Rate Of Change (e.g., Ascent, Decent) Patents (Class 701/5)
  • Patent number: 10970665
    Abstract: The present disclosure discloses a logistics information acquisition method and system for transnational transport. The method and system of the present invention provide a user with a one-stop full-logistics query service, unify full-logistics information of transnational transport into one query portal for query, thus a user simply needs to query once to acquire transnational transport information from shipped to final delivery between a transporter in country of origin, one or more of transporters in transit countries, and a transporter in final destination country. With the method in the present disclosure, it eliminates the need for the user to query logistics information of transnational transport on each respective of websites of the transporters in all countries, thereby greatly reducing logistics query time, and improving logistics query efficiency, and having significant meanings for the related practitioners in cross-border eCommerce industry.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: April 6, 2021
    Assignee: DEMON NETWORK TECH. CO., LTD.
    Inventor: Zehui Fang
  • Patent number: 10671091
    Abstract: When an unmanned aerial vehicle flies in accordance with a planned route that is set in advance on the basis of a position of a GPS receiver measured by a measurement unit and the measurement accuracy detected by a measurement accuracy detection unit has decreased to be less than a predetermined value, a flight control unit performs control so that the unmanned aerial vehicle flies along a route different from the planned route. Moreover, when flying along the planned route lowers the measurement accuracy, the unmanned aerial vehicle is caused to fly along the route different from the planned route. Therefore, the flight can be continued while the position is measured with the measurement accuracy secured.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: June 2, 2020
    Assignee: ALPINE ELECTRONICS, INC.
    Inventor: Yosuke Tate
  • Patent number: 10336471
    Abstract: A method for designing an aircraft includes defining an initial catalog of requirements for at least one aircraft design. An optimization of the at least one aircraft design is carried out based on the catalog of requirements in terms of anticipated operating costs. A predefined total flight network is simulated with the at least one aircraft design and a total flight network efficiency is determined. It is then checked as to whether the determined total flight network efficiency constitutes an optimum. The catalog of requirements is adapted and an iteration is performed upon a determination that the determined total flight network efficiency does not constitute the optimum.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: July 2, 2019
    Assignee: DEUTSCHE LUFTHANSA AG
    Inventors: Karl Echtermeyer, Werner Coenen
  • Patent number: 10109202
    Abstract: A method and system for determining in real time a vertical trajectory of an aircraft is provided. The method includes a step for providing an initial vertical trajectory comprising an initial phase for changing flight level according to a first slope, between a first point at a first altitude, and a second point at a second altitude, at least one step for modifying the vertical trajectory, comprising a phase for detecting a triggering element when the aircraft is at the first altitude, when said triggering element is detected, and a phase for determining a modified vertical trajectory, said modified vertical trajectory comprising a modified phase for changing flight level according to a second predefined slope, from a modified point at said first altitude, distinct from said first point, to said second altitude.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: October 23, 2018
    Assignee: DASSAULT AVIATION
    Inventors: Eric Boulle, Jean-Philipe Roue
  • Patent number: 9690299
    Abstract: The invention relates to a method for control of a flying wing. The flying wing is arranged to be controlled to move along a predetermined trajectory by means of a fluid stream passing a wing of the flying wing. The flying wing comprises at least one control surface for controlling the movement of the flying wing along the predetermined trajectory. The flying wing is positioned in a reference frame where the x-axis is directed horizontally along a level L above which the flying wing moves, the y-axis is perpendicular to the x-axis in a vertical direction and the z-axis is perpendicular to the x-axis along the level L in a direction along the principal direction of the fluid stream. The invention further relates to a system comprising a flying wing and a computer-readable medium for use with a flying wing.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: June 27, 2017
    Assignee: MINESTO AB
    Inventors: Anders Movert, Per Hillerborg
  • Patent number: 9586683
    Abstract: This disclosure describes a configuration of an unmanned aerial vehicle (UAV) that will facilitate extended flight duration. The UAV may have any number of lifting motors. For example, the UAV may include four lifting motors (also known as a quad-copter), eight lifting motors (octo-copter), etc. Likewise, to improve the efficiency of horizontal flight, the UAV also includes a thrusting motor and propeller assembly that is oriented at approximately ninety degrees to one or more of the lifting motors. When the UAV is moving horizontally, it may be determined if the horizontal airspeed of the UAV exceeds an airspeed threshold. If the horizontal airspeed exceeds the airspeed threshold, the thrusting motor may be engaged and the thrusting propeller will aid in the horizontal propulsion of the UAV.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: March 7, 2017
    Assignee: Amazon Technologies, Inc.
    Inventors: Daniel Buchmueller, Gur Kimchi, Louis LeRoi LeGrand, III, Samuel Park, Christopher Hammond Sczudlo, Ricky Dean Welsh, Neil Whitney Woodward, III
  • Patent number: 9304516
    Abstract: A flight control system and method for controlling the vertical flight path of an aircraft, the flight control system includes a stable decoupled model having a decoupled lateral equation of motion and a decoupled longitudinal equation of motion and a feedback command loop operably associated with the stable decoupled model. The feedback command loop includes a vertical flight path angle control law; an altitude control law; and a vertical speed control law.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: April 5, 2016
    Assignee: Textron Innovations Inc.
    Inventors: Kevin Thomas Christensen, Shyhpyng Jack Shue, Troy Sheldon Caudill
  • Patent number: 9266608
    Abstract: A control system for a rotor assembly includes a plurality of sensors configured to detect a lead-lag rate of each rotor blade of a plurality of rotor blades rotatable around a shaft and a flight control computer configured to generate lead-lag compensation signals based on the detected lead rate and lag rate of each rotor blade to control each rotor blade.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: February 23, 2016
    Assignee: SIKORSKY AIRCRAFT CORPORATION
    Inventors: Vineet Sahasrabudhe, Matthew A. White
  • Patent number: 9145166
    Abstract: The momentum control apparatus includes: an optimal feedback gain obtaining part for obtaining a plurality of optimal feedback gains used when each of the plurality of actuators is independently actuated to feedback control the momentum of the controlled object; and a feedback gain setting part for extracting a minimum feedback gain out of the plurality of optimal feedback gains obtained by the optimal feedback gain obtaining part as a feedback gain of a control system.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: September 29, 2015
    Assignees: AISIN SEIKI KABUSHIKI KAISHA, DENSO CORPORATION, ADVICS CO., LTD.
    Inventors: Yuichi Mizutani, Hirofumi Nitta, Junpei Tatsukawa, Mitsuhiro Tokimasa, Yasuhiko Mukai, Yoshihisa Ogata, Hajime Kumabe, Masatoshi Hanzawa, Masaki Maruyama
  • Patent number: 9061757
    Abstract: The automatic piloting system includes an element for automatically supplying a computation unit, when the aircraft is guided according to a descending corrected speed and a new corrected speed which is greater than the corrected speed used for guidance of the aircraft is input by the pilot, with a predetermined maximum Mach number which replaces the current Mach number and which is intended to form, together with the new input corrected speed, a pair of speeds which is taken into account by the computation unit for determining the guidance instructions for the aircraft.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: June 23, 2015
    Assignee: Airbus Operations S.A.S.
    Inventor: Marine Labastie
  • Patent number: 8989924
    Abstract: The drone comprises altitude determination means (134), with an estimator (152) combining the measures of an ultrasound telemetry sensor (154) and of a barometric sensor (156) to deliver an absolute altitude value of the drone in a terrestrial system. The estimator comprises a predictive filter (152) incorporating a representation of a dynamic model of the drone making it possible to predict the altitude based on the motor commands (158) and to periodically readjust this prediction as a function of the signals delivered by the telemetry sensor (154) and the barometric sensor (156). Validation means analyze the reflected echoes and possibly modify the parameters of the estimator and/or allow or invalidate the signals of the telemetry sensor. The echo analysis also makes it possible to deduce the presence and the configuration of an obstacle within the operating range of the telemetry sensor, to apply if need be a suitable corrective action.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: March 24, 2015
    Assignee: Parrot
    Inventors: Henri Seydoux, Francois Callou, Mathieu Babel
  • Patent number: 8989921
    Abstract: An electronic flight control system for an aircraft capable of hovering and having at least one rotor. The flight control system is configured to operate in a manual flight control mode, in which the flight control system controls rotor speed in response to direct commands from the pilot; and in at least two automatic flight control modes corresponding to respective flight modes of the aircraft, and in which the flight control system controls rotor speed automatically on the basis of flight conditions. The flight control system is also configured to memorize, for each automatic flight control mode, a respective flight table relating different speed values of the rotor to different values of at least one flight quantity; and to automatically control rotor speed in the automatic flight control modes on the basis of the respective flight tables.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: March 24, 2015
    Assignee: Agustawestland S.p.A.
    Inventors: Fabio Nannoni, Pierre Abdel Nour, Marco Cicale′
  • Patent number: 8988220
    Abstract: A method and apparatus are provided for detecting an intruder inside a vehicle. The apparatus comprises a load sensor coupled to the vehicle, and a processor. The processor is coupled to the load sensor and is configured to monitor the load in the vehicle after the vehicle is vacated and locked and to determine if the load in the vehicle changes by more than a predetermined threshold.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: March 24, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Craig R. Markyvech, Clark E. McCall
  • Patent number: 8983684
    Abstract: This method controls the drone in order to flip through a complete turn about its roll axis or its pitching axis. It comprises the steps of: a) controlling its motors simultaneously so as to impart a prior upward vertical thrust impulse to the drone; b) applying different and non-servo-controlled commands to the motors so as to produce rotation of the drone about the axis of rotation of the flip, from an initial angular position to a predetermined intermediate angular position; and then c) applying individual control to the motors, servo-controlled to a reference target trajectory, so as to finish off the rotation of the drone through one complete turn about the axis of rotation, progressively from the intermediate angular position with a non-zero angular velocity to a final angular position with a zero angular velocity.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: March 17, 2015
    Assignee: Parrott
    Inventors: Francois Callou, Michael Rischmuller
  • Patent number: 8958930
    Abstract: Method for dynamically limiting the inclinations of monoblock flight control surfaces (FCS) in an aircraft. Dynamic limitation of the FCS is activated if a stall susceptibility condition is detected in the current aircraft environment. The real-time calibrated airspeed of the aircraft, real-time angle of attack (AOA) of the aircraft, and real-time sideslip angle (AOS) of the aircraft are obtained. The aircraft parameters may be obtained via estimation if the measured values are deemed unsuitable. The real-time local AOA and AOS of the FCS are calculated based on the obtained aircraft parameters. The inclination of each of the FCS relative to the critical values is dynamically limited according to the calculated real-time local AOA and AOS of the FCS. The aircraft may be an unmanned aerial vehicle (UAV) and/or a V-tail aircraft. The stall susceptibility condition may include icy conditions.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: February 17, 2015
    Assignee: Elbit Systems Ltd.
    Inventor: Dan Malta
  • Patent number: 8954206
    Abstract: The present disclosure relates to an unmanned aerial vehicle (UAV) able to harvest energy from updrafts and a method of enhancing operation of an unmanned aerial vehicle. The unmanned aerial vehicle with a gliding capability comprises a generator arranged to be driven by a rotor, and a battery, wherein the unmanned aerial vehicle can operate in an energy harvesting mode in which the motion of the unmanned aerial vehicle drives the rotor to rotate, the rotor drives the generator, and the generator charges the battery. In the energy harvesting mode regenerative braking of the generator reduces the forward speed of the unmanned aerial vehicle to generate electricity and prevent the unmanned aerial vehicle from flying above a predetermined altitude.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: February 10, 2015
    Assignee: The Boeing Company
    Inventor: Alfredo Criado
  • Patent number: 8909394
    Abstract: The invention relates to a method for decision support of a first combat aircraft (1) in a combat situation comprising the steps of: a) detecting (3) a second combat aircraft (2), wherein the second combat aircraft (2) is different from the first combat aircraft (1), b) analyzing (4) the second combat aircraft (2) to determine its type, its sensor capacity and its total weapons capacity, and c) recording (5) the sensor capacity and the total weapons capacity of the second combat aircraft (2) to determine a first geographic zone adapted for defining the detection limit of the second combat aircraft (2) and a second geographic zone adapted for defining a shoot-down limit of the second combat aircraft (2), respectively, wherein the first and the second geographic zone are adapted for decision support of the first combat aircraft (1) in the combat situation with the second combat aircraft (2).
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: December 9, 2014
    Assignee: SAAB AB
    Inventors: Anders Lundqvist, Vibeke Kensing
  • Patent number: 8892275
    Abstract: A method and device optimize the vertical trajectory of an aircraft in flight along a predetermined approach trajectory. The method and device include the use of a calculator, which is structured to predict a predicted stabilization altitude at which the aircraft will reach a setpoint approach speed as a function of the current aircraft parameter values, a theoretical vertical trajectory, and predetermined models of aerodynamic efficiency of the aircraft. A comparator is structured to determine absolute value differences between the predicted stabilization altitude and the setpoint stabilization altitude and to compare the differences against a predetermined altitude threshold.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: November 18, 2014
    Assignee: Airbus Operations SAS
    Inventors: Florian Constans, Mickael Lefebvre
  • Patent number: 8886366
    Abstract: Device and method to estimate the state of a moving vehicle overflying a certain terrain. The device comprises a camera oriented toward the terrain, an inertial measurement unit, a device for the processing of images and a “navigation filter”. This filter uses an innovative method to obtain state estimates of the vehicle. Unlike the conventional art, only robust and flexible expressions are used here, producing accurate state estimates, with no possibility of divergence, with no need for initial state estimates or high computational power. The method calculates parameters describing geometrical relationships among points of the trajectory and others on the terrain. These parameters are combined with estimates of the accelerations to obtain estimates of the velocity at a given time and of the gravity acceleration vector. By integrating these estimates, velocity and position profiles are obtained. The state is expressed in a reference system fixed with respect to the terrain.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: November 11, 2014
    Assignee: CGF S.p.A. Compagnia Generale per Lo Spazio
    Inventor: Igor Vukman
  • Patent number: 8880339
    Abstract: A schematic display for presenting vertical navigation (VNAV) data is disclosed. A planned route such as a flight plan is divided into a series of VNAV legs, and only a VNAV schematic that corresponds to the active VNAV leg is displayed. The VNAV schematic in accordance with the present disclosure is a profile-view schematic for the active VNAV leg, providing a visual representation indicating the locations of the upcoming Top of Climb (TOC) or Top of Descent (TOD). Additional VNAV data may also be presented to provide content context. Since the schematic display in accordance with the present disclosure only displays VNAV data relevant to the active VNAV leg at a given time, the complexities associated with displaying the VNAV schematic is reduced, making the VNAV data easy to read and understand.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: November 4, 2014
    Assignee: Rockwell Collins Inc.
    Inventors: Seth A. Cooper, David A. Gribble, David L. Leedom, Geoffrey A. Shapiro, Daniel E. Russell, James E. Winfield
  • Patent number: 8849478
    Abstract: An aircraft piloting assistance method and system including determining at least one flyable slope with which the aircraft is assumed to be able to fly, based on a value of at least one flight parameter including the weight of the aircraft. The step for determining said slope or slopes with which the aircraft is able to fly, called flyable slopes is performed by a computer, and presenting the flyable slope to a decision-maker.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: September 30, 2014
    Assignee: Thales
    Inventors: Francois Coulmeau, Jerome Sacle, Lionel Verot
  • Patent number: 8831797
    Abstract: A wheel loader includes a vehicle body, a work implement, a link mechanism and a control section. The work implement has a boom a work tool. The link mechanism is configured and arranged to change a relative angle of the work tool with respect to the boom when the boom is rotated upward, such that an amount of variation of an angle of the work tool with respect to a horizontal direction is less than an amount of variation of an angle of the work tool with respect to the horizontal direction when the boom is rotated upward while the work tool is at a fixed relative angle with respect to the boom. The control section is configured to execute an auto tilt control that causes the work tool to rotate upward when the boom is rotated upward within an angular range below the horizontal direction during excavation.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: September 9, 2014
    Assignee: Komatsu Ltd.
    Inventors: Atsushi Shirao, Masanori Ikari
  • Patent number: 8831928
    Abstract: Embodiments of the present invention provide a system and method for providing a translation service. The method comprises providing a translation interface accessible via a network. The translation interface receives specialized data associated with a domain from a member. A text string written in a source language is received from the member via the translation interface. A domain-based translation engine is selected. The domain-based translation engine may be associated with a source language, a target language, and a domain. The text string is translated into the target language using, at least in part, the selected domain-based translation engine. The translated text string is transmitted to the member via the Internet. In some embodiments, a translation memory is generated based on the specialized data.
    Type: Grant
    Filed: April 4, 2007
    Date of Patent: September 9, 2014
    Assignee: Language Weaver, Inc.
    Inventors: Daniel Marcu, William Wong, Felix Lung
  • Patent number: 8825234
    Abstract: A method and apparatus for managing a touch screen system. Data generated by an acceleration detector about acceleration of the touch screen system is received. The acceleration detector is located within the touch screen system. An action is initiated by an input manager when the acceleration of the touch screen system reduces usability of the touch screen system.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: September 2, 2014
    Assignee: The Boeing Company
    Inventors: Jeffrey L. Williams, Susan Anne Foster, Jason W. Clark, Samantha Ann Schwartz, Aaron Daniel Pilcher
  • Patent number: 8818576
    Abstract: The different advantageous embodiments provide a system for generating trajectory predictions for a flight comprising a flight object manager and a trajectory predictor. The flight object manager is configured to generate flight information using a number of flight plans, a number of flight schedules, and flight status information. The trajectory predictor is configured to receive flight information from the flight object manager and use the flight information to generate the trajectory predictions.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: August 26, 2014
    Assignee: The Boeing Company
    Inventors: Christie Marie Maldonado, Ferdinando Dijkstra, Robert W. Mead, Suzanne Elise Meador, Gregory T. Saccone
  • Patent number: 8818577
    Abstract: A device includes means for generating and applying to an aircraft protecting orders avoiding a flight with an excessive descent rate. More specifically, the device includes components configured to perform a series of operations including measuring the current vertical speed and the current height of the aircraft and comparing these flight parameters with a safety envelope defining couples of vertical speed and height that are indicative of an excessive descent rate. If the current vertical speed and height are located in the safety envelope, a protection is triggered by generating protecting orders to remove the aircraft from the safety envelope and applying those protecting orders to control surfaces of the aircraft.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: August 26, 2014
    Assignee: Airbus Operations (SAS)
    Inventors: Pascale Louise, Emmanuel Cortet, Erwin Grandperret
  • Publication number: 20140236400
    Abstract: The present invention discloses a laser landing altimeter for precision aircraft landing aid. Its measurement unit measures distance using a modulated laser beam with centimeter accuracy. Its processing unit predicts the future altitude based on a realistic landing altitude model and determines the landing maneuver time (the time to initiate a landing maneuver).
    Type: Application
    Filed: July 26, 2013
    Publication date: August 21, 2014
    Applicants: ChengDu HaiCun IP Technology LLC
    Inventor: Guobiao ZHANG
  • Patent number: 8798814
    Abstract: A method and apparatus for managing a flight of a rotorcraft. Parameters for the flight of the rotorcraft are identified. A number of regions, above a terrain, to be avoided by the rotorcraft during the flight of the rotorcraft over the terrain are identified using the parameters for the flight of the rotorcraft. Information about the number of regions is displayed on a display device during the flight of the rotorcraft.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: August 5, 2014
    Assignee: The Boeing Company
    Inventors: William Foulke Spencer, V, Dan M. Wells
  • Patent number: 8793040
    Abstract: The Climb-Optimized Takeoff System is an aircraft functionality aimed at improving the takeoff performance. The improvement is obtained by allowing the airplane to rotate to an optimized pitch attitude at and after VR, while ensuring that the minimum required takeoff climb gradients and the geometric limitations of the airplane are being respected. The optimum takeoff performance is obtained by granting that the airplane pitch attitude, instead of being limited by a single takeoff constraint (such as a given pitch to avoid tail strike) is being tracked to its instantaneous, most constraining limit during the air transition phase (d2).
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: July 29, 2014
    Assignee: Embraer S.A.
    Inventors: Patrice London Guedes, Ricardo Wallach, Guilherme Maximiliano Verhalen, Salvador Jorge da Cunha Ronconi
  • Patent number: 8781653
    Abstract: The present invention provides a method of modifying the pitch attitude of an aircraft during landing, comprising: commanding the flaps to move to a landing setting; providing a current value for a flight condition parameter; providing a current flaps setting; comparing said current value to at least one threshold value; if said current value exceeds said threshold, determining a new flaps setting capable of producing an improvement in at least one of a selected aft body contact margin and a selected nose gear contact margin for the aircraft; and adjusting the flaps to said new flaps setting.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: July 15, 2014
    Assignee: The Boeing Company
    Inventors: Robert E. Buchholz, Monte R. Evans, Jonathan P. Lee, Timothy G. Overton, Adam M. Thoreen
  • Patent number: 8781654
    Abstract: The device includes elements of a processing unit which determine a limit trajectory representing a flight trajectory which is compatible with the aircraft performance during the approach and which shows the limits for the flight of the aircraft. For example, a vertical profile and a horizontal trajectory are determined, with the horizontal trajectory being non-linear so that the energy of the aircraft can be sufficiently dissipated before final approach along an approach axis, while also avoiding obstacles. Thus, a flight trajectory is determined even when the aircraft has deviated from a flight plan and approach axis.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: July 15, 2014
    Assignee: Airbus Operations (SAS)
    Inventors: Andrea Giovannini, Thomas Pastre
  • Patent number: 8774986
    Abstract: The present invention is directed to providing takeoff rotation guidance. A takeoff rotation guidance indicator, including an aircraft reference symbol and a guidance cue, is displayed on a HUD (Head-up Display) of a HGS (Head-up Guidance System). The guidance cue is positioned in relation to the aircraft reference symbol based on a takeoff rotation pitch guidance and a takeoff rotation roll guidance. Thus, pitch and roll guidance information is simply communicated to the pilot of an aircraft. The takeoff rotation pitch guidance and the takeoff rotation roll guidance are calculated differently at different points during takeoff. In an alternative embodiment, the takeoff rotation guidance indicator includes a slip-skid symbol. The slip-skid symbol is positioned relative to aircraft reference symbol, but is displaced by the lateral acceleration of the aircraft. Thus, slip/skid guidance information is simply communicated to the pilot of an aircraft.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: July 8, 2014
    Assignee: Rockwell Collins, Inc
    Inventors: Ricky J. Theriault, Shuncan Chen
  • Patent number: 8762990
    Abstract: A method and apparatus are provided for operating a network data processing system on an aircraft. A number of operations are performed in a virtual machine on the aircraft. The virtual machine runs on a processor unit in the network data processing system on the aircraft to create a simulated computer environment. The virtual machine accesses resources of the processor unit for performing the number of operations using a host operating system on the processor unit. A current state of the aircraft is identified by the network data processing system. Running of the virtual machine is managed based on the current state of the aircraft and a policy for managing the virtual machine for different states of the aircraft.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: June 24, 2014
    Assignee: The Boeing Company
    Inventor: Ian Gareth Angus
  • Patent number: 8751070
    Abstract: Disclosed is a method and system for aiding the piloting of an aircraft to climb to a safety altitude situated above an existing low-height flight trajectory comprised of a lateral trajectory and a vertical trajectory, in which the safety altitude is the altitude of the aircraft that avoids collision of the aircraft with surrounding terrain. The aircraft is guided along the existing lateral trajectory of the low-height flight trajectory in a horizontal plane; and the aircraft is brought to the safety altitude by subjecting the aircraft to a climb mode in a vertical plane, which causes the aircraft to climb according to a climb slope which is greater than or equal to a maximum slope according to the existing vertical trajectory of the low-height flight trajectory.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: June 10, 2014
    Assignee: Airbus Operations SAS
    Inventors: Fabien Silly, Pascale Louise-Babando, Vincent Markiton
  • Patent number: 8725321
    Abstract: A system and method for controlling an aircraft with flight control surfaces that are controlled both manually and by a computing device is disclosed. The present invention improves overall flight control operation by reducing the mechanical flight control surface components while providing sufficient back-up control capability in the event of either a mechanical or power-related failure. Through the present invention, natural feedback is provided to the operator from the mechanical flight control surface which operates independent of computer-aided flight control surfaces. Further, through the present invention, force input signals received from the pilot are filtered to improve the operation of the computer-aided flight control surfaces.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: May 13, 2014
    Assignee: Textron Innovations Inc.
    Inventors: Steven G. Hagerott, James L. Hammer, Philippe A. Ciholas, Mark W. Palmer
  • Patent number: 8725320
    Abstract: The different advantageous embodiments provide a system comprising a user interface and a computer. The user interface comprises a display. The computer is configured to display information about time and position of an aircraft in relation to a number of waypoints for a flight on the display. The information is displayed using a number of graphical display features.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: May 13, 2014
    Assignee: The Boeing Company
    Inventor: Karl Christian Pschierer
  • Patent number: 8718839
    Abstract: An automatic trim system and method is disclosed for automatically trimming a flight control surface of an aircraft. A force sensor measures a force applied by a pilot to a flight control system actuator. The length of time that the force is applied by the pilot is then timed by a timer. A trim system to reduce the applied force is included on the flight control surfaces. A processor determines if trim is required if a predetermined amount of time is exceeded based on the force sensor measurement. The processor can set the trim system to the trim required therein. An airspeed sensor is used to verify that the aircraft has sufficient speed for flight. A force sensor can be utilized to measure the input force being applied by the pilot. If a pilot input force is applied to the controls and the aircraft is in a steady state, a timer can be activated.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: May 6, 2014
    Assignee: Evolved Aircraft Systems, L.L.C.
    Inventors: Michael Louis Everett, Louis Jackson Everett, Mario Ruiz, Jr.
  • Patent number: 8712607
    Abstract: A method for velocity profile based approach to point control for an aircraft includes determining a distance from the aircraft to a target point; determining a velocity command based on the distance to the target point and a desired acceleration; and issuing the velocity command. A velocity profile based approach to point control module for an aircraft and a computer program product comprising a computer readable storage medium containing computer code that, when executed by a computer, implements a method for velocity profile based approach to point control are also provided.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: April 29, 2014
    Assignee: Sikorsky Aircraft Corporation
    Inventor: Anthony Litwinowicz
  • Patent number: 8711035
    Abstract: Apparatus and methods determine the rotational position of a spinning object. A satellite positioning system can be used to determine the spatial position of an object, which in turn can be used to guide the object. However, when the object is spinning, such as an artillery shell, then the rotational orientation should be known in order to properly actuate the control surfaces, such as fins, which will also be spinning.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: April 29, 2014
    Assignee: Interstate Electronics Corporation
    Inventors: Steven B. Alexander, Richard Redhead
  • Patent number: 8712606
    Abstract: A system and methods for configuring a direct lift control system of a vehicle are presented. A plurality of fly-by-wire control surfaces is provided, and fly-by-wire control surface deflection commands of the fly-by-wire control surfaces are scheduled. The fly-by-wire control surfaces are symmetrically actuated based on the fly-by-wire control surface deflection commands such that a fluid dynamic lift of the vehicle is modulated without using a short-period pitch control.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: April 29, 2014
    Assignee: The Boeing Company
    Inventor: Henry Llewellyn Beaufrere
  • Patent number: 8688363
    Abstract: A system is provided for controlling the speed of an aircraft during a deceleration segment between a first state associated with a first speed and a first time and a second state associated with a second speed and a second time. The system includes a navigation system configured to determine the first state; a guidance system configured to determine the second state; and an active deceleration system coupled to the navigation system and the guidance system and configured to construct the deceleration segment between the first state and the second state with at least one intermediate speed between the first speed and the second speed.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: April 1, 2014
    Assignee: Honeywell International Inc.
    Inventors: Jiri Svoboda, Mike Jackson, Michal Polansky, Erwan Paricaud
  • Patent number: 8682510
    Abstract: A method for determining the distance of an aircraft from an offset runway during a landing by offset approach, the offset runway being situated at a distance D from a main runway equipped with at least one elevation beacon, comprises at least the following steps: determining the height h at which the aircraft is situated, height determined with respect to a point T1 of the offset runway, height measured by a radioaltimeter with which the aircraft is equipped, determining the angle of elevation ? of the MLS mode by using the information of the elevation beacon provided by an elevation beacon with which said main runway is equipped, determining the value of the distance ? of the aircraft from the azimuth beacon (10) by using the following formula ? = ( h Tan ? ( ? ) - D ? ? 2 Cos ? ( ? ) ) 2 + h 2 , and, using said distance ? to obtain a point of location of the aircraft in an offset runway reference frame.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: March 25, 2014
    Assignee: Thales
    Inventor: Thierry Boulay
  • Patent number: 8676407
    Abstract: Novel diagnostic methods for performance of a launch vehicle are disclosed. A method may include computing energy for a pre-flight trajectory of a vehicle using angular momentum of the vehicle, and comparing a difference in energy between the energy for the pre-flight trajectory of the vehicle and energy for a flight trajectory of the vehicle.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: March 18, 2014
    Assignee: The Aerospace Corporation
    Inventor: Russell Paul Patera
  • Patent number: 8676405
    Abstract: A method of controlling the flight of a rotorcraft in a feed-forward/feedback architecture includes utilizing an aircraft plant model to control the rotorcraft performance; determining when an external load is coupled to the rotorcraft; and modifying an inverse plant when the external load is present.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: March 18, 2014
    Assignee: Sikorsky Aircraft Corporation
    Inventors: Stephen Kubik, Vineet Sahasrabudhe, Alex Faynberg
  • Patent number: 8670881
    Abstract: A flight management system is provided for generating a variable thrust cutback during aircraft departure. The flight management system includes memory storing a sound exposure level limit for a navigation flight and storing expected sound exposure levels for an aircraft, and one or more inputs for receiving sensed aircraft variables including altitude and airspeed. The system also includes a processor for processing the sensed altitude and airspeed and stored sound exposure levels. The processor further computes an engine thrust value that complies with the sound exposure level limit based on the altitude, airspeed and the sound exposure levels for controlling aircraft throttle during departure.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: March 11, 2014
    Assignee: General Electric Company
    Inventor: Michael K. DeJonge
  • Patent number: 8630754
    Abstract: The present invention relates to a method for replacing legs in an air navigation procedure described as a series of legs, the legs forming part of an initial family of legs. The method includes: a step of determining a restricted family of legs included in the initial family of legs, so that each leg not belonging to the restricted family corresponds to a combination of legs belonging to the restricted family: The method also includes: a step of replacing in the navigation procedure the legs not belonging to the restricted family with combinations of legs belonging to the restricted family.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: January 14, 2014
    Assignee: Thales
    Inventors: François Coulmeau, François Hoofd
  • Patent number: 8612068
    Abstract: Apparatus and method is provided for propagating the attitude of a vehicle. A slew rate is computed based on angular rotation increments associated with a time interval. An incremental update is computed for the associated time interval based on an angular rate and the slew rate. An attitude of the vehicle is propagated based on the computed attitude increment and an initial attitude at the start of propagation.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: December 17, 2013
    Assignee: The Aerospace Corporation
    Inventor: Russell P Patera
  • Patent number: 8612070
    Abstract: A device for aiding the deck-landing of an aircraft, the aircraft being controlled remotely from a mobile station, such as a ship, includes means for receiving data from the aircraft, notably attitudes of the aircraft, the aircraft hovering ready to land on deck, the deck-landing decision having to be taken under certain conditions that must all be met, the device including a computer making it possible to deliver temporal indicators indicating that all the conditions are met. The device includes a temporal gauge including a temporal graduation indicating mobile graphical zones representing the periods during which all the conditions are met for authorizing a deck-landing.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: December 17, 2013
    Assignee: Thales
    Inventors: Rémi Geoffroy, Patrick Garrec, Yannick Thiry, Patrick Cazaux
  • Patent number: 8566652
    Abstract: A method and system for command queuing in disk drives may improve performance by queuing multiple commands and sequentially executing them automatically without firmware intervention. The method may use a number of queues, e.g., a staging queue for commands to be executed, an execution queue for commands currently being executed, or a holding queue for commands which may have been executed but have not received a status report from a host.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: October 22, 2013
    Assignee: Marvell International Ltd.
    Inventors: Huy Tu Nguyen, William C Wong, Kha Nguyen, Yehua Yang
  • Patent number: 8565942
    Abstract: According to the invention, during take-off, the aircraft (AC) is given the tail strike attitude (?ts) and the ailerons (6G, 6D) are deflected fully downwards.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: October 22, 2013
    Assignee: Airbus Operations (SAS)
    Inventor: Frédéric Sauvinet