Positional Compensation Or Modification Compensation Or Mod Patents (Class 700/193)
  • Patent number: 8577495
    Abstract: A method for calibrating a CNC machine comprises mounting a gauge to a table of the CNC machine and calibrating a probe to the gauge mounted on the CNC machine. A total deviation of the probe and an actual table center position from a nominal table center position for a coordinate system associated with the CNC machine are determined. A controller operatively connected to the CNC machine and the probe is programmed to compensate for the total deviation.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: November 5, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Jie Gu, John S. Agapiou, Sheri K. Kurgin, Paula J. Deeds
  • Patent number: 8571713
    Abstract: Disclosed herein are a robot generating a message using a robot hand, and a control method thereof. When a user types characters using a robot hand, a hand body part and a finger part of the robot hand output displacement signals and a command reading unit accordingly generates a message corresponding to the displacement signals. The message is transmitted to a robot controlling unit. In addition, the message is outputted by sound or displayed to be easily checked by the user.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: October 29, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kyung Rock Kim
  • Publication number: 20130238114
    Abstract: A block in an electric discharge machining program is read out and analyzed, and when determined that a machining route correction command is issued to correct the machining route at a corner formed by consecutive first and second machining blocks, the machining route is corrected such that the end point of the first machining block, an extension point obtained by extending the first machining block from the end point thereof by a predetermined distance in the machining advancing direction, and a new start point obtained by partially removing the second machining block by a predetermined distance from the start point thereof are connected. Then, the wire electrode is moved with respect to the workpiece, following the corrected machining route.
    Type: Application
    Filed: December 24, 2012
    Publication date: September 12, 2013
    Applicant: FANUC CORPORATION
    Inventors: Kaoru HIRAGA, Koji SUZUKI
  • Patent number: 8509941
    Abstract: The present invention relates to a method and a device for the machining of an object using a tool, in which the tool (2) or the object (18) is guided using a handling apparatus, which has multiple movement axes for the coarse positioning of the tool (2) or object (18), which form a kinematic chain. In the method, an additional actuator (3), which has a higher positioning precision in at least one dimension or axis than the other movement axes, is inserted between a terminal link (1) of the kinematic chain and the tool (2) or object (18). A relative movement of the tool (2) or terminal link (1) of the kinematic chain to the object (18) is detected using at least one sensor (5) and a deviation from a target movement path is compensated for using the additional actuator (3). The method and the associated device allow the use of robots or other handling apparatuses having lower path precision for applications which require a high precision during the guiding of the tool.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: August 13, 2013
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Rheinisch-Westfaelische Technische Hochschule Aachen
    Inventors: Boris Regaard, Stefan Kaierle
  • Patent number: 8504188
    Abstract: In a method, device and in a non-transitory computer-readable storage medium for computer-assisted generation of a manipulator path of a computer-controlled manipulator, a processor is loaded with a virtual tool and generates a virtual tool path based in a virtual component and the loaded virtual tool. The processor is also loaded with a virtual manipulator kinematic and generates a virtual manipulator path based on the virtual tool path and the virtual manipulator kinematic.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: August 6, 2013
    Assignee: Kuka Laboratories GmbH
    Inventor: Andreas Keibel
  • Patent number: 8494671
    Abstract: The invention relates to a grinding machine for grinding a workpiece, which has been set on a chuck top surface, by moving a rotating grinding wheel in relation to the workpiece. The grinding machine includes: a microscope configured to be vertically movable; a CCD camera configured to take an image viewed through the microscope; and an image processor configured to process the image taken by the CCD camera to measure a vertical distance between a reference plane of the microscope and an object of the microscope. The image processor is adapted to measure the vertical distance between the reference plane of the microscope and the object of the microscope based on sharpness of the image, which corresponds to how clear the microscope is focused.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: July 23, 2013
    Assignee: Toshiba Kakai Kabushiki Kaisha
    Inventors: Takanobu Akiyama, Hiroyuki Kakishima
  • Patent number: 8489225
    Abstract: A system for performing alignment of two wafers is disclosed. The system comprises an optical coherence tomography system and a wafer alignment system. The wafer alignment system is configured and disposed to control the relative position of a first wafer and a second wafer. The optical coherence tomography system is configured and disposed to compute coordinate data for a plurality of alignment marks on the first wafer and second wafer, and send that coordinate data to the wafer alignment system.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: July 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Yongchun Xin, Xu Ouyang, Yunsheng Song, Tso-Hui Ting
  • Patent number: 8483858
    Abstract: Embodiments of the invention disclose a method for optimizing a simulation of a machining of a workpiece performed by removing a set of swept volumes from a volume of the workpiece, wherein the volume is partitioned into a set of cells, comprising the steps of: associating with each cell a subset of distance fields representing a subset of swept volumes intersecting with the cell, wherein at least part of the subset of swept volumes forms a composite surface of the cell; subjecting the cell with a set of rays incident to the cell from at least one direction; and selecting a distance field of the subset of distance fields into an optimal subset associated with the cell, wherein a boundary of the swept volume represented by the distance field intersects with at least one ray at a point of intersection lying on the composite surface.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: July 9, 2013
    Assignee: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Alan Sullivan, William S. Yerazunis
  • Publication number: 20130173047
    Abstract: A micro-machining tool is disclosed herein. It includes a micro-moving platform, a supporting device to support the micro-moving platform, an anti-rotation device embedded in a bar for preventing the supporting device from rotating, and a fixing device for fixing the supporting device for limiting its rotation as the bar is moving.
    Type: Application
    Filed: March 7, 2012
    Publication date: July 4, 2013
    Applicant: CHUNG YUAN CHRISTIAN UNIVERSITY
    Inventors: Yi-Hua Fan, Ching-En Chen, Wen-Wei Fan, Ying Tsun Lee
  • Patent number: 8478438
    Abstract: A main control process is made common to all machine tools by describing in a NC program a tool trajectory including a change in posture in a coordinate system (30) fixed to a machining object (W), fixedly arranging a preparatory reference coordinate system (20) on a machine table (2), representing an installation position of the machining object (W) and a position of a spindle (91) on which a tool (11) is mounted in the preparatory reference coordinate system (20), and containing portions relating to a configuration of axes in a conversion function group of correlation between the position (q) of the spindle (91) and an axis coordinate (r). Thus, the processes of reading the NC program, correction of the tool trajectory and conversion into the trajectory of a spindle position based on the installation position of the machining object, the tool shape, and tool dimensions are made completely common.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: July 2, 2013
    Assignee: Shin Nippon Koki Co., Ltd.
    Inventor: Nobutaka Nishibashi
  • Patent number: 8473092
    Abstract: A working route of a main shaft is divided into a plurality of measurement points, and a length from a center of a complete round to the working route of the main shaft at each of the measurement points is measured, and this measured value is compared with a radial length of the complete round to operate a deviation amount from the complete round at each of the measurement points. This deviation amount is utilized to find a transferred position. As correction values for correcting the deviation value, an X-axis incremental amount and a Y-axis incremental amount obtained from a difference in the transferred position between the respective measurement points, or an X-axis absolute value and a Y-axis absolute value of the transferred position at each of the measurement points are incorporated into an NC working program to perform complete round working according to the program.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: June 25, 2013
    Assignee: Horkos Corporation
    Inventors: Shinsuke Sugata, Kunihiko Murakami
  • Patent number: 8452425
    Abstract: A position control device for suppressing occurrence of stick-slip during a feed operation performed in a very low speed region is provided. Adders add an output obtained by multiplying actual speed deviation by a proportional gain, an integral component of actual speed deviation obtained by inputting actual speed deviation to an integral compensator, an output obtained by multiplying motor speed deviation by a proportional gain, and an integral component of the motor speed deviation obtained by inputting motor speed deviation to an integral compensator. The result is output as a torque feedback command. Each integral compensator has a coefficient changer capable of changing a coefficient from 0 to 1 to adjust integral gains in accordance with a speed feedforward command or a speed command. Large integral gain increases the response speed of switching from static to kinetic friction torque in a very low speed region thereby suppressing occurrence of stick-slip.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: May 28, 2013
    Assignee: Okuma Corporation
    Inventors: Yuji Kawazu, Tomohisa Kameyama
  • Patent number: 8447438
    Abstract: An apparatus on an integrated circuit provides a real-time flexible interface between inputs from a vehicle components and outputs to the vehicle control components. The functions comprises of a programmable interconnection matrix, engine sensors and a control interface. Both engine sensors and control functions comprise of fixed hardwired functions and a customization hardware area. The apparatus therefore provides means for flexible powertrain events control target for the next generation of low-polluting power trains of vehicles.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: May 21, 2013
    Assignee: Scaleo Chip
    Inventors: Khaled Douzane, Stephane Le Merdy, Loic Vezier, Pascal Jullien
  • Patent number: 8442665
    Abstract: A system is disclosed including a three-dimensional object having a non-conforming region, and a photogrammetry device adapted to scan the three-dimensional object. The system further includes optical reference targets and a controller structured to perform functions of repairing the three-dimensional object. The controller commands the photogrammetry device to scan the three-dimensional object, and calculates a nominal surface location and contour for the three-dimensional object. The controller further commands the photogrammetry device to scan the non-conforming region of the three-dimensional object, and calculates a material removal tool path comprising a path adapted to remove material from the object located beyond the nominal surface location and contour. The controller generates a solid model of the damaged region of the object based on the nominal surface location and contour, and computes a material addition tool path according to the solid model.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: May 14, 2013
    Assignee: Rolls-Royce Corporation
    Inventor: Gregory Thomas Krause
  • Patent number: 8423171
    Abstract: In a method for processing a workpiece in a tool machine, a first step (Step S4) for continuously measuring a position of a tip portion of a tool attached to a main axis, a second step (Step S5) for computing a displacement amount of the position of the tip point of the tool based on a result of the measurement, a third step (Step S8) for observing a time period while the displace amount is belonged in arrange of allowable displace amount previously determined, a fourth step (Step S9) for keeping an idling operation in case that the time for which the displace amount is belonged in the range of the allowable displacement amount is shorter than a time period previously determined and intermitting the idling operation in the case that the time for which the displace amount is belonged in the range of the allowable displacement amount become the time period previously determined and a fifth step (Step S10) for starting a process with respect to the workpiece in the case that the idling operation is finished are
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: April 16, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yoshikatsu Sato, Shigeru Honda
  • Patent number: 8423172
    Abstract: Methods, systems, and techniques for automatically determining jet orientation parameters to correct for potential deviations in three dimensional part cutting are provided. Example embodiments provide an Adaptive Vector Control System (AVCS), which automatically determines speeds and orientation parameters of a cutting jet to attempt to insure that a part will be cut within prescribed tolerances where possible. In one embodiment, the AVCS determines the tilt and swivel of a cutting head by mathematical predictive models that examine the cutting front for each of “m” hypothetical layers in a desired part, to better predict whether the part will be within tolerances, and to determine what corrective angles are needed to correct for deviations due to drag, radial deflection, and/or taper.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: April 16, 2013
    Assignee: Flow International Corporation
    Inventors: Glenn A. Erichsen, Jiannan Zhou, Dana Haukoos, Hyun Jung
  • Patent number: 8401698
    Abstract: A method for optimizing performance of a robot. At least one experiment is designed including at least two tests. Each test differs from at least one other test in the experiment regarding the location of the task in relation to the robot. The boundaries that are allowable for location of a task are calculated/determined. The effect on optimality for at least one test in the experiment is calculated/determined. The experimental data is fit to an algorithm. The optimal location of the task is calculated/determined.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: March 19, 2013
    Assignee: ABB Research Ltd
    Inventors: Behnam Kamrani, Viktor Berbyuk, Xiaolong Feng, Daniel Wäppling
  • Patent number: 8401691
    Abstract: The present invention provides dynamic metrology methods and systems for: periodically determining an actual position of one or more of a machine and a tool with respect to a workpiece using one or more laser interferometers; tracking a tracked position of the one or more of the machine and the tool with respect to the workpiece using one or more accelerometers; and altering a controlled position of the one or more of the machine and the tool with respect to the workpiece when either the actual position or the tracked position of the one or more of the machine and the tool with respect to the workpiece diverges from a desired position of one or more of the machine and the tool with respect to the workpiece.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: March 19, 2013
    Assignee: University of North Carolina at Charlotte
    Inventors: Kevin Scott Smith, Robert J. Hocken
  • Patent number: 8401692
    Abstract: A system and method for improving a tool tip path of a machine, such as a waterjet cutting machine, by testing and compensating for tool misalignment. The system and method using a sensor positioned to sense a portion of the machine, such as a cutting head assembly, during a sequence of movements thereof and configured to output information indicative of various positions and orientations of a tool of the machine so as to generate an improved tool tip path based on transformation parameters derived from such information.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: March 19, 2013
    Assignee: Flow International Corporation
    Inventors: Michael Knaupp, Andreas Meyer
  • Patent number: 8335589
    Abstract: A system and method is disclosed for calibrating a semiconductor wafer handling robot and a semiconductor wafer cassette. A robot blade boot is attached to a robot blade of the semiconductor handling robot. The robot blade boot decreases a value of tolerance for the robot blade to move between two semiconductor wafers in the semiconductor wafer cassette. In one embodiment the vertical tolerance is decreased to approximately twenty thousandths of an inch (0.020?) on a top and a bottom of the robot blade boot. The use of the robot blade boot makes the calibration steps more critical and precise. The robot blade boot is removed from the robot blade after the calibration process has been completed.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: December 18, 2012
    Assignee: National Semiconductor Corporation
    Inventors: Roger Sarver, Christopher Qualey
  • Publication number: 20120296449
    Abstract: A positioning control apparatus has a moving body, a feed device having a guide mechanism for guiding the moving body in the direction of its feed axis and a drive mechanism for moving the moving body, a structural body supporting the feed device and a controller for controlling a moving position of the moving body with respect to a reference position on a machine tool by controlling the operation of the drive mechanism, and further has a calculating section calculating displacement of the feed device in the feed-axis direction with respect to the reference position caused by displacement of the structural body and a compensating section receiving the displacement data measured by the calculating section and adding modification data for eliminating the displacement to a control signal in the controller.
    Type: Application
    Filed: January 13, 2012
    Publication date: November 22, 2012
    Applicant: MORI SEIKI CO., LTD.
    Inventors: Akira Kimura, Koji Yamamoto, Katsuhiko Ono, Kimiyuki Nishimura, Kenichiro Ueno, Keiichi Nakamachi
  • Patent number: 8313271
    Abstract: The present invention provides a method for machining a part from a workpiece. The workpiece is divided into a plurality of sectors and a plurality of fiducials are disposed within each sector. The separation distance between each fiducial is then calibrated to a workpiece distance unit. The present invention then includes the steps of a) positioning the workpiece into the desired position relative to a cutting machine; b) calibrating the cutting machine to the workpiece distance units of one sector; c) cutting one sector with the calibrated cutting machine; d) repeating steps a-c until the part is completed.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: November 20, 2012
    Assignee: University of North Carolina at Charlotte
    Inventor: Kevin Scott Smith
  • Publication number: 20120253506
    Abstract: The present invention provides a method and the like that are capable of calculating a correction value for a rotational axis and make it possible to correct an error in position or position and posture of a tool, which results from a geometric error, correct an error in posture of the tool, and also enhance the accuracy in machining by preventing a translational axis from operating in an infinitesimal manner due to a correction command. In a machine tool having two or more translational axes and one or more rotational axes, a correction value for each of the translational axes is calculated using a command position of each of the rotational axes, a coordinate value of a correction reference point as one point designated in advance in a command position space of each of the translational axes, and a geometric parameter representing the geometrical error.
    Type: Application
    Filed: March 14, 2012
    Publication date: October 4, 2012
    Applicant: Okuma Corporation
    Inventor: Tetsuya MATSUSHITA
  • Publication number: 20120253505
    Abstract: The present invention provides a method of computing a correction value for the machine tool having two or more translational axes and one or more rotational axes for correcting error in a position and an orientation of the tool with respect to a workpiece due to the geometric error. The method includes a rotational axis correction value computing step (S3) for computing a correction value for the rotational axis by use of a geometric parameter representing the geometric error, and a translational axis correction value computing step (S4) for computing a correction value for the translational axis by use of a command value for each of the rotational axes, a command value for each of the translational axes, and the geometric parameter.
    Type: Application
    Filed: March 14, 2012
    Publication date: October 4, 2012
    Applicant: Okuma Corporation
    Inventor: Tetsuya MATSUSHITA
  • Patent number: 8265783
    Abstract: Lift data in which a lift amount is set based on a lift data rotation angle is read to identify the shape of a non-circular workpiece, and a profile point group that is formed of a plurality of profile points, each of which indicates a tool reciprocation position that corresponds to a spindle rotation angle, is calculated based on the read lift data. Then, the calculated profile point group is divided into a plurality of groups each of which is formed of the profile points that satisfy a group division condition, the two groups that satisfy a group comparison condition are selected, and the profile point that satisfies a specific point deletion condition that is set in advance for the combination of the selected two groups is deleted.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: September 11, 2012
    Assignee: JTEKT Corporation
    Inventor: Akira Saito
  • Patent number: 8255078
    Abstract: A numerical controller for controlling a multi-axis machine tool having three linear axes and three rotating axes obtains an interpolated tool direction vector by interpolating a tool direction command and computes multiple solutions for three rotating axes from the vector. The three rotating axis positions are computed by synthesizing these multiple solutions. The three linear axis positions on a machine coordinate system are computed by adding to the interpolated tool center point position the product of the interpolated tool direction vector, or a verified tool direction vector based on the three rotating axis positions determined by the rotating axis position computing means, and a tool length compensation amount. The three rotating axes are moved to the positions computed above and the three linear axes are moved to the positions computed above.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: August 28, 2012
    Assignee: Fanuc Corporation
    Inventors: Toshiaki Otsuki, Soichiro Ide, Osamu Hanaoka, Takafumi Sasaki
  • Patent number: 8200359
    Abstract: A method for machining a slide core hole in a mold and a measurement/correction system for use in machining of a slide core hole. A spindle head is pivoted to meet the inclination angle of the slide core hole to be machined in the mold. A shallow flat-bottomed spot-faced hole is spot-faced in the surface of the mold. A guide hole is drilled in the bottom surface of the spot-faced hole. A rod hole is drilled using the guide hole as a guide. An intermediate pocket hole is formed while expanding the spot-faced hole. A reference point is corrected based on measurement of the shape of the intermediate pocket. A corrected machining program is executed with the corrected reference point to carry out precision shaping machining of the core pocket while expanding the intermediate pocket.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: June 12, 2012
    Assignee: Toshiba Kikai Kabushiki Kaisha
    Inventors: Kouichi Katoh, Takamasa Itoh, Tsuyoshi Fujita, Masaru Usui
  • Publication number: 20120143354
    Abstract: In a method for moving a machine element of an automation machine with separately controlled drive shafts moving in a common direction, a first controller receives a first desired control variable, which is filtered using a filter having a frequency-dependent transfer function. In one embodiment, first desired control variable represents an overall movement of a machine element. A difference is determined between the filtered first desired variable and a first actual variable, and the difference is supplied as a desired control variable to the second controller for controlling the movement of the second drive shaft. In another embodiment, the filtered first desired variable and a second desired variable are added to form a sum, and a difference between the formed sum and the first actual variable is supplied as a desired control variable to the second controller for controlling the movement of the second drive shaft.
    Type: Application
    Filed: February 10, 2011
    Publication date: June 7, 2012
    Applicant: Siemens Aktiengesellschaft
    Inventors: Marco Bock, Wolfgang Papiernik
  • Publication number: 20120130531
    Abstract: A method for calibrating a CNC machine comprises mounting a gauge to a table of the CNC machine and calibrating a probe to the gauge mounted on the CNC machine. A total deviation of the probe and an actual table center position from a nominal table center position for a coordinate system associated with the CNC machine are determined. A controller operatively connected to the CNC machine and the probe is programmed to compensate for the total deviation.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 24, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Jie Gu, John S. Agapiou, Sheri K. Kurgin, Paula J. Deeds
  • Patent number: 8175861
    Abstract: A machining simulation apparatus is arranged in a machine tool having a tool holding mechanism, a workpiece holding mechanism, a drive mechanism and a numerical controller, and provided with: an actual CCD camera for imaging a tool held by the tool holding mechanism and the workpiece holding mechanism not holding a workpiece to generate actual image data; a model data update processing section for generating model data relating to when moving the holding mechanisms based on the operation command received from the numerical controller and the model data of the holding mechanisms, tool and workpiece; a virtual image generation processing section for generating virtual image data of the tool and workpiece based on the generated model data; and a rendering processing section for generating composite image data by superimposing the virtual image on the actual image, and displaying the composite image data on a screen display device.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: May 8, 2012
    Assignee: Mori Seiki Co., Ltd.
    Inventors: Bin Huang, Xiaodong Tian, Tetsuo Ogawa, Bingyan Zhao
  • Patent number: 8175743
    Abstract: A measurement system that includes an industrial machine and an interferometer can detect when abnormality has occurred in measurement targeted at a reflector attached to a movable body, for example, in a case where the movable body has moved too close to the interferometer. A judging section of the interferometer judges that there is abnormality in measurement targeted at the reflector on the basis of a received-light signal. Upon such an abnormality judgment, a stop command outputting section of the interferometer outputs a stop command to the industrial machine. A stopping section of the industrial machine stops the driving operation of a moving mechanism upon receiving an input of the stop command, thereby stopping the movement of the movable body. The measurement system makes it possible to prevent the industrial machine, which includes the movable body and the moving mechanism, from colliding with the interferometer.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: May 8, 2012
    Assignee: Mitutoyo Corporation
    Inventor: Masayuki Nara
  • Patent number: 8173931
    Abstract: To better address these problems, one or more characteristics are measured from a work piece (28). The measurement information is used to select a preferred predetermined laser processing recipe from a lookup table. The laser processing recipe is then used to process the work piece (28). The lookup table of laser processing recipes can be established from theoretical calculations, from trial an error by an operator, from an automated systematic recipe variation process with post process testing, or from some combination of these or other methods. An automated process can also reduce operator errors and may store measurement values for convenient tracking of work piece characteristics.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: May 8, 2012
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Ling Wen, Mehmet Alpay, Jeff Howerton
  • Patent number: 8167111
    Abstract: A sortation conveyor includes a method of calibrating the control system to provide a calibration value indicative of the spacial correlation between the sort induct sensor and the first shoe sensor.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: May 1, 2012
    Assignee: Intelligrated Headquarters LLC
    Inventor: Troy E. Asman
  • Patent number: 8160738
    Abstract: A workpiece measuring apparatus includes a programmable controller which acquires positional data of a measuring head. At the same time that the programmable controller acquires the positional data, a pulse output unit outputs timing pulses. The measuring head measures a workpiece on a machine tool according to a measurement command which is output positively earlier than the timing of predetermined time intervals by a time difference which is preset by a predictive system. As a result, a first time at which the programmable controller acquires the positional data of the measuring head and a second time at which the measuring head measures the workpiece in response to the measurement command synchronize. The workpiece measuring apparatus is capable of measuring the workpiece highly accurately in a three-dimensional space according to a minimum required amount of measured data without the need for modifying an existing NC apparatus combined with the machine tool.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: April 17, 2012
    Assignee: Mori Seiki Co., Ltd.
    Inventors: Shizuo Nishikawa, Hisayoshi Morita, Masami Yabuta, Sosuke Sakamoto
  • Patent number: 8155779
    Abstract: A numerical controller including a storage device for storing tabular data configured to operate one arbitrary axis, in which a position of a spindle or an axis as a control object is caused to correspond to a reference value composed of time or the position of a reference spindle or axis. A reading device is provided for successively reading a reference value in the tabular data and a position of the spindle or the axis as control object corresponding to the reference value from the storage device, and controls the position of the spindle or the axis as control object based on the reference value read by the reading device. An assignment device is provided for assigning the axis to be operated in accordance with the tabular data, and a starting device for starting the tabular data stored in the storage device, thereby causing the axis assigned by the assigning device to operate.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: April 10, 2012
    Assignee: Fanuc Ltd
    Inventors: Takahiko Endo, Yasushi Takeuchi
  • Patent number: 8150545
    Abstract: A method and a device for position-dependent compliance compensation in a machine tool is disclosed. The compliance of the machine tool is derived at a position of a tool of the machine tool from machine data stored in memory, a machining force acting on the tool during a machining process at this position is determined, and at least one machining parameter that has an influence on the machining process is derived at this position in dependence on the derived compliance and the machining force so as to counteract a displacement of the tool with respect to a desired position caused by the compliance of the machine tool and the machining force. This optimizes the machining time and/or contour fidelity when machining a workpiece with a machine tool.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: April 3, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Dirk Jahn, Rouven Meidlinger, Mirco Vitr
  • Patent number: 8145348
    Abstract: A tool selection method, for a machine tool, comprising the steps of identifying the maximum tip distance (D2) of a currently selected tool (141), a next designated tool (142) and an intermediate tool (143) disposed therebetween; moving a tool rest (10) in the +(plus)X-axis direction after a machining by the currently selected tool (141) is completed until the tip of the currently selected tool (141) is spaced from a workpiece (W) along the X-axis by a distance provided by adding a clearance distance (E) to a difference between the maximum tip distance (D2) and the tip distance (D3) of the currently selected tool (141); moving the tool rest (10) in the +(plus)Y-axis direction until the tip of the next designated tool (142) is aligned with the rotation center axis (12a) of the workpiece (W) in the X-axis direction; and moving the tool rest (10) in the ?(minus)X-axis direction.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: March 27, 2012
    Assignee: Citizen Holdings Co., Ltd.
    Inventor: Yutaka Shibui
  • Publication number: 20120065769
    Abstract: A system and method for improving a tool tip path of a machine, such as a waterjet cutting machine, by testing and compensating for tool misalignment. The system and method using a sensor positioned to sense a portion of the machine, such as a cutting head assembly, during a sequence of movements thereof and configured to output information indicative of various positions and orientations of a tool of the machine so as to generate an improved tool tip path based on transformation parameters derived from such information.
    Type: Application
    Filed: September 9, 2010
    Publication date: March 15, 2012
    Inventors: Michael Knaupp, Andreas Meyer
  • Patent number: 8126587
    Abstract: An apparatus for recognizing and processing information of electronic parts includes a seating unit on which electronic parts are seated and aligned and a part information processing unit disposed adjacent to the seating unit. The part information processing unit is configured to align the electronic parts using the seating unit, recognize a recognition surface of the electronic parts, obtaining part information of the recognized surface, and store the obtained part information.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: February 28, 2012
    Assignee: Samsung Techwin Co., Ltd.
    Inventors: Ja-Hyun Koo, Man-Hee Lee, Sun-Jeong Kang
  • Patent number: 8121733
    Abstract: According to an embodiment, a numerically controlled (NC) processing system includes materials processing installation having a multi-axis kinematic linkage operable to position a tip portion of the linkage along a predetermined process path. The system also includes a processor having a compensation system operable to detect a singular point in the process path and to improve the accuracy tip portion positioning near the singular point.
    Type: Grant
    Filed: July 3, 2009
    Date of Patent: February 21, 2012
    Assignee: The Boeing Company
    Inventor: Philip L. Freeman
  • Patent number: 8121720
    Abstract: A tool-path calculation apparatus for a numerical controlled system and a method for operating the same are applied to a CNC tool machine. The tool-path calculation apparatus includes an upper controller and a servo driver. Firstly, an interpreter is provided to interpret the tool paths to produce a plurality of executable instructions. Afterward, the executable instructions are sent from the upper controller to the servo driver through a serial communication interface and stored in a queue buffer. Finally, the executable instructions are received and calculated by a tool path calculator to produce a plurality of points along the tool paths.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: February 21, 2012
    Assignee: Delta Electronics, Inc.
    Inventor: Ching-Shiong Tsai
  • Patent number: 8112173
    Abstract: A position ensuring system includes an A-axis calibration system which measures a displacement angle, which is an error between a target value and a measured value of the pivot angle of the spindle head about the A-axis, and corrects the pivot angle about the A-axis in such a manner that the displacement angle as measured with the corrected pivot angle as a target value fall within a tolerable range. A corrected data storage device stores the corrected pivot angle about the A-axis. An A-axis control system reads out the corrected pivot angle about the A-axis, the corrected pivot angle about the A-axis to pivot the spindle head when executing oblique machining of the inclined hole.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: February 7, 2012
    Assignee: Toshiba Kikai Kabushiki Kaisha
    Inventors: Kouichi Katoh, Takamasa Itoh
  • Patent number: 8103374
    Abstract: A processing apparatus includes a three-dimensional shape data acquiring section, a tentative center-hole position determining section, a shape simulating section, a balance deciding section, and a center-hole deciding section. The tentative center-hole position determining section is configured to determine a tentative position of the center holes based on the three-dimensional shape data. The shape simulating section is configured to obtain a simulated shape of the material crankshaft after a working is simulated for the material crankshaft based on the tentative position of the center holes as a reference. The balance deciding section is configured to decide whether a rotational imbalance amount in the simulated shape is within a predetermined allowable range. The center-hole deciding section is configured to decide the tentative position as an actual boring position of the center holes when the rotational imbalance amount is within the predetermined allowable range.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: January 24, 2012
    Assignee: Komatsu NTC Ltd.
    Inventor: Akihiro Yoshimoto
  • Patent number: 8093856
    Abstract: In a position control apparatus that drives a feed-axis with a servomotor of a machine tool, the machine tool may be quickly accelerated or decelerated in a state where a machine structural member that supports and fixes a structural member including a driving system has a lower rigidity, or in a state where an element having a lower rigidity is present beyond a load position where the detection by a linear scale is performed. In such cases, a generated deflection may induce a displacement in a mechanical system. A relative locus error may be generated between a workpiece to be processed and a front end portion of the tool. Further, a mechanism rigidity generally changes according to a machine posture. The generated deflection amount changes in magnitude. The present embodiment estimates and compensates a displacement amount of the front end portion of the tool that may be caused by the deflection of the mechanical system.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: January 10, 2012
    Assignee: Okuma Corporation
    Inventor: Masashi Miyaji
  • Patent number: 8090468
    Abstract: A method of controlling a multiple spindle machine includes measuring the motor currents provided to a first spindle and a second spindle over a period of time, establishing an amount of time between impacts on a workpiece of a cutting tooth of the first spindle relative to a cutting tooth of the second spindle based on the measured motor currents of the first spindle and the second spindle, determining an angle to shift the second spindle relative to the first spindle, and increasing or decreasing the amount of time between impacts to obtain the determined shift angle for the second spindle.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: January 3, 2012
    Assignee: MAG IAS, LLC
    Inventor: Mark Douglas Kohring
  • Patent number: 8078295
    Abstract: A method for controlling acceleration and deceleration before interpolating is provided. The method includes steps of previewing and analyzing a processing program to estimate a limitation of a processing velocity and distributing a processing velocity according to the limitation. The step of previewing and analyzing a processing program includes sub-steps of providing the processing program including a pathway formed by plural blocks, unitizing the motion vector of each block into the unit vector ( N ^ i = N _ i ? N _ i ? ) , calculating a length (DVi=?{right arrow over (DV)}i?) of a vector difference in the unit vectors between each block and its next block ({right arrow over (DV)}i={circumflex over (N)}i?{circumflex over (N)}i+1), calculating a sum of the length of the vector difference in a distance from a starting block (S=?DVn), and calculating the limitation of the processing velocity for an end of each block (Vlim) according to an inverse ratio of the sum (1/S).
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: December 13, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Chin-Chu Sun, Shih-Chang Liang, Wan-Kun Chang, Yung-Ming Kao, Cheng-Yu Chen
  • Publication number: 20110288677
    Abstract: A machining installation for workpieces comprises a workpiece positioning device comprising a workpiece holder pivot unit as well as a tool positioning device comprising a tool holder pivot unit. The workpiece holder pivot unit is designed such that a workpiece holder is pivotable about at least three and no more than four workpiece holder pivot axes. Moreover, the tool holder pivot unit is designed such that a tool holder is pivotable about no more than two tool holder pivot axes. The machining installation has a simple design and ensures flexible and accurate machining of workpieces.
    Type: Application
    Filed: July 1, 2009
    Publication date: November 24, 2011
    Applicant: MAG EUROPE GMBH
    Inventors: Moshe Israel Meidar, Wolfgang Horn, Siegfried Schmalzried, Waldemar Haus
  • Patent number: 8060239
    Abstract: According to the invention, an initial trajectory (2) that is to be followed in a positionally guided manner is input into a computer (15), said initial trajectory (2) being described by an initial function (AF) such that one respective corresponding position (pA) is determined on the initial trajectory (2) by substituting a scalar trajectory parameter (s) into the initial function (AF). The scalar trajectory parameter (s) is different from time (t) while being characteristic of a distance (s) covered along the initial trajectory (2). The computer (15) filters the initial trajectory (2) with low-pass characteristics referring to the scalar trajectory parameter (s) as a function of the scalar trajectory parameter (s) and thus determines a rough function (GF) such that one respective corresponding position (pG) is determined on the rough trajectory (13) by substituting the scalar trajectory parameter (s) into the rough function (GF).
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: November 15, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Walter Hoffmann, Wolfgang Papiernik, Tomas Sauer
  • Patent number: 8041447
    Abstract: A numerical controller controlling a 5-axis machine tool compensates setting error that arises when a workpiece is set on the table. Error in the three linear axes and the two rotation axes are compensated using preset error amounts to keep the calculated tool position and tool direction in a command coordinate system. If a trigonometric function used for error compensation has a plurality of solution sets, the solution set closest to the tool direction in the command coordinate system is selected from the plurality of solution sets and used as the positions of the two rotation axes compensated in the above error compensation.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: October 18, 2011
    Assignee: FANUC Ltd
    Inventors: Toshiaki Otsuki, Soichiro Ide, Takafumi Sasaki
  • Patent number: 8041446
    Abstract: A post-process sizing control device is provided with origin compensation means for controlling a size measuring device to measure an actual size of a workpiece portion and for compensating the origin of a wheel head by a position compensation amount which corresponds to a difference between the actual size and a theoretical size derived from calculation and size measuring interval setting means for setting the number of workpieces which should be ground during the next size measuring interval which begins after the preceding origin compensation operation and ends with the next origin compensation operation. The size measuring interval setting means sets the number of workpieces which should be ground during the next size measuring interval, based on an average position compensation amount derived by dividing a position compensation amount for the last workpiece ground during the present size measuring interval by the number of workpieces ground during the present size measuring interval.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: October 18, 2011
    Assignee: JTEKT Corporation
    Inventors: Masaharu Inoue, Tomohisa Yamaguchi