Abstract: In a method of manufacturing a through electrode-attached glass substrate, electrode through holes and at least one dummy through hole are formed in a plate-shaped glass, and electrode members are inserted into the electrode through holes but not into the at least one dummy through-hole. The plate-shaped glass and the electrode members are welded by heating the plate-shaped glass at a temperature higher than a softening point of the plate-shaped glass so that the glass is allowed to flow into the at least one dummy through hole. Opposite surfaces of the plate-shaped glass are ground together with the electrode members so as to expose the electrode members to the opposite surfaces of the plate-shaped glass and to configure the electrode members as through electrodes that are electrically separated from each other.
Abstract: A photomultiplier tube, a photomultiplier tube unit, and a performance-improved radiation detector for increasing a fixing area of a side tube in a faceplate while increasing an effective sensitive area of the faceplate. In the photomultiplier tube, a side face (3c) of the faceplate (3) protrudes outward from an outer side wall (2b) of a metal side tube (2), so that a light receiving area for receiving light passing through a light receiving face (3d) of the faceplate (3) is increased. The overhanging structure of the faceplate (3) is conceived based on a glass refractive index. The overhanging structure is aimed to receive light as much as possible which has not been received before. When the metal side tube (2) is fused to the glass faceplate (3), a fusing method is adopted due to joint between glass and metal. Joint operation between the faceplate (3) and the side tube (2) is reliably ensured. Accordingly, the overhanging structure of the faceplate (3) is effective.
Abstract: A photomultiplier tube, a photomultiplier tube unit, and a performance-improved radiation detector for increasing a fixing area of a side tube in a faceplate while increasing an effective sensitive area of the faceplate. In the photomultiplier tube, a side face (3c) of the faceplate (3) protrudes outward from an outer side wall (2b) of a metal side tube (2), so that a light receiving area for receiving light passing through a light receiving face (3d) of the faceplate (3) is increased. The overhanging structure of the faceplate (3) is conceived based on a glass refractive index. The overhanging structure is aimed to receive light as much as possible which has not been received before. When the metal side tube (2) is fused to the glass faceplate (3), a fusing method is adopted due to joint between glass and metal. Joint operation between the faceplate (3) and the side tube (2) is reliably ensured. Accordingly, the overhanging structure of the faceplate (3) is effective.
Abstract: Metal collar device of the type used for integrating a glass part and a metal part of different coefficients of expansion. The collar is circular and comprises a first portion intended to be in contact with the metal part, a second portion intended to be in contact with the glass part and a bonding portion placed between said first and second portions. The second portion is not as thick as the first portion and as the bonding portion, so that it can adjust to the expansion of the glass part by exerting stresses on the latter below the limit of resistance of said glass part.
Abstract: A method of embedding a magnetically attractable member (25) in a ceramic material (1) and a system therefor wherein there are provided a magnetically attractable member and a ceramic member capable of being placed in a molten state. The magnetically attractable member is disposed over the ceramic member and the ceramic member is placed in a molten state. The magnetically attractable member is then disposed in the molten ceramic member by magnetic attraction and the molten ceramic member is then hardened around the magnetically attractable member. The magnetically attractable member is taken from the class consisting of Alloy 42 and Kovar. The ceramic member is preferably a glass. The ceramic member is preferably disposed on a semiconductor package and the magnetically attractable member is preferably at least a portion of a semiconductor lead frame.