Having Particular Operator Interface (e.g., Teaching Box, Digitizer, Tablet, Pendant, Dummy Arm) Patents (Class 700/264)
  • Patent number: 8406920
    Abstract: This object aims to provide a work mounting system which has an improved usability and can be miniaturized. A work mounting system (1) is used to mount a sunroof member (3) on the inner panel (2A) of a body (2). The work mounting system (1) comprises a conveying robot (4) for holding and conveying the sunroof member (3), a mounting robot (5) with a nut runner for tightening bolts and a CCD camera, and a controller (6) for controlling the conveying robot (4) and the mounting robot (5).
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: March 26, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventor: Kenichi Asamizu
  • Publication number: 20130073092
    Abstract: A system for operation of a robot including a substantially transparent display configured such that an operator can see a portion of the robot and data and/or graphical information associated with the operation of a robot. Preferably, a controller in communication with the robot and the transparent display is configured to allow the operator to control the operation of the robot.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 21, 2013
    Applicant: PERSIMMON TECHNOLOGIES CORPORATION
    Inventor: Martin Hosek
  • Patent number: 8401702
    Abstract: A robot arm provided with a body unit shifting mechanism that connects a base unit and a body unit so as to be relatively shifted, and joint lock mechanisms that are capable of mechanically securing respective joints is disposed on the body unit, and a robot operation control unit controls to switch between a robot arm operation mode in which the robot arm is operated with one of the joints of the robot arm brought into a free state, and a body unit shift mode in which the body unit is shifted with the joint being brought into a locked state.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: March 19, 2013
    Assignee: Panasonic Corporation
    Inventors: Yasunao Okazaki, Atsushi Ono, Katsuhiko Asai
  • Patent number: 8401700
    Abstract: The lower arm assembly for a humanoid robot includes an arm support having a first side and a second side, a plurality of wrist actuators mounted to the first side of the arm support, a plurality of finger actuators mounted to the second side of the arm support and a plurality of electronics also located on the first side of the arm support.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: March 19, 2013
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Chris A. Ihrke, Lyndon Bridgwater, Myron A. Diftler, David M. Reich, Scott R. Askew
  • Patent number: 8396599
    Abstract: It is an object of the invention to provide a robot system including a graphics language capable of comprehensively and easily controlling operation of each robot in a robot system constituted by a plurality of pieces of robots. A robot system of the invention in order to achieve the above-described object is constituted by a plurality of pieces of robots, a robot control apparatus 10 for controlling based on a robot program, and a robot instruction apparatus 11 connected to the robot control apparatus 10 for displaying the robot program, the robot control apparatus 10 includes a unit registration portion 1 for arbitrarily combining one piece or more of robots to define one unit, a task registration portion 2 for allocating a task to each unit, and a graphics language processing portion 3 capable of forming the robot program for each task as a graphic program in the robot system for simultaneously controlling one piece or more of robots.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: March 12, 2013
    Assignees: Kabushiki Kaisha Yaskawa Denki, Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Matsuo, Saburo Ono
  • Patent number: 8396598
    Abstract: A robot system for use in surgical procedures has two movable arms each carried on a wheeled base with each arm having a six of degrees of freedom of movement and an end effector which can be rolled about its axis and an actuator which can slide along the axis for operating different tools adapted to be supported by the effector. Each end effector including optical force sensors for detecting forces applied to the tool by engagement with the part of the patient. A microscope is located at a position for viewing the part of the patient. The position of the tool tip can be digitized relative to fiducial markers visible in an MRI experiment. The workstation and control system has a pair of hand-controllers simultaneously manipulated by an operator to control movement of a respective one or both of the arms. The image from the microscope is displayed on a monitor in 2D and stereoscopically on a microscope viewer. A second MRI display shows an image of the part of the patient the real-time location of the tool.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: March 12, 2013
    Assignee: Neuroarm Surgical Ltd.
    Inventors: Garnette Roy Sutherland, Deon Francois Louw, Paul Bradley McBeth, Tim Fielding, Dennis John Gregoris
  • Patent number: 8384250
    Abstract: A system and method for ensuring that a large number of connectors, such as fiber-optic cable-connectors, which are plugged-into connector-receptacles arrayed across a connector-panel, are not intentionally disconnected by an un-authorized user with malicious intent, or accidentally unplugged by an authorized technician who may be trying to manually pull-out a specific connector for testing or other purposes but, inadvertently, could otherwise unplug a neighboring connector because of not being able to clearly see which plug is actually being removed due to the large number of cables that are connected to the panel. The connectors are locked in place by restraining arms which are controlled by solenoids or motors. Each restraining arm can be commanded to release its respective connector, but only when the correct command from a computer is received. The same system and method can be applied to connector-receptacles arrayed on one or both sides of the panel.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: February 26, 2013
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Rosa M. Underwood, Henry A. McKelvey, Jimmie D. Peterman, Emory L. Young
  • Patent number: 8386080
    Abstract: A robotic system implements a collision avoidance scheme and includes a first robotic manipulator and a first controller configured to control the first robotic manipulator for movement along a first pre-planned actual path. A second controller is configured to control movement of a second robotic manipulator for movement along a second pre-planned intended path and deviating therefrom to move in a dodging path away from the first pre-planned actual path based upon determining a potential collision with the first robotic manipulator without prior knowledge of the first pre-planned actual path.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: February 26, 2013
    Assignee: Harris Corporation
    Inventors: Paul Michael Bosscher, Daniel Ryan Hedman
  • Patent number: 8374721
    Abstract: A power-saving robot system includes at least one peripheral device and a mobile robot. The peripheral device includes a controller having an active mode and a hibernation mode, and a wireless communication component capable of activation in the hibernation mode. A controller of the robot has an activating routine that communicates with and temporarily activates the peripheral device, via wireless communication, from the hibernation mode. In another aspect, a robot system includes a network data bridge and a mobile robot. The network data bridge includes a broadband network interface, a wireless command interface, and a data bridge component. The data bridge component extracts serial commands received via the broadband network interface from an internet protocol, applies a command protocol thereto, and broadcasts the serial commands via the wireless interface. The mobile robot includes a wireless command communication component that receives the serial commands transmitted from the network data bridge.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: February 12, 2013
    Assignee: iRobot Corporation
    Inventors: Michael J. Halloran, Jeffrey W. Mammen, Tony L. Campbell, Jason S. Walker, Paul E. Sandin, John N. Billington, Jr., Daniel N. Ozick
  • Patent number: 8374724
    Abstract: A system for producing motions for an animatronic figure is disclosed. The system is configured to produce different types of motions in real-time and in a life-like manner. The motion software module forms a composite motion by combining the user-inputted motion with user-selected fixed sequences and/or with algorithmically calculated motion. The motions of the animatronic figure can further be filtered to produce motions that are life-like. Combined motions are formed by superimposing, modulating, or modifying component motions. Motions are filtered based on user-inputted commands and commands determined from a stimulus and filtered to create a life-like motion.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: February 12, 2013
    Assignee: Disney Enterprises, Inc.
    Inventors: Alexis P. Wieland, Akhil Jiten Madhani, Holger Irmler
  • Patent number: 8374420
    Abstract: A learning control device performs a positioning process, a first image capturing process, and a first deviation amount calculating process in which a reference position deviation amount in the horizontal direction between the imaging reference position and a detection mark is derived based on image information captured in the first image capturing process to derive a position adjustment amount from the derived reference position deviation amount, and the learning control device further includes a positioning correcting process in which the position adjustment device is operated to adjust a position of the second learn assist member based on the derived movement adjustment amount when the reference position deviation amount derived in the first deviation amount calculating process falls outside a set tolerance range. A second image capturing process, and a second deviation amount calculating process may be further provided.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: February 12, 2013
    Assignee: Daifuku Co., Ltd.
    Inventor: Ryuya Murakami
  • Patent number: 8364314
    Abstract: A robotic system includes a humanoid robot having a plurality of joints adapted for force control with respect to an object acted upon by the robot, a graphical user interface (GUI) for receiving an input signal from a user, and a controller. The GUI provides the user with intuitive programming access to the controller. The controller controls the joints using an impedance-based control framework, which provides object level, end-effector level, and/or joint space-level control of the robot in response to the input signal. A method for controlling the robotic system includes receiving the input signal via the GUI, e.g., a desired force, and then processing the input signal using a host machine to control the joints via an impedance-based control framework. The framework provides object level, end-effector level, and/or joint space-level control of the robot, and allows for functional-based GUI to simplify implementation of a myriad of operating modes.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: January 29, 2013
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Muhammad E Abdallah, Robert Platt, Charles W. Wampler, II, Matthew J Reiland, Adam M Sanders
  • Patent number: 8364313
    Abstract: The safety of an operator which may be endangered by an erroneous instruction by the operator or a robot control system is ensured by making more stringent a condition regarding the separation of the operator from the vicinity of a robot when an operation program of the robot is activated. An interlock to which a condition regarding activation of the operation program of the robot is added is provided in a feeding unit which is connected to a robot controlling unit by wireless connection for charging a teaching unit, so as to provide a robot system which improves the safety of the operator.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: January 29, 2013
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Akira Akashi, Michiharu Tanaka
  • Patent number: 8352078
    Abstract: A robot system includes at least one robot, robot controllers configured to control the robot, and pendants. The robot controllers include robot group control units each having an operating mode storage unit to store operating mode information to select a robot. The pendants include an enabling device to turn on and off drive power to the robot. The robot group control units are connected via an enable-link-signal line. Each robot group control unit is configured to output an enable link signal by operating the enabling device included in a corresponding pendant to transmit the enable link signal via the enable-link-signal line to all of the robot group control units. Each robot group control unit is configured to output a drive-power-on enable signal to turn on and off drive power to the robot in accordance with the enable link signal and the operating mode information.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: January 8, 2013
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventor: Yuki Kiyota
  • Publication number: 20130006267
    Abstract: A surgical robotic system is disclosed that provides a combination of a programmed control, such as active control or passive control, when a high degree of accuracy is required and manual control when a high degree of accuracy is not required, such as during the removal of osteophytes, irregular bone growth and/or soft tissue. Manual resection may be completed by switching from the programmed control mode to the manual control mode and allowing the surgeon free control of the cutting tool. The manual resection may be carried out using some navigational features of the robotic system such as allowing the surgeon to visualize the position of the cutting tool thereby allowing accurate resection of osteophytes, irregular bone and tissue while having the unrestricted freedom to move the cutting tool. The programmed control mode may be reserved for procedures that require a high degree of accuracy, for example, the reaming of a bone and placement of an implant onto the bone.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 3, 2013
    Applicant: MAKO SURGICAL CORPORATION
    Inventors: Daniel Odermatt, Renen Bassik, Chunyan Wu, Danielle Landeck, Jason Wojcik
  • Patent number: 8344848
    Abstract: The invention relates to methods and appropriate devices for safely, unequivocally and exclusively, temporarily assigning the command authority of an operator (1) to a controllable technical system (60) using a mobile control device (2) which is technically suitable for periodically controlling a plurality of controllable technical systems (60), which is equipped as standard with safety switch elements (38, 39) such as an emergency stop switch, ok key and operating mode selection switches and for a data coupling with the controllable technical system (60) in spite of having only normal transmission means (6) or network technologies without any particular features specific to safety function.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: January 1, 2013
    Assignee: Keba AG
    Inventors: Manfred Möschl, Manfred Schininger
  • Patent number: 8345004
    Abstract: An input device for controlling an object includes a joystick and a modal switch. A user may use the modal switch to select a subset of degrees of freedom of the object. The joystick may then be used to control a change over time of the selected subset, where the change over time is functionally depend on both a motion of the joystick and a state of the selected subset. A method for controlling an object via the input device is also provided. The method includes receiving inputs indicating a selection by the modal switch of a subset of degrees of freedom of the object, and a motion of the joystick. A configuration of the selected subset is then caused to be changed based on the motion of the joystick and a state of the selected subset.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: January 1, 2013
    Assignee: Pixar
    Inventors: Michael Kass, Warren Trezevant
  • Patent number: 8335590
    Abstract: An image capturing device is robotically positioned and oriented in response to operator manipulation of a master control device. An unused degree-of-freedom of the master control device is used to adjust an attribute such as focusing of the image capturing device relative to a continually updated set-point. A deadband is provided to avoid inadvertent adjusting of the image capturing device attribute and haptic feedback is provided back to the master control device so that the operator is notified when adjusting of the attribute is initiated.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: December 18, 2012
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Michael Costa, David Robinson, Michael L. Hanuschik, Randal P. Goldberg, Paul Millman
  • Patent number: 8326461
    Abstract: A system for providing autonomous capabilities to a radio-controlled robot, comprises two communication boxes, one connected to the robot and the other connected to an operator control unit (OCU). Each communication box comprises two radios that are interoperable with preexisting data radios in the robot; a microprocessor unit; and bidirectional attenuators. The system further comprises a software application that runs on the microprocessor unit of each communications box, to integrate data into existing transmission data stream between the robot and OCU, via preexisting data radios. The system enables the issuance of additional commands besides those issued by the OCU, using the original OCU.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: December 4, 2012
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Naomi Zirkind, Joshua Lee
  • Patent number: 8326454
    Abstract: Provided are a power assist apparatus and its control method, which realize improvements in positioning precision and in workability while reducing the burden of a work positioning operation on a operator by burdening a portion of the positioning work on the power assist apparatus and while making good use of the decision or experience (or institution or knack) by the operator when the operator positions the work by using the power assist apparatus. The power assist apparatus thus autonomously cooperated with the working action of the operator comprises a transfer tool including an articulated robot, a sucking jig and a free joint for gripping and transferring windows, and a control device for controlling the actions of the transfer tool. The control device divides and stores a series of working tasks into a plurality of working section, and sets control logics for the individual working sections and for the individual working directions, in which the power assist apparatus has degrees of freedom.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: December 4, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Tadashi Odashima
  • Patent number: 8326462
    Abstract: A tactile contact and impact display system comprises a receiver, operable to receive therein a user's digit while leaving a target area of skin of the user's digit at least partially exposed. A contact pad is operable to engage the target area of the user's skin. An actuation system is actuatably coupled to the contact pad and is operable to move the contact pad relative to the target area of skin. A distance sensor is coupled to the contact pad, the distance sensor being operable to sense a separation distance between the contact pad and the target area of the user's digit. A restraining system is operable to substantially restrain the contact pad from moving in at least one degree of freedom relative to the receiver while allowing the contact pad to move in at least one degree of freedom relative to the receiver.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: December 4, 2012
    Assignee: University of Utah Research Foundation
    Inventor: William R. Provancher
  • Patent number: 8326456
    Abstract: A behavior control apparatus collects information of a mobile object in relation to an action space of the mobile object, and acquires a position and an orientation of a human. The behavior control apparatus sets an exclusive area for the human based on the position and the orientation, and judges whether any information is to be notified to the human by the mobile object. If judging negatively, the behavior control apparatus determines a target position, a target orientation and a travel route of the mobile object such that the mobile object moves out of the exclusive area.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: December 4, 2012
    Assignee: Panasonic Corporation
    Inventors: Kotaro Sakata, Ryuji Inoue, Toshiya Naka
  • Patent number: 8321054
    Abstract: A method for adjusting a program including program instructions for controlling an industrial robot to carry out work at a plurality of target points on a work object. The robot includes a tool having two arms adapted to clamp the work object and at least one of the arms is arranged movable relative the other arm in an opening and a closing direction, a manipulator adapted to hold the tool or the work object, and a controller controlling the movements of the manipulator and the tool arm and configured to switch between a normal control mode and a compliant control mode in which the manipulator has a reduced stiffness in at least one direction. The method includes moving the manipulator and the tool according to the program instructions until one of the target points is reached.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: November 27, 2012
    Assignee: ABB Technology Ltd.
    Inventors: Tony Selnes, Ake Olofsson
  • Publication number: 20120294696
    Abstract: An interface (101) for converting human control input gestures to telematic control signals includes a plurality of articulating arms (107, 108, 109) each mounted at a base end (113, 115, 117) to an interface base and coupled at an opposing end to a housing (106). The articulating arms are operable to permit linear translational movement of the housing in three orthogonal directions. At least one sensor (116) of a first kind is provided for measuring the linear translational movement. A pivot member (201) is disposed in the housing and is arranged to pivot about a single pivot point. A grip (102) is provided and is attached to the pivot member so that a user upon grasping the grip can cause the pivot to rotate within the housing. A button (118) is provided to switch between at least two modes, wherein when in a first mode control signals are used to control a vehicle base (502), and when in the second mode control signals are used to control a robotic arm (504) coupled to the vehicle base (502).
    Type: Application
    Filed: May 20, 2011
    Publication date: November 22, 2012
    Applicant: HARRIS CORPORATION
    Inventors: Matthew D. Summer, Paul M. Bosscher, Loran J. Wilkinson, William S. Bowman, John B. Rust
  • Patent number: 8315720
    Abstract: Continuous change of state directions are graphically provided on a display screen to assist a user in performing necessary action(s) for transitioning between operating modes in a medical robotic system or performing corrective action. A graphical representation of a target state of an element of the medical robotic system is displayed on a display screen viewable by the user. Current states of the element and indications directing the user to manipulate the element towards the target state are continuously determined and graphical representations of the continuously determined current states and indications are displayed on the display screen along with that of the target state.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: November 20, 2012
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Paul W. Mohr, David W. Robinson
  • Patent number: 8311673
    Abstract: A method for providing independent static and dynamic models in a prediction, control and optimization environment utilizes an independent static model (20) and an independent dynamic model (22). The static model (20) is a rigorous predictive model that is trained over a wide range of data, whereas the dynamic model (22) is trained over a narrow range of data. The gain K of the static model (20) is utilized to scale the gain k of the dynamic model (22). The forced dynamic portion of the model (22) referred to as the bi variables are scaled by the ratio of the gains K and k. Thereafter, the difference between the new value input to the static model (20) and the prior steady-state value is utilized as an input to the dynamic model (22). The predicted dynamic output is then summed with the previous steady-state value to provide a predicted value Y.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: November 13, 2012
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Eugene Boe, Stephen Piche, Gregory D. Martin
  • Publication number: 20120283876
    Abstract: A control console to remotely control medical equipment is disclosed having a base with an ergonomically adjustable pedal system. The base further has an opening to receive the pedal system. The pedal system includes a moveable pedal tray with a pedal base. The tray includes a first left pedal assembly and a first right pedal assembly, and an upper tier having a second left pedal assembly and a second right pedal assembly respectively in alignment with and elevated above the first left pedal assembly and the first right pedal assembly. Rollers are rotatable coupled to the moveable pedal tray to allow it roll over a floor. A drive assembly is coupled between the moveable pedal tray and the base. The drive assembly applies a force to the to roll the moveable pedal tray over the floor within the opening of the base.
    Type: Application
    Filed: January 24, 2012
    Publication date: November 8, 2012
    Inventors: Randal P. Goldberg, Michael Hanuschik, Paul Millman, John W. Zabinski, David Robinson, David W. Weir, Paul W. Mohr, Thomas R. Nixon, David W. Bailey
  • Patent number: 8306664
    Abstract: Mobile self-balancing robots for telepresence are provided. The robots comprise a base, a head, and a shaft therebetween. The shaft can be telescoping to allow the head to be extended above the base to about the height of a normal sized person, or can be retracted to make the robot more compact for easier storage and transportation. The head includes components for telepresence such as cameras, a speaker, a microphone, a laser pointer, and a display screen, as well as protection from impacts and falls. The base provides locomotion and balance, and a narrow shaft between the head and base minimizes the robot's weight and reduces the likelihood of collisions with protrusions like table edges.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: November 6, 2012
    Assignee: Anybots 2.0, Inc.
    Inventors: Scott Wiley, Trevor Blackwell, Daniel Casner, Benjamin Holson
  • Publication number: 20120277915
    Abstract: A controllable robotic arm system comprises a base unit and a moveable torso coupled to the base unit. The moveable torso is capable of moving in at least one degree of freedom independently of movement of the base unit. At least one robotic slave arm is moveably coupled to the torso. A master control system is operable to control the robotic slave arm and the moveable torso. The master control system includes an input interface by which a user can cause control signals to be communicated to the robotic slave arm and the moveable torso.
    Type: Application
    Filed: December 20, 2011
    Publication date: November 1, 2012
    Applicant: Raytheon Company
    Inventors: Stephen C. Jacobsen, John McCullough, Marc X. Olivier
  • Patent number: 8301302
    Abstract: A fully automated method is performed on a structure having a confined space. The structure has a location that is identifiable from within the confined space and from outside the confined space. A first robotic system moves a first end effector inside the confined space such that the first end effector is positioned over the location. A first vector corresponding to the location is generated. A second robotic system moves a second end effector outside the confined space such that the second end effector is positioned over the location. A second vector corresponding to the location is generated. The first and second vectors are used to move the first and second end effectors to a new location such that the first and second end effectors are in working opposition. The first and second end effectors perform a synchronous operation at the new location.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: October 30, 2012
    Assignee: The Boeing Company
    Inventors: Branko Sarh, David H. Amirehteshami
  • Publication number: 20120253517
    Abstract: The present invention discloses a system and method for a morphological solution to the macroscopic problem of n-entropy (i.e. loss of control/information) of the prevailing global anarchy by super-augmenting a persona to manifest a pan-environment super-cyborg for global governance. Through a Christocratic Necked Service Oriented Architecture (CNSOA) model, the method of said system, categorizes the world people into two spaces, Bridespace and Christocratic-space. Each member or citizen of Bridespace and consenting Christocratic space is incorporated with Bridal Wedding Garments, namely holy goods & services & Necktie imitating Personal-Extender that includes a data processing device connected to a global network. Each member's Persona and proximity Meatspace are augmented by recasting the metaphoric environment of the data processor (network-is-the-supercomputer) as a Necktie Personal-Extender/Environment-Integrator.
    Type: Application
    Filed: October 8, 2010
    Publication date: October 4, 2012
    Applicant: ROTTELAILLU (HOUSE OF BREAD)
    Inventor: Caleb Suresh Motupalli
  • Publication number: 20120239199
    Abstract: A coordinated joint control system for controlling a coordinated joint motion system, e.g. an articulated arm of a hydraulic excavator blends automation of routine tasks with real-time human supervisory trajectory correction and selection. One embodiment employs a differential control architecture utilizing an inverse Jacobian. Modelling of the desired trajectory of the end effector in system space can be avoided. The invention includes image generation and matching systems.
    Type: Application
    Filed: March 26, 2012
    Publication date: September 20, 2012
    Inventor: George Danko
  • Patent number: 8271624
    Abstract: A method for configuring a network device including an optical sensor includes activating the optical sensor of the network device to generate data representing an image in view thereof, and analyzing the data from the optical sensor to determine image information represented by the image. A network address is automatically assigned to the network device based on the image information represented by the image in view of the optical sensor. Related methods, systems, and apparatus are also discussed.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: September 18, 2012
    Assignee: Parata Systems, LLC
    Inventor: Gary M. Owen
  • Patent number: 8271136
    Abstract: An exemplary touch sensitive robot includes a body, a touch sensor, a driver, and a controller. The body includes a control panel. The touch sensor includes a first conductive belt wrapped on the body, a second conductive belt provided around but spaced away from the first conductive belt, a power source applying a voltage to two distal ends of the first conductive voltage, and a voltage sensor interconnected between an end of the first conductive belt and an end of the second conductive belt. The second conductive belt is electrically deformable and contacts the first conductive belt when touched by a user so that a measured voltage of the voltage sensor change dependently of the location of the touch. The controller is for controlling the driver to spin the body based upon the measured voltage to orient the control panel to the user.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: September 18, 2012
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Chen-Ter Lin, Yung-Hung Chu, Kim-Yeung Sip
  • Patent number: 8271129
    Abstract: A power-saving robot system includes at least one peripheral device and a mobile robot. The peripheral device includes a controller having an active mode and a hibernation mode, and a wireless communication component capable of activation in the hibernation mode. A controller of the robot has an activating routine that communicates with and temporarily activates the peripheral device, via wireless communication, from the hibernation mode. In another aspect, a robot system includes a network data bridge and a mobile robot. The network data bridge includes a broadband network interface, a wireless command interface, and a data bridge component. The data bridge component extracts serial commands received via the broadband network interface from an internet protocol, applies a command protocol thereto, and broadcasts the serial commands via the wireless interface. The mobile robot includes a wireless command communication component that receives the serial commands transmitted from the network data bridge.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: September 18, 2012
    Assignee: iRobot Corporation
    Inventors: Michael J. Halloran, Jeffrey W. Mammen, Tony L. Campbell, Jason S. Walker, Paul E. Sandin, John N. Billington, Jr., Daniel N. Ozick
  • Patent number: 8265791
    Abstract: A system and method for motion control of a humanoid robot are provided. The system includes a remote controller for recognizing three-dimensional image information including two-dimensional information and distance information of a user, determining first and second reference points on the basis of the three-dimensional image information, calculating variation in angle of a joint on the basis of three-dimensional coordinates of the first and second reference points, and transmitting a joint control signal through a wired/wireless network. The system also includes a robot for checking joint control data from the joint control signal received from the remote controller and varying an angle of the joint to move according to the user's motion.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: September 11, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-Jun Song, Je-Han Yoon, Hyun-Sik Shim
  • Patent number: 8265789
    Abstract: A network-based robot system includes an activity creating device creating activities in hierarchical structure, and a robot downloading the activity tree over a communication network and executing an activity selected in the activity tree. The activities describe action execution procedures to be run by the robot and are arranged in an activity tree.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: September 11, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seung-Ik Lee, Sung Hoon Kim
  • Patent number: 8260462
    Abstract: A touch sensitive robot includes a body having a control panel, a touch sensor, a driver, and a controller. The touch sensor includes a first conductive belt, a second conductive belt, a power source, and a current sensor. The first conductive belt is wrapped on the body. The second conductive belt is wrapped around but spaced away from the first conductive belt. The power source and the current sensor are connected in series between the first conductive belt and the second conductive belt to form a closed circuit when a point of the second conductive belt is touched to contact the first conductive belt. The current sensor is for measuring the flow of the electrical current of the close loop. The controller is for controlling the driver to turn the body based upon the measurement of the current sensor to orient the control panel to the touch point.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: September 4, 2012
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Chen-Ter Lin, Yung-Hung Chu, Kim-Yeung Sip
  • Publication number: 20120221147
    Abstract: A control console to remotely control medical equipment is disclosed having a base with an ergonomically adjustable pedal system. The base further has an opening to receive the pedal system. The pedal system includes a moveable pedal tray with a pedal base. The tray includes a first left pedal assembly and a first right pedal assembly, and an upper tier having a second left pedal assembly and a second right pedal assembly respectively in alignment with and elevated above the first left pedal assembly and the first right pedal assembly. Rollers are rotatable coupled to the moveable pedal tray to allow it roll over a floor. A drive assembly is coupled between the moveable pedal tray and the base. The drive assembly applies a force to the to roll the moveable pedal tray over the floor within the opening of the base.
    Type: Application
    Filed: January 24, 2012
    Publication date: August 30, 2012
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Randal P. Goldberg, Michael Hanuschik, Paul Millman, John W. Zabinski, David Robinson, David W. Weir
  • Publication number: 20120209428
    Abstract: A motion path search device which searches for a motion path of a movable part of a robot capable of being taught a motion by direct teaching in which the robot is directly moved by an operator includes: a first space identification unit which identifies a space swept through by the movable part of the robot in the direct teaching; a second space identification unit which identifies a space swept through by at least a portion of a body of the operator in the direct teaching; a space combining unit which calculates, as an accessible space, a union of the space identified by the first space identification unit and the space identified by the second space identification unit; and a path search unit which searches for a motion path of the movable part within the accessible space calculated by the space combining unit.
    Type: Application
    Filed: April 23, 2012
    Publication date: August 16, 2012
    Inventor: Kenji MIZUTANI
  • Publication number: 20120197440
    Abstract: A robot for cleaning and inspecting conduits has a synchronizing mechanism, which extends all driving units simultaneously and with a constant normal force applied to the conduit wall. The robot may be equipped with adapters for conduits with rectangular cross section, and with extension bars for conduits with large diameters. Further, the robot may be equipped with sensors monitoring the robot status, these include a sensor of the synchronizing mechanism position, inclinometer and gyroscope. Data from these sensors may be displayed on a monitor. The movement of the robot inside the conduit and therefore the speed of individual tracks is controlled by the operator by three control elements: direction of turning, diameter of bend and speed of motion. The robot is also able to travel backwards inside the conduit automatically based on stored information about forward movement.
    Type: Application
    Filed: July 20, 2010
    Publication date: August 2, 2012
    Applicant: NEOVISION
    Inventors: Petr Farkavec, Vladimír Smutný
  • Publication number: 20120191247
    Abstract: A master-slave manipulator includes a slave manipulator, a master operation input device, and a control unit. The slave manipulator includes joints having multiple degrees of freedom. The master operation input device allows an operator to uniquely input a position and an orientation. The device includes a first operation unit configured to output the position and orientation, and a second operation unit including at least a joint configured to output value of the joint independently with the output of the first operation unit. The control unit calculates a driving amount of each joint of the slave manipulator using the position and orientation of the second operation unit and controls the slave manipulator in accordance with a joint driving command value.
    Type: Application
    Filed: January 19, 2012
    Publication date: July 26, 2012
    Applicant: OLYMPUS CORPORATION
    Inventor: Kosuke KISHI
  • Patent number: 8229594
    Abstract: This method controls an automatic finishing machine using a robot with a tool through a model storage step, a data acquisition step, a calculation step, an error derivation step, a correction step and a machining step. In the model storage step, shape data of an unfinished work or data of a three-dimensional model is stored in a memory. In the data acquisition step, the tool is brought into contact with the unfinished work W, thereby obtaining measurement data. Then, in the calculation step, actual-position data on a comparative object point is calculated based on the measurement data. Subsequently, in the error derivation step, a data difference between the calculated actual-position data and position data on the comparative object point in the three-dimensional model is obtained. Thereafter, in the correction step, teaching data indicative of the position of the tool corresponding to the shape data of the three-dimensional model is corrected, based on the data difference.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: July 24, 2012
    Assignee: Kawasaki Jukogyo Kabushiki Kaisha
    Inventor: Yoshihiro Ichikawa
  • Patent number: 8226072
    Abstract: If the rotation angle in a rotation direction allowed by a joint portion detected by the angle sensor is no more than a predetermined lower limit or no less than a predetermined upper limit, the controller maintains the released state of the brake mechanism so that the rotation of the workpiece in the direction is not restricted.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: July 24, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hideyuki Murayama
  • Publication number: 20120185099
    Abstract: Method and system for telematic control of a slave device. A stiffness of a material physically contacted by a slave device (202) is estimated based on information obtained from one or more slave device sensors (216, 217). Based on this stiffness estimation, a motion control command directed to the slave device is dynamically scaled. A data processing system (204) is in communication with a control interface (203) and the slave device. The data processing system (204) is configured to generate the motion control commands in response to sensor data obtained from the control interface. The system (200) also includes a stiffness estimator (602) configured for automatically estimating a stiffness of a material physically contacted by the slave device based on information obtained from the slave device sensors. A scaling unit (607) is responsive to the stiffness estimator and is configured for dynamically scaling the motion control command.
    Type: Application
    Filed: January 19, 2011
    Publication date: July 19, 2012
    Applicant: HARRIS CORPORATION
    Inventors: Paul M. Bosscher, Matthew D. Summer
  • Publication number: 20120185095
    Abstract: A mobile human interface robot that includes a base defining a vertical center axis and a forward drive direction and a holonomic drive system supported by the base. The drive system has first, second, and third driven drive wheels, each trilaterally spaced about the vertical center axis and having a drive direction perpendicular to a radial axis with respect to the vertical center axis. The robot further includes a controller in communication with the holonomic drive system, a torso supported above the base, and a touch sensor system in communication with the controller. The touch sensor system is responsive to human contact. The controller issues drive commands to the holonomic drive system based on a touch signal received from the touch sensor system.
    Type: Application
    Filed: February 22, 2011
    Publication date: July 19, 2012
    Applicant: iRobot Corporation
    Inventors: Michael Rosenstein, Chikyung Won, Geoffrey B. Lansberry, Steven V. Shamlian, Michael Halloran, Mark Chiappetta, Thomas P. Allen
  • Publication number: 20120185091
    Abstract: A method of operating a mobile robot that includes driving the robot according to a drive direction, determining a driven path of the robot from an origin, and displaying a drive view on a remote operator control unit in communication with the robot. The drive view shows a driven path of the robot from the origin. The method further includes obtaining global positioning coordinates of a current location of the robot and displaying a map in the drive view using the global positioning coordinates. The driven path of the robot is displayed on the map.
    Type: Application
    Filed: September 23, 2011
    Publication date: July 19, 2012
    Applicant: iRobot Corporation
    Inventors: Timothy G. Field, David F. Weatherwax, Orin P.F. Hoffman, Scott R. Lenser
  • Publication number: 20120185098
    Abstract: Method and system for telematic control of a slave device. Displacement of a user interface control is sensed with respect to a control direction. A first directional translation is performed to convert data specifying the control direction to data specifying a slave direction. The slave direction will generally be different from the control direction and defines a direction that the slave device should move in response to the physical displacement of the user interface. A second directional translation is performed to convert data specifying haptic sensor data to a haptic feedback direction. The haptic feedback direction will generally be different from the sensed direction and can define a direction of force to be generated by at least one component of the user interface. The first and second directional translation are determined based on a point-of-view of an imaging sensor.
    Type: Application
    Filed: January 19, 2011
    Publication date: July 19, 2012
    Applicant: HARRIS CORPORATION
    Inventors: Paul M. Bosscher, Matthew D. Summer, Loran J. Wilkinson, William S. Bowman
  • Patent number: 8209055
    Abstract: An exemplary system for sensing the state and position of a robot is provided. The system measures the acceleration and angular velocity of the robot and calculates a velocity, and a displacement of the robot. The state of the robot according to the acceleration and the velocity vector, of the robot, is determined. The system includes an alarm that activates according to the state of the robot. The system also compensates for any inaccuracy of the measured displacements.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: June 26, 2012
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Wen Shu
  • Publication number: 20120158184
    Abstract: Disclosed is a makeup system based on expert knowledge including: a makeup robot controlled to apply a cosmetic to a face of a user; a makeup server expert system including makeup information associated with makeup application and command profile information created by programming operation commands of the makeup robot; and a makeup client system configured to download a command profile for controlling operation of the makeup robot from the makeup server expert system, and transmit the command profile to the makeup robot.
    Type: Application
    Filed: November 9, 2011
    Publication date: June 21, 2012
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Jin-Suk Ma, Do Hyung Kim, Sun Ja Kim