and methods of using them in hydrogen or proton separation.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: August 14, 2012
    Assignee: Schott Corporation
    Inventors: Mark J. Davis, Samuel David Conzone, Paula Vullo
  • Publication number: 20120198889
    Abstract: A manufacturing method of a glass strip, the method including a heating and drawing process of heating and softening a glass plate preform, drawing the glass plate preform to have a desired thickness, and forming a glass strip, wherein at the heating and drawing process, the glass plate preform is drawn so that an internal pressure of a heating furnace is kept positive relative to an atmospheric pressure and so that gas flows introduced to both surfaces of the glass plate preform, respectively are equal to each other within the heating furnace.
    Type: Application
    Filed: April 20, 2012
    Publication date: August 9, 2012
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventors: Toshihiro Nakamura, Tetsuya Kumada, Yasuhiro Naka
  • Publication number: 20120189918
    Abstract: A sulfide solid electrolyte with excellent ion conductivity and a method for producing a crystallized glass contained in the sulfide solid electrolyte. A sulfide solid electrolyte comprising a crystallized glass represented by the following chemical formula yLi2S.(100-x-y)P2S5.xP2O5, wherein 0<x<25 and 67<y<80.
    Type: Application
    Filed: August 31, 2010
    Publication date: July 26, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masahiro Tatsumisago, Akitoshi Hayashi, Shigenori Hama, Koji Kawamoto, Takamasa Ohtomo
  • Publication number: 20120167479
    Abstract: An abrasive element consisting substantially of a glass material that is at least partially devitrified.
    Type: Application
    Filed: September 9, 2011
    Publication date: July 5, 2012
    Inventors: Steven Bradley Vaughan, Philip James Harrison
  • Patent number: 8211817
    Abstract: Fused silica glass having an internal transmittance of UV with 245 nm wavelength, being at least 95% at 10 mm thickness, a OH content of not larger than 5 ppm, and a content of Li, Na, K, Mg, Ca and Cu each being smaller than 0.1 ppm. Preferably the glass has a viscosity coefficient at 1215° C. of at least 1011.5 Pa·s; and a Cu ion diffusion coefficient of not larger than 1×10?10 cm2/sec in a depth range of greater than 20 ?m up to 100 ?m, from the surface, when leaving to stand at 1050° C. in air for 24 hours. The glass is made by cristobalitizing powdery silica raw material; then, fusing the cristobalitized silica material in a non-reducing atmosphere. The glass exhibits a high transmittance of ultraviolet, visible and infrared rays, has high purity and heat resistance, and exhibits a reduced diffusion rate of metal impurities, therefore, it is suitable for various optical goods, semiconductor-production apparatus members, and liquid crystal display production apparatus members.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: July 3, 2012
    Assignees: Tosoh Corporation, Tosoh SGM Corporation
    Inventors: Kazuyoshi Arai, Tsutomu Takahata, Shinkichi Hasimoto, Masahito Uchida, Nobusuke Yamada, Yoshinori Harada, Hideharu Horikoshi
  • Patent number: 8201421
    Abstract: To obtain an optical component having excellent secondary optical nonlinear properties by irradiating a surface and/or inside of glass having at least one member selected from Ni, Fe, V, Cu, Cr and Mn as a heat source material for absorbing and converting a laser beam to heat, incorporated to a glass matrix comprising at least one glass-forming oxide-selected from SiO2, GeO2, B2O3, P2O5, TeO2, Ga2O3, V2O5, MoO3 and WO3 and at least one member selected from alkali metals, alkaline earth metals, rare earth elements and transition elements, with a laser beam with a wavelength to be absorbed by the heat source material, to convert the irradiated portion to a single crystal or a group of crystal grains comprising components contained in the glass matrix and not containing the heat source material, thereby to form a pattern.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: June 19, 2012
    Assignees: Asahi Glass Company, Limited, Nagaoka University of Technology
    Inventors: Takayuki Komatsu, Tsuyoshi Honma, Takumi Fujiwara, Yasuhiko Benino
  • Patent number: 8198201
    Abstract: Transparent ?-quartz glass-ceramics containing vanadium oxide. Such glass-ceramics have advantageous optical properties including good transmission in the infrared range, low transmission in the visible range, and significant transmission in the blue range for thicknesses of 3 mm. They can be used as materials for cooking top plates.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: June 12, 2012
    Assignee: Eurokera
    Inventors: Marie Jacqueline Monique Comte, Philippe Lehuede, Isabelle Marie Chauvel-Melscoet, Daniel Louis Gabriel Ricoult
  • Patent number: 8196429
    Abstract: In order to provide method and apparatus for manufacturing a vitreous silica crucible with little mixing of foreign matter and stable arc during arc melting, the method and apparatus for manufacturing a vitreous silica crucible have a device which blows off air from the side of arc electrodes toward a melting space of a mold, and air discharge ports which discharge the air within the heating furnace, and perform forced supply of air into the melting space during melting to make the atmospheric pressure of the melting space higher than the surroundings, and preferably, form an air pressure difference of 100 Pa or more between the melting space and the surroundings, thereby performing melting.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: June 12, 2012
    Assignee: Japan Super Quartz Corporation
    Inventors: Takeshi Fujita, Minoru Kanda
  • Publication number: 20120137735
    Abstract: There is provided a method of manufacturing a vitreous silica crucible having non-bubbles on the inner surface without necessitating new apparatuses for grinding and polishing and without damaging the productivity. According to the present invention, there is provided a method of manufacturing a vitreous silica crucible including the processes of: gathering a vitreous silica layer containing residual bubbles existing in a near-surface region of the transparent layer of the vitreous silica crucible by controlling the number of rotations applied to the vitreous silica crucible in a state that an inner surface side of the vitreous silica crucible is fused by arc heating; and moving a portion of a non-bubble layer in the surface of the transparent layer exposed by movement of the residual bubble-containing layer to cover a region in which bubbles have gathered with the non-bubble layer.
    Type: Application
    Filed: November 30, 2011
    Publication date: June 7, 2012
    Applicant: JAPAN SUPER QUARTZ CORPORATION
    Inventors: Toshiaki SUDO, Takuma YOSHIOKA
  • Patent number: 8181483
    Abstract: Discloses are processes for preparing conductive glass-ceramics employ segregation or ion exchange.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: May 22, 2012
    Assignee: Schott AG
    Inventors: Mark Davis, Paula Vullo
  • Patent number: 8143178
    Abstract: The present invention discloses a blue transparent glass-ceramic material comprising ?-quartz solid solution as a predominant crystalline phase and process for making same. The glass-ceramic comprises TiO2 as a nucleating agent, sulphur and at least one metal oxide, advantageously MgO and/or ZnO. The process for making the glass-ceramic material comprises including a metal sulphide, such as ZnS and/or MgS, as a reducing agent in melting the precursor glass of the glass-ceramic material.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: March 27, 2012
    Assignee: EuroKera
    Inventor: Lothar Wondraczek
  • Patent number: 8141387
    Abstract: The process of making the glass-ceramic includes ceramicizing a starting glass at a heating or cooling rate during the ceramicization of at least 10 K/min, so that the glass-ceramic contains at least 50% by volume of ferroelectric crystallites with a maximum diameter of from 20 to 100 nm and not more than 10% by volume of nonferroelectric crystallitesis. The glass ceramic produced by the process contains no pores or not more than 0.01% by volume of the pores and a value of e?·V2max of the glass-ceramic is at least 20 (MV/cm)2, wherein e? is the dielectric constant at 1 kHz and Vmax is the breakdown voltage per unit thickness. The ferroelectric crystallites preferably have a perovskite structure and are composed of substantially pure or doped BaTiO3 and/or BaTi2O5.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: March 27, 2012
    Assignee: Schott AG
    Inventors: Martin Letz, Mark J. Davis, Bernd Ruedinger, Bernd Hoppe, Bianca Schreder, Maria-Louisa Aigner, Daniela Seiler