Controlling Fuel Quantity Patents (Class 701/104)
  • Patent number: 8612118
    Abstract: A method for operating an engine, including, adjusting a target load, which lies below a full load; operating at least one cylinder in a first cylinder group with a first load, which is reduced with respect to the target load; operating at least one cylinder in a second cylinder group with a second load, which is increased with respect to the target load; selecting the first and second loads such that a resulting load is the target load; and selecting the first and second loads such that at least one environmental parameter value is improved, wherein the environmental parameters include at least one of a fuel consumption, a nitrogen oxide content in the exhaust gas, and a particle content in the exhaust gas.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: December 17, 2013
    Assignee: Mahle International GmbH
    Inventor: Alfred Elsäβer
  • Patent number: 8612077
    Abstract: A path-dependent control of a hybrid electric vehicle (HEV) includes segmenting an original route into segments. A virtual route based on the remaining portion of the original route is generated once the HEV reaches a current segment of the original route. The virtual route includes a first segment corresponding to the current segment of the original route and a last segment representing at least two other segments of the remaining portion of the original route. Battery SoC set-points for the segments of the virtual route are generated. The vehicle is controlled according to the battery SoC set-point for the first segment of the virtual route as the vehicle travels along the current segment of the original route.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: December 17, 2013
    Assignees: Massachusetts Institute of Technology, Ford Global Technologies, LLC
    Inventors: Anthony Mark Phillips, Georgia-Evangelia Katsargyri, Ming Lang Kuang, Ilya Vladimir Kolmanovsky, John Ottavio Michelini, Munther Abdullah Dahleh, Michael David Rinehart
  • Publication number: 20130332050
    Abstract: An engine control system for a vehicle includes an oxygen mass flow rate module, an oxygen per cylinder module, and a fuel control module. The oxygen mass flow rate module generates a mass flow rate of oxygen flowing into an engine based on a mass air flow rate (MAF) into the engine and a percentage of oxygen by volume measured using an intake oxygen (IO) sensor in an intake system. The oxygen per cylinder module generates a mass of oxygen for a combustion event of a cylinder of the engine based on the mass flow rate of oxygen flowing into the engine. The fuel control module controls fueling to the cylinder for the combustion event based on the mass of oxygen.
    Type: Application
    Filed: June 7, 2012
    Publication date: December 12, 2013
    Applicant: GM Global Technology Operations LLC
    Inventors: B. Jerry Song, Ethan E. Bayer, Ben W. Moscherosch, Calvin K. Koch
  • Publication number: 20130332051
    Abstract: An electronically controlled compression ignition engine includes an electronic engine controller in control communication with fuel injectors, a high pressure exhaust recirculation system and a variable geometry turbocharger. The controller is configured to execute a low load rapid warm up algorithm that generates control signals to reduce turbine efficiency, set an air fuel ratio in a predetermined range, set the exhaust gas recirculation in a predetermine range and supply fuel in a split injection in each engine cycle that includes a main injection initiated before top dead center and a post injection initiated after top dead center. These settings allow for rapid warm up to the aftertreatment inlet in excess of 300° C.
    Type: Application
    Filed: June 12, 2012
    Publication date: December 12, 2013
    Applicant: CATERPILLAR INC.
    Inventors: Matthew Wolk, Gurudutt Nayak
  • Publication number: 20130332052
    Abstract: The disclosure relates to a method for operating an internal combustion engine having a plurality of cylinders, the method comprising, during one working cycle, distributing fuel for each cylinder of the plurality of cylinders among a plurality of injection processes according to settable split factors which respectively define a setpoint fuel mass and/or injection duration and time setting of each respective injection process for the plurality of individual injection processes, wherein random variation is carried out for at least one injection process.
    Type: Application
    Filed: May 23, 2013
    Publication date: December 12, 2013
    Applicant: Ford Global Technologies, LLC
    Inventors: Georg Louven, Jens Wojahn, Klemens Grieser, Marco Marceno, Helmut Hans Ruhland, Thomas Lorenz, Moritz Klaus Springer
  • Patent number: 8602011
    Abstract: A fuel supply apparatus applied to an internal combustion engine (1) which can be operated by gasoline and CNG, wherein the fuel supply apparatus comprises a fuel supply system (18) which supplies separately the gasoline and the CNG to the internal combustion engine (1) and an exhaust gas purifying catalyst (11,12) which purifies exhaust gas discharged from the internal combustion engine (1). It is determined whether or not an exhaust gas purifying performance of the exhaust gas purifying catalyst (11,12) is deteriorated, and when it is determined that the exhaust gas purifying performance is deteriorated, the operation of the fuel supply system (18) is controlled so that the CNG is supplied to the internal combustion engine (1).
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: December 10, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Takashi Watanabe
  • Publication number: 20130325298
    Abstract: An adaption method of an injector of an internal combustion engine, in which an actually injected fuel quantity is adapted to a target injection quantity, may include: actuating the injector using a test injection pulse in at least one segment of an injection cycle; detecting a change in the rotational speed signal due to the test injection pulse in the segment associated with the test injection pulse; and correcting the injected fuel quantity based on the detected change in the rotational speed signal, wherein the method is performed during a normal operating state of the internal combustion engine.
    Type: Application
    Filed: October 11, 2011
    Publication date: December 5, 2013
    Inventors: Hui Li, Matthias Scheid
  • Publication number: 20130325295
    Abstract: A method for operating an engine comprises introducing a first fuel, a second fuel and an oxidant into a first engine cylinder and a second engine cylinder; monitoring a plurality of engine parameters; and adjusting a quantity of one of the first fuel, the second fuel, and the oxidant introduced to the first engine cylinder to be different from a quantity of one of the first fuel, the second fuel, and the oxidant introduced to the second engine cylinder based at least one of the plurality of monitored engine parameters.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Adam Edgar Klingbeil
  • Publication number: 20130325299
    Abstract: A controller for internal combustion engine includes a rotation number detecting section to detect engine rotation number and an air-fuel ratio detecting section to detect an air-fuel ratio (A/F) of air-fuel mixture and is configured to perform leaning control of the A/F. The controller further includes a rotation number difference calculating section to calculate a difference between a rotation number variation value of a worst cylinder specified as having largest rotation number variation based on the detected rotation number detected and an average value of rotation number variation values of remaining cylinders other than the worst cylinder; an estimated imbalance rate calculating section to calculate an estimated imbalance rate based on the A/F detected by the air-fuel ratio detecting section; and a lean abnormality detecting section to detect lean imbalance abnormality in a specific cylinder based on the calculated rotation number difference and the calculated estimated imbalance rate.
    Type: Application
    Filed: May 15, 2013
    Publication date: December 5, 2013
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, AISAN KOGYO KABUSHIKI KAISHA
    Inventors: Shigemichi UJIIE, Yu TAMURA, Toshitake SASAKI, Ikuo ANDO, Tsukasa ABE
  • Publication number: 20130325297
    Abstract: In a multi-fuel internal combustion engine using both CNG and light oil, good operating performance and good emissions are able to be maintained even in cases where a change of required engine load is large. The engine is provided with a supply amount decision unit that carries out supply amount decision processing to decide an amount of supply of the CNG and an amount of supply of the light oil according to the required engine load which is an engine load required by a driver, a fuel supply unit that supplies the CNG and the light oil in the amounts of supply decided by the supply amount decision unit to the internal combustion engine, and a gas fuel supply control unit that prohibits the supply of gas fuel in an amount equal to or more than a predetermined amount irrespective of the decision by the supply amount decision unit, in cases where the speed of change of the required engine load is larger than a specified value.
    Type: Application
    Filed: February 16, 2011
    Publication date: December 5, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Masahiko Masubuchi
  • Publication number: 20130325300
    Abstract: A method for operating an internal combustion engine, in particular of a motor vehicle, is described. The internal combustion engine includes an injector for metering fuel into a combustion chamber. According to the method, the injector is opened during a control period for metering a fuel quantity. A change in a rotary motion of the internal combustion engine, which results from the fuel quantity, is ascertained. A function is ascertained which links the control period to the change in the rotary motion. A minimum control period during which the injector does not open just yet is ascertained with the aid of the function. An operating point-dependent control period of the injector is ascertained as a function of the minimum control period.
    Type: Application
    Filed: November 29, 2011
    Publication date: December 5, 2013
    Applicant: Robert Bosch GMBH
    Inventors: Michael Walter, Joachim Palmer
  • Publication number: 20130325301
    Abstract: A method of controlling fuel injection in an internal combustion engine having at least one cylinder with an associated fuel injector for performing injection events is proposed, wherein for each injection event a pulse width is determined with which the injector is kept open to spray a desired quantity of fuel. When the quantity of fuel of a given fuel injection event is greater than a learning threshold, a split fuel injection is performed, whereby a first, low injection pulse and a second, complementary injection pulse are executed. Data representative of a closing time and/or an opening time of the fuel injector is determined in respect of the first, low injection pulse and a learned correction value is elaborated based on the closing time and/or opening time, the learned correction value being subsequently used for injection control.
    Type: Application
    Filed: December 6, 2011
    Publication date: December 5, 2013
    Applicant: Delphi Technologies, Inc.
    Inventors: Thomas Gautier, Didier Gautier
  • Publication number: 20130325296
    Abstract: A control apparatus comprising an air-fuel ratio sensor disposed between the exhaust gas aggregated portion and the three-way catalyst, and which outputs an output value corresponding to an amount of oxygen and an amount of unburnt substances that has reached the exhaust-gas-side electrode layer via the porous; an actual detected air-fuel ratio obtaining section which obtains an actual detected air-fuel ratio by converting an actual output value of the air-fuel ratio sensor into an air-fuel ratio; and an instructed fuel injection amount calculation section which corrects the amount of the fuel injected from a plurality of the fuel injection valves so that the actual detected air-fuel ratio coincides with a target air-fuel ratio; and an air-fuel ratio imbalance indicating value obtaining section which obtains an air-fuel ratio imbalance indicating value which becomes larger as a degree of a non-uniformity among a plurality of the cylinders of cylinder-by-cylinder air-fuel ratios.
    Type: Application
    Filed: July 15, 2010
    Publication date: December 5, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasuhiro Koshi, Keiichiro Aoki
  • Patent number: 8600649
    Abstract: The invention relates to a method for starting an internal combustion engine associated with means for adapting, during an engine start operation, an amount of fuel injected based on an estimation of the volatility (PVR) of the fuel based on the comparison between a gradient of the engine speed measured upon a preceding start operation and a reference gradient (110) corresponding to a predetermined fuel, characterized by the step (111) of correcting the reference gradient based on a change (?CMF) in the engine friction torque.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: December 3, 2013
    Assignee: Peugeot Citroen Automobiles SA
    Inventor: Frédéric Gourves
  • Patent number: 8600645
    Abstract: A control system for an engine having at least one manifold, a throttle, and a crank wheel, includes a pressure sensor to measure a pressure in the at least one manifold, a throttle position sensor to measure a position of the throttle of the engine, a revolution sensor to measure a rate of rotation of the crank wheel of the engine, a processor in communication with each of the pressure sensor, the throttle position sensor, and the revolution sensor to receive an input signal, analyze the input signal based upon an instruction set, and generate a control signal in response to analysis of the input signal, wherein the input signal is representative of at least one of the pressure, the throttle position, and the rate of rotation, and an engine system in communication with the processor and responsive to the control signal to control a function thereof.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: December 3, 2013
    Assignee: Visteon Global Technologies, Inc.
    Inventors: Thomas Raymond Culbertson, Eric Bender
  • Publication number: 20130317723
    Abstract: In a method for determining a type of air-fuel mixture error of a cylinder of an internal combustion engine of a motor vehicle, wherein a torque parameter (M1) of the cylinder is ascertained, a lambda parameter (?1) of the cylinder is ascertained, a torque reference parameter and a lambda reference parameter are ascertained, as a function of a comparison of the torque parameter (M1) with the torque reference parameter and as a function of a comparison of the lambda parameter (?1) with the lambda reference parameter, the type of air-fuel mixture error is indicated to be a fuel path error or to be an air path error.
    Type: Application
    Filed: May 5, 2013
    Publication date: November 28, 2013
    Applicant: Daimler AG
    Inventors: Patrick Deubler, Kay Dietzel, Thomas Kaiser, Peter Hohner
  • Publication number: 20130317724
    Abstract: Disclosed is a method for determination of the water content of a mixed alcohol/gasoline fuel in an internal combustion engine of a vehicle, which includes the stages of: determination of a first value for alcohol content of the fuel using a measurement of combustion richness; determination of a second value for alcohol content of the fuel using a measurement recorded by a sensor for measurement of the electrical conductivity of the fuel; comparison of the first value and the second value; and, when the first value is lower than the second value, determination of the water content of the fuel by assigning a predetermined value for water content associated with the pair consisting of the first value and of the second value for alcohol content.
    Type: Application
    Filed: January 17, 2012
    Publication date: November 28, 2013
    Applicants: Continental Automotive GMBH, Continental Automotive France
    Inventor: Jean-Paul Ferrie
  • Publication number: 20130317722
    Abstract: According to one embodiment, an apparatus for controlling combustion in an internal combustion engine having a fuel delivery system includes a cylinder contents prediction module configured to predict at least one condition within a combustion cylinder of the internal combustion engine. The apparatus also includes a fueling parameter selection module configured to generate a fuel command for the fuel delivery system. The fuel command is based at least partially on the predicted at least one condition within the combustion cylinder.
    Type: Application
    Filed: May 24, 2012
    Publication date: November 28, 2013
    Inventors: Shawn Midlam-Mohler, Jason Meyer, Stephen Yurkovich, Vivek Sujan
  • Patent number: 8594907
    Abstract: A method to control an internal combustion engine includes operating the engine with a fuel blend of a first fuel and a second fuel, monitoring a value of a first combustion parameter during engine operation, monitoring a first value for a second combustion parameter during engine operation, determining a second value for the second combustion parameter in accordance with a predetermined correspondence among the first combustion parameter, the second combustion parameter, and a predetermined fuel blend of the first fuel and the second fuel, determining the fuel blend based upon a difference between the first and second values for the second combustion parameter, and controlling the engine based upon the fuel blend.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: November 26, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Yue-Yun Wang, Ibrahim Haskara
  • Publication number: 20130311069
    Abstract: There is provided a control device of an engine that includes a turbo-supercharger and a variable valve mechanism, the control device including: a valve timing change means; an ignition timing change means; a fuel injection amount change means; an acceleration request detection means; a supercharging pressure detection means; and an acceleration control means that corrects, when the acceleration request is detected, retarding of ignition timing in a low supercharging region where the supercharging pressure is lower than a predetermined value, that completes the correction of the retarding of the ignition timing in a high supercharging region where the supercharging pressure is equal to or higher than the predetermined value to provide a valve overlap and that changes the fuel injection amount such that an air-fuel ratio at which a mixture air of a scavenging gas and an exhaust gas is easily burned within an exhaust passage is provided.
    Type: Application
    Filed: January 11, 2012
    Publication date: November 21, 2013
    Inventor: Takeshi Tsuyuki
  • Publication number: 20130311065
    Abstract: A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.
    Type: Application
    Filed: May 15, 2012
    Publication date: November 21, 2013
    Applicant: GM Global Technology Operations LLC
    Inventors: Min Sun, Kevin L. Perry
  • Publication number: 20130311067
    Abstract: The disclosure describes an engine system having liquid and gaseous fuel systems, each of which injects fuel directly into an engine cylinder. A controller monitors and controls engine operation in a normal mode, during which the engine produces rated power, and in a limp-home mode, which is used when an abnormal operating condition of the gaseous fuel system is present. During limp-home mode operation, the engine uses more liquid fuel and less or no gaseous fuel relative to the normal mode, and produces power that is less than rated power.
    Type: Application
    Filed: May 17, 2012
    Publication date: November 21, 2013
    Applicant: CATERPILLAR INC.
    Inventors: Alan Stockner, Frank Lombardi
  • Publication number: 20130311066
    Abstract: Methods and systems are provided for a vehicle engine. One example method comprises delivering a first fuel to an engine cylinder at least partially during an intake stroke, and initiating combustion in the cylinder via injection of a second fuel into the cylinder. Responsive to an indication of uncontrolled combustion of pre-mixed first fuel and air in the cylinder, wherein the uncontrolled combustion is onset by the initiated combustion of the second fuel, amounts of the first fuel relative to the second fuel in the cylinder are adjusted.
    Type: Application
    Filed: May 17, 2012
    Publication date: November 21, 2013
    Inventors: Leonardo da Mata Guimaraes, Ronald Gene Billig
  • Publication number: 20130311068
    Abstract: Methods and systems are provided for reducing turbo lag by directing intake air from an intake manifold to an exhaust manifold. The intake air may be directed via an EGR passage by opening an EGR valve or by may be directed via engine cylinders by increasing positive valve overlap. Amounts of air directed via external EGR and air directed via positive valve overlap are based on engine operating conditions.
    Type: Application
    Filed: May 17, 2012
    Publication date: November 21, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: John Eric Rollinger, Adam J. Richards, Robert Andrew Wade, David Bell
  • Publication number: 20130298877
    Abstract: An electronically controlled fuel injection valve can independently control the time to inject fuel and the amount of fuel to be injected in response to a control signal sent from the operating condition of an engine unlike a traditional mechanical fuel injection valve, and employs a control method for fuel injection that increases the force of lifting up a cutoff needle of an injection controller by delivering high-pressure fuel to a lower pressure chamber via a control needle, thereby rapidly controlling fuel injection. The electronically controlled fuel injection valve prevents a nozzle part from being constantly subjected to high pressure due to the nozzle part being not supplied with fuel when fuel is not injected, prevents a large amount of fuel from leaking into a combustion chamber when a part such as a needle is damaged, and simplifies the structure of a second flow path, thereby facilitating fabrication.
    Type: Application
    Filed: December 26, 2011
    Publication date: November 14, 2013
    Applicant: HYUNDAI HEAVY INDUSTRIES CO., LTD.
    Inventors: Dong-Hun Kim, Seung-Hyup Ryu, Tae-Hyung Park
  • Patent number: 8580111
    Abstract: A device for separating fuel components comprising a separating membrane for separating high-octane fuel components from un-separated fuel and a heat exchanger between first liquid passing through the heat exchanger and second liquid passing through the heat exchanger, is provided. The first liquid is un-separated fuel passing through the heat exchanger before being supplied to the separating membrane. The second liquid is low-octane fuel remaining when the high-octane fuel components are separated from the un-separated fuel, passing through the heat exchanger after changing to an almost liquid phase.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: November 12, 2013
    Assignees: Toyota Jidosha Kabushiki Kaisha, Exxon Mobil Research and Engineering Company
    Inventors: Randall D. Partridge, George Walchuk, Kouseki Sugiyama
  • Patent number: 8578910
    Abstract: A fuel injection controller includes an ECU controlling an operation of a fuel injector based on a characteristic data of the fuel injector, an EEPROM provided to the injector, and an EEPROM provided to the ECU. Identification information by which the fuel injector is individually identified is stored in both of the EEPROMs. It is determined whether the identification information stored in the injector-side EEPROM is identical to the identification information stored in the ECU-side EEPROM. Based on this determination result, it can be determined whether the injector and/or the ECU are exchanged to new one.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: November 12, 2013
    Assignee: Denso Corporation
    Inventors: Kouichi Sugiyama, Koji Ishizuka
  • Publication number: 20130297185
    Abstract: According to one embodiment, an apparatus for controlling fuel consumption in an internal combustion engine of a vehicle having a driver-actuated accelerator pedal includes an economy mode activation module and a standard fueling module. The economy mode activation module is configured to compare throttle input data with defined limits. The throttle input data is controllable by a driver of the vehicle via positioning of the accelerator pedal. The economy mode activation module is configured to control the fuel consumption of the internal combustion engine via an economy fuel map if the throttle input data falls within the defined limits for a defined amount of time. The standard fueling mode activation module is configured to control the fuel consumption of the internal combustion engine via a standard fuel map if the throttle input data does not fall within the defined limits for the defined amount of time.
    Type: Application
    Filed: May 2, 2012
    Publication date: November 7, 2013
    Inventor: Andrew A. Morris
  • Publication number: 20130297186
    Abstract: A control device is provided that generates a target air-fuel ratio by lessening a change speed of a required air-fuel ratio of an internal combustion engine. However, when a deterioration degree of a catalyst which is disposed in an exhaust passage of the internal combustion engine is a predetermined reference or more, lessening of the change speed of the required air-fuel ratio is stopped, or a lessening degree of the change speed of the required air-fuel ratio is decreased. The control device calculates a target air quantity for realizing the required torque under the target air-fuel ratio. For calculation of the target air quantity, data in which relationship of torque generated by the internal combustion engine and an air quantity taken into a cylinder is fixed by being related to an air-fuel ratio can be used.
    Type: Application
    Filed: January 24, 2011
    Publication date: November 7, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Satoshi Yoshizaki, Shuntaro Okazaki, Masashi Shibayama, Kaoru Shokatsu, Hajime Kawakami
  • Publication number: 20130297188
    Abstract: An object of the present invention is to enhance precision of air-fuel ratio control after return from fuel cut in a control device for an internal combustion engine that has a plurality of fuel injection modes, and performs calculation of a fuel injection amount by a method corresponding to an injection mode in use. For this object, the control device for an internal combustion engine the present invention provides normally determines the injection mode in response to an operation state, but designates a specific injection mode with a higher priority than the injection mode determined in response to the operation state at a time of return from fuel cut. For a predetermined time period after the return from fuel cut, the control device prohibits the injection mode from being changed in response to the operation state, and keeps fuel injection according to the designated specific injection mode.
    Type: Application
    Filed: January 20, 2011
    Publication date: November 7, 2013
    Inventors: Hiroshi Watanabe, Yasumichi Inoue
  • Publication number: 20130297187
    Abstract: Systems and methods for improving operation of an engine are presented. In one example, a position of a throttle is adjusted along with other actuators to improve engine starting.
    Type: Application
    Filed: February 25, 2013
    Publication date: November 7, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Jeffrey Allen Doering, Alex O'Connor Gibson, Dennis Craig Reed, Adam Nathan Banker, David Oshinsky
  • Patent number: 8577581
    Abstract: To reliably prevent a drop in the function of injectors resulting from a rise in the temperature of excess fuel in the injectors without having to add a new part.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: November 5, 2013
    Assignee: Bosch Corporation
    Inventors: Shinichi Hirota, Tomonori Watanabe
  • Publication number: 20130289850
    Abstract: A powertrain system for a vehicle includes an engine having a plurality of engine cylinders each having an inlet port and an exhaust port, an intake manifold in fluid communication with the inlet ports of each of the engine cylinders of the engine, and a forced induction system coupled to the engine increasing an intake pressure of air in the intake manifold above ambient pressure. The powertrain system also includes a fuel delivery system supplying fuel to each of the engine cylinders of the engine. The fuel delivery system includes at least one fuel injector per engine cylinder, a fuel tank storing fuel having an intermediate-RON, and an on-board separator separating the fuel into a high-RON component and a low-RON component. The high-RON component and the low-RON component are delivered to each of the engine cylinders of the engine based on an engine operating parameter.
    Type: Application
    Filed: November 27, 2012
    Publication date: October 31, 2013
    Applicant: Coming Incorporated
    Inventors: Paul Oakley Johnson, Randall D. Partridge
  • Patent number: 8567370
    Abstract: Methods and systems are provided for controlling exhaust emissions by adjusting a fuel injection into an engine cylinder from a plurality of fuel injectors based on the fuel type of the injected fuel and further based on the soot load of the engine. Soot generated from direct fuel injection is reduced by decreasing an amount of direct injection into a cylinder as the engine soot load increases.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: October 29, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: David Karl Bidner, Ralph Wayne Cunningham, Stephen G. Russ, James Hilditch, John Eric Rollinger
  • Patent number: 8566007
    Abstract: The automatic/stop restart device includes a restart control module for performing restart control for the internal combustion engine by pushing out a pinion gear (17) by a pinion-gear push-out device (18) to bring the pinion gear into meshing engagement with a ring gear (16) when the restart requirement is satisfied before the rotation of the internal combustion engine is stopped after an automatic stop requirement is satisfied. The pinion gear is pushed out when the restart requirement is satisfied when a rotation speed of the internal combustion engine is equal to or lower than a predetermined rotation speed. At the same time, a starter motor (19) is driven by a starter-motor waiting-time adjustment module for adjusting a driving waiting time for the starter motor (19) according to the rotation speed of the internal combustion engine obtained when the restart requirement is satisfied. In this manner, the restart is quickly performed.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: October 22, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tomohisa Shoda, Osamu Ishikawa
  • Publication number: 20130275029
    Abstract: A method and control unit for a start of an Otto engine operated at low temperatures, using ethanol and/or gasoline, having direct injection. The method includes generating by a high pressure pump a fuel pressure in a high pressure system connected to a high pressure reservoir; a sensor monitoring the fuel pressure in the reservoir and the system; injecting the fuel, by an injector, from the reservoir into a cylinder of the engine, the fuel pressure, an injection quantity and a fuel quantity being specified by a control unit based on, sensor the fuel pressure being specified based on the operating point of the engine up to an upper pressure which is below a starting pressure to which the fuel is increased before the fuel injection, and the fuel pressure in the reservoir and the system being limited to a maximum by an opening pressure of a limiting valve.
    Type: Application
    Filed: March 26, 2013
    Publication date: October 17, 2013
    Applicant: Robert Bosch GmbH
    Inventors: Hans-Friedrich SCHWARZ, Peter Schenk
  • Publication number: 20130275028
    Abstract: A control device for an internal combustion engine provided by the present invention is a control device which can satisfy a requirement concerning exhaust gas performance of the internal combustion engine, a requirement concerning fuel economy performance, and a requirement concerning operation performance with an excellent balance by properly regulating a change speed of a required air-fuel ratio and an ignition timing. The present control device keeps the ignition timing at an optimal ignition timing if a predetermined permission condition is not satisfied. However, when the permission condition is satisfied, the present control device controls the ignition timing so as to compensate for a difference which occurs between torque which is estimated from an operation of an actuator for air quantity control and required torque by the ignition timing.
    Type: Application
    Filed: December 27, 2010
    Publication date: October 17, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shuntaro Okazaki, Satoshi Yoshizaki, Masashi Shibayama, Kaoru Shokatsu, Hajime Kawakami
  • Patent number: 8560210
    Abstract: A control apparatus for an internal combustion engine is provided, which is capable of suppressing deterioration of exhaust emission due to an unburned fuel contained in oil which enters a combustion chamber during valve stop control while preventing inflow of fresh air to a catalyst, at a time of valve return following return from fuel cut. Variable valve operating apparatuses having valve stop mechanisms capable of changing operation states of an intake valve and an exhaust valve between valve operation states and valve closed and stopped states are included. Valve stop control that changes the operation states of the intake valve and the exhaust valve to the valve closed and stopped states is performed, at a time of execution of the fuel cut. When a return request from the fuel cut with the valve stop control is detected, a fuel is supplied to a combustion chamber before the operation state of the exhaust valve is returned to the valve operation state.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: October 15, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keisuke Sano, Norihisa Nakagawa, Takashi Nishikiori
  • Patent number: 8560209
    Abstract: The present invention includes an automobile including an enrichment delivery system. The enrichment delivery system includes an engine, a catalytic converter, multiple sensors, a memory, and a control unit. The engine includes an enrichment delivery unit, which delivers base fuel and enrichment to the engine. The engine generates an output which can be received by the catalytic converter. Reactions occur within the catalytic converter, and are outputted by the catalytic converter. The sensors detect an air-fuel ratio from the output of the engine, and the output of a catalytic converter. The sensors detect temperature data for the catalytic converter. The memory stores an enrichment curve indicating that an amount of enrichment supplied to the engine should be gradually increased based on the enrichment curve until a target enrichment amount is reached, or a predetermined target enrichment time is reached.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: October 15, 2013
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Heraldo F. Stefanon
  • Patent number: 8560208
    Abstract: An inter-cylinder air-fuel ratio imbalance determination apparatus (determination apparatus) according to the present invention obtains, as an “EGR supplying state imbalance determination parameter”, a value corresponding to a differential value d(abyfs)dt of a detected air-fuel ratio abyfs represented by an output value of an air-fuel ratio sensor when an EGR gas is being supplied, and obtains, as an “EGR stop state imbalance determination parameter”, a value corresponding to a differential value d(abyfs)dt when an EGR gas supply is being stopped. The determination apparatus obtains an “EGR-causing imbalance determination parameter Pegr” by subtracting the EGR stop state imbalance determination parameter Poff from the EGR supplying state imbalance determination parameter Pon, and determines that an inter-cylinder air-fuel ratio imbalance state has occurred due to the supply of the EGR gas when the parameter Pegr is larger than a threshold Pegrth.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: October 15, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Miyamoto, Yasushi Iwazaki, Hiroshi Sawada
  • Patent number: 8554447
    Abstract: Provided is an internal combustion engine system controller, including a sub-feedback learning section, a state determining section, and a learning update-speed setting section. The state determining section determines, to which of at least three states including: (a) a stable state in which a fluctuating state of a sub-feedback learning value is stable; (b) an unstable state in which the fluctuating state greatly fluctuates; and (c) an intermediate state between the stable state and the instable state (may be referred to as sub-stable state), the fluctuating state corresponds. The learning update-speed setting section sets an update speed of the sub-feedback learning value in accordance with the result of determination by the state determining section. Further, the learning update-speed setting section suppresses the occurrence of hunting of the sub-feedback learning value.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: October 8, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shuntaro Okazaki, Koji Ide
  • Patent number: 8550959
    Abstract: A vehicle drive system is provided with an engine, a manual transmission capable of changing a gear position, a clutch arranged between the engine and the transmission, and a control device that performs drive control of the engine. During an inertia running in which torque transmission between the engine and an axle is blocked, when the clutch is opened and the gear position of the transmission is changed to a forward position, if the gear position after the change is lower than an optimal gear position corresponding to a vehicle speed, the control device executes fuel cutoff for the engine.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: October 8, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Nobukazu Ueki
  • Patent number: 8554446
    Abstract: Provided is a control apparatus, which can successfully suppress that deterioration of combustion is caused in response to inflow of a large amount of blow-by gas to cylinders at the time of a valve return from a valve stop state in an internal combustion engine including a positive crankcase ventilation system and a variable valve operating mechanism that is capable of stopping at least one valve of an intake valve and exhaust valve in a closed state. A valve stop control is performed which stops the intake valve and exhaust valve in a closed state when a fuel cut of the internal combustion engine is executed. A deviation amount ?A/F between a predetermined target air fuel ratio and an actual air fuel ratio detected by an A/F sensor at the time of a valve return is obtained. A correction is performed to decrease a fuel injection amount by a fuel amount equivalent to the deviation amount ?A/F at the time of the subsequent valve returns.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: October 8, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keisuke Sano, Kazuhiro Wakao, Takashi Nishikiori, Takashi Watanabe
  • Publication number: 20130261935
    Abstract: A method adjusts fuel injection based on a fuel make-up, such as a fuel ethanol content. The fuel make-up may be learned during transient conditions by correlating transient fueling effects caused by the different evaporation rates of higher and lower ethanol content to measured exhaust air-fuel ratio. In this way, an ethanol content independent of combustion stoichiometry can be obtained, even during transients, that is less sensitive to part variation and sensor drift.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 3, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventor: Mrdjan J. Jankovic
  • Publication number: 20130261936
    Abstract: A control apparatus for an internal combustion engine is configured to execute an air-fuel ratio control based on an output of an air-fuel ratio detector provided in an exhaust passage through which exhaust gas from a plurality of cylinders flows. The control apparatus includes an abnormal lean deviation detection portion configured to detect whether an abnormal lean deviation is occurring in at least one specific cylinder among the plurality of cylinders, the exhaust gas from the at least one specific cylinder influencing the air-fuel ratio detector more strongly than the exhaust gas from each of a rest of the plurality of cylinders; and an enriching control portion configured to execute an enriching control for the at least one specific cylinder when the abnormal lean deviation detection portion detects that the abnormal lean deviation is occurring in the at least one specific cylinder.
    Type: Application
    Filed: March 7, 2013
    Publication date: October 3, 2013
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventor: Takashi Suzuki
  • Publication number: 20130261937
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency of the engine.
    Type: Application
    Filed: May 16, 2013
    Publication date: October 3, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, Leslie Bromberg, John B. Heywood
  • Publication number: 20130253804
    Abstract: A method is disclosed for estimating a fuel leakage quantity which enters from a leaking injection valve during a shut-down time of a motor vehicle into an intake tract or into a cylinder of an internal combustion engine of the motor vehicle and is added to a fuel mixture to be combusted during a starting process. The method may include: measuring a first start index characteristic of a starting behavior of the engine during a first starting process; determining a first injected fuel quantity during the first starting process; measuring a second start index characteristic of a starting behavior of the engine during a second starting process; determining a second injected fuel quantity during the second starting process; and estimating the fuel leakage quantity based on the measured first start index, the determined first injected fuel quantity, the measured second start index and the determined second injected fuel quantity.
    Type: Application
    Filed: November 29, 2011
    Publication date: September 26, 2013
    Inventors: Gerd Rösel, Erwin Achleitner
  • Patent number: 8543315
    Abstract: Methods are provided for controlling an engine in response to a pre-ignition event. A pre-ignition threshold and a pre-ignition mitigating action are adjusted based on a rate of change of cylinder aircharge. As a result, pre-ignition events occurring during transient engine operating conditions are detected and addressed different from pre-ignition events occurring during steady-state engine operating conditions.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: September 24, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Christopher P. Glugla, Michael A. Mancini
  • Patent number: 8543316
    Abstract: An air-fuel ratio control device comprising a fuel supply unit, engine operation state detector, air-fuel ratio information detector, and an electronic control unit is disclosed. The electronic control unit determines a fuel injection amount which realizes a target air-fuel ratio while using engine load information by the engine operation state detector on the basis of air-fuel ratio information by the air-fuel ratio information detector, and then outputs a driving signal to the fuel supply unit, to execute feedback control mainly at an excessively rich side air-fuel ratio, characterized in that the air-fuel ratio information detector is an exhaust gas temperature sensor.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: September 24, 2013
    Assignee: Nikki Co., Ltd.
    Inventors: Buso Takigawa, Umerujan Sawut, Tohti Gheyret
  • Publication number: 20130245920
    Abstract: A system for controlling operation of an internal combustion engine includes a controller configured to send signals for controlling at least one of air-fuel ratio, spark-ignition timing, and fuel injection timing to an internal combustion engine. The system further includes a sensor configured to send a signal indicative of exhaust gas temperature to the controller. The system is configured to control at least one of the air-fuel ratio, spark-ignition timing, and fuel injection timing based on a signal indicative of at least one of an operating condition of the internal combustion engine and load on the internal combustion engine, and a difference between a target exhaust gas temperature and the signal indicative of the exhaust gas temperature.
    Type: Application
    Filed: July 20, 2011
    Publication date: September 19, 2013
    Applicant: ROCKWELL COLLINS CONTROL TECHNOLOGIES, INC.
    Inventors: David W. Vos, Michael D. Piedmonte, Gregory E. Mott, Christopher M. Boggs, Keith M. Allen