Signal Frequency Or Phase Correction Patents (Class 702/106)
  • Patent number: 10309807
    Abstract: The present invention relates to resolver calibration for permanent magnet synchronous motor. According to embodiments of the present invention, the high frequency rotating voltage vector is generated and injected into a resolver associated with a permanent magnet synchronous motor (PMSM). Due to the saliency effect, when a reference point is detected in a phase current, the rotor position of the PMSM is known. At this point, by acquiring the resolver position, the resolver offset may be accurately determined for calibration. According to embodiments of the present invention, the resolver offset may be accurately determined and calibrated without increasing device dimension and cost. Respective methods, apparatuses, systems, and computer products are disclosed.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: June 4, 2019
    Assignee: Infineon Technologies AG
    Inventor: Wei Zhe Qian
  • Patent number: 10305499
    Abstract: A frequency synthesizer includes: an oscillating section that generates a first signal; a frequency ratio measuring section that measures a frequency ratio of the first signal and a second signal by using the first signal and the second signal; a comparing section that compares the frequency ratio, which is measured by the frequency measuring section, with a target value of a frequency ratio; and a filter that is disposed on a preceding stage of the comparing section. A frequency of the first signal of the oscillating section is adjusted on the basis of a comparison result of the comparing section.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: May 28, 2019
    Assignee: Seiko Epson Corporation
    Inventors: Masayoshi Todorokihara, Aritsugu Yajima, Tetsuro Matsumoto
  • Patent number: 10269443
    Abstract: A memory test method is provided that includes the steps outlined below. The memory controller performs data-writing and data-reading on a memory module. When a quantity of read data is incorrect, a data-strobe enable signal is calibrated to perform data reading. When there is one of less than one piece of negative edge data reading content, a sampling unit is triggered. When the quantity of read data increases, the condition that the data-strobe signal is not received is determined. When the quantity does not increase, the memory controller is inspected. When there is more than one piece of read data, the burst mode setting of the memory module is inspected. When the quantity is correct and the content is not correct, a transmission circuit setting and the sampling unit are inspected. When the quantity and the content are correct, the test flow is terminated.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: April 23, 2019
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Chun-Chi Yu, Chih-Wei Chang, Shen-Kuo Huang
  • Patent number: 10234483
    Abstract: A frequency synthesizer 11a outputs a periodic signal r(t) at a frequency detuned by a predetermined frequency ?f [Hz] from a frequency of 1/integer of a frequency of a reference clock signal f0 synchronized with a signal to be measured ws. A first sampler unit 12 samples the signal to be measured ws at a timing of the trigger signal CLK. A second sampler unit 13a samples an I signal I(t) at the timing of the trigger signal CLK. A phase shifter 13b outputs a Q signal Q(t) obtained by shifting a phase of the reference clock signal f0 by 90°. A third sampler unit 13c samples the Q signal at the timing of the trigger signal CLK. A correction value calculation unit 13d calculates a correction value ?t(n) based on sampling data I(n) and Q(n) and a set value t(n) of a sampling time.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: March 19, 2019
    Assignee: ANRITSU CORPORATION
    Inventors: Ken Mochizuki, Takashi Murakami, Seiya Suzuki
  • Patent number: 10175323
    Abstract: A method for adapting activation parameters used to generate a pulse sequence when activating a magnetic resonance system is provided. The method includes determining stimulation values for the pulse sequence based on predefined activation parameters. The stimulation values represent a stimulation exposure of a patient. Test regions that exhibit stimulation maxima are identified in the pulse sequence, and the identified test regions are tested with respect to compliance with a predefined stimulation limit value.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: January 8, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Daniel Niederlöhner, Dominik Paul, Jörg Roland
  • Patent number: 9910129
    Abstract: A method of calibrating analog transceiver delay includes generating a signal in a portion of a first device to arrive at a first known time at analog transmit circuitry of the first device, transmitting the signal from the analog transmit circuitry of the first device, receiving the transmitted signal, and deriving transceiver delay from the received signal. The transmitting may be performed via a closed loop to analog receiver circuitry of the first device, detecting the signal at a second known time at an output of the analog receiver circuitry of the first device. The transmitting also may be performed wirelessly to receiver circuitry of a second device placed at a predetermined distance from the first device, detecting the received signal at a second known time at the receiver circuitry of the second device. Transceiver delay can be determined from transit time and apportioned between transmit delay and receive delay.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: March 6, 2018
    Assignee: Marvell International Ltd.
    Inventors: Sudhir Srinivasa, Hongyuan Zhang, Sergey Timofeev, Hemabh Shekhar, Atul Salhotra
  • Patent number: 9746525
    Abstract: A battery system monitoring device that monitors a battery system provided with a cell group having a plurality of battery cells connected in series with each other, including: a first control device that monitors and controls states of the plurality of battery cells of the cell group; a second control device that controls the first control device; a temperature detection unit that measures a temperature in the vicinity of the first control device; and a plurality of voltage detection lines, for measuring an inter-terminal voltage of the battery cell, which connect each of a positive electrode and a negative electrode of the battery cell and the first control device. The first control device includes a balancing switch, which performs balancing discharge of the battery cell for each of the battery cells.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: August 29, 2017
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Akihiko Kudo, Mutsumi Kikuchi, Tomonori Kanai, Tatsumi Yamauchi, Akihiro Machida
  • Patent number: 9737265
    Abstract: A patient monitoring device and method that determines and monitors at least one patient parameter is provided. A configuration processor generates configuration information in response to a first input signal and an adaptive notch filter receives a second input signal. The second input signal includes a signal of interest and an interference signal in a predetermined frequency range. The adaptive notch filter automatically estimates the interference signal within the second input signal based on a filter parameter and removes the estimated interference signal from the second input signal to generate a target signal. A step processor is electrically coupled between the configuration processor and the adaptive notch filter and sets a value of the filter parameter based on the configuration information, wherein the adaptive notch filter uses the filter parameter to reduce a ringing artifact on the target signal below a threshold level.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: August 22, 2017
    Assignee: Drägerwerk AG & Co. KGaA
    Inventors: Ling Zheng, Yu Chen
  • Patent number: 9678103
    Abstract: An atomic force microscope (AFM) comprises a physical system and a controller comprising a plurality of digital filters and configured to control the physical system. The AFM is tuned by performing automatic loop shaping on a loop response defined by a frequency response of the physical system and a frequency response of the controller, and adjusting a gain of the controller according to a peak in a magnitude of the loop response.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: June 13, 2017
    Assignee: Keysight Technologies, Inc.
    Inventors: Daniel Y Abramovitch, Christopher Ryan Moon
  • Patent number: 9548882
    Abstract: Various embodiments are described of devices and associated methods for processing a signal using a plurality of vector signal analyzers (VSAs). An input signal may be split and provided to a plurality of VSAs, each of which may process a respective frequency band of the signal, where the respective frequency bands have regions of overlap. Each VSA may adjust the gain and phase of its respective signal such that continuity of phase and magnitude is preserved through the regions of overlap. The correction of gain and phase may be accomplished by a complex multiply with a complex calibration constant. A complex calibration constant may be determined for each VSA by comparing the gain and phase of one or more calibration tones generated with each region of overlap, as measured by each of the VSAs.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: January 17, 2017
    Assignee: National Instruments Corporation
    Inventors: Stephen L. Dark, Daniel J. Baker, Johnathan R. W. Ammerman
  • Patent number: 9455854
    Abstract: The present invention provides a phase-locked loop frequency calibration method and system, where the method includes: performing, within a counting time TCNT[k], frequency counting on a frequency signal that is output in a current working subband by a voltage-controlled oscillator, to obtain a frequency count value FCNT[k], where the current working subband corresponds to a binary value of a current node in a binary search tree; and calculating an error between FCNT[k] and a target frequency count value FCNTTARGET[k], comparing an absolute value of the error with a predetermined value, dynamically adjusting TCNT[k] in a value range of TCNT[k] according to a comparison result, and determining, in combination with a binary search algorithm, a target subband in which the voltage-controlled oscillator works. Such a dynamic calibration method can effectively shorten the calibration time on the whole.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: September 27, 2016
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Peng Gao, Nianyong Zhu, Jian Liang
  • Patent number: 9311513
    Abstract: Methods and systems for tracking heavy machine teeth. One system includes a heavy machine tooth configured to be mounted on a bucket of a heavy machine, an active RFID tag coupled to the heavy machine tooth to move with the tooth, and an RFID reader configured to read data from the RFID tag, The RFID reader is further configured to provide an indication regarding the location of the tooth when the tooth separates from the bucket based on the data read from the RFID tag and provide diagnostic information regarding the heavy machine tooth based on the data read from the RFID tag.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: April 12, 2016
    Assignee: Harnischfeger Technologies, Inc.
    Inventor: Lee Miller
  • Patent number: 9306782
    Abstract: Apparatus and method for quadrature error correction for narrowband or tone signal are disclosed. An analog circuit receives a modulated signal and processes in-phase signal and quadrature-phase signal in in-phase and quadrature-phase signal paths respectively. A digital signal processor performs discrete Fourier transform on each of the in-phase and quadrature-phase signals and determines statistical parameters responsive to mismatch characteristics to estimate quadrature error correction.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: April 5, 2016
    Assignee: Analog Devices, Inc.
    Inventors: Wei An, Yosef Stein
  • Patent number: 9146292
    Abstract: A method and a control sequence determination device for determining a magnetic resonance system control sequence is disclosed. The magnetic resonance system control sequence includes a multi-channel pulse with a plurality of individual high-frequency (HF) pulses to be transmitted in parallel by the magnetic resonance system via different independent high-frequency transmission channels. In one embodiment, the method includes calculating a multi-channel pulse based on an MR excitation quality parameter in an HF pulse optimization method. An HF pulse includes a plurality of successive HF partial pulses in discrete time steps. The method further includes considering, in the course of the HF pulse optimization method, a transmission bandwidth of an HF partial pulse to be transmitted during a discrete time step. A method for operating a magnetic resonance system and a magnetic resonance system that includes the control sequence determination device are disclosed.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: September 29, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventor: Rene Gumbrecht
  • Patent number: 9065454
    Abstract: A method for self-calibrating a phase locked loop (PLL) includes setting a frequency range setting of a voltage controlled oscillator (VCO) to a first digital value for a first output frequency. A first difference is measured between a reference frequency and a feedback frequency resulting from the first output frequency. The frequency range setting is set to an inverted digital value of the first digital value for a second output frequency. A second difference is measured between the reference frequency and the feedback frequency resulting from the second output frequency. A value of the frequency range setting is selected based on the first difference and the second difference.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: June 23, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Yu-Tso Lin
  • Patent number: 9036884
    Abstract: A magnetic resonance system includes a magnetic resonance scanner having a multi-channel transmit coil or coil system and a magnetic resonance receive element; and a digital processor configured to perform an imaging process. The image process includes shimming the multi-channel transmit coil or coil system, acquiring a coil sensitivity map for the magnetic resonance receive element using the multi-channel transmit coil or coil system, acquiring a magnetic resonance image using the magnetic resonance receive element and the shimmed multi-channel transmit coil or coil system, and performing an intensity level correction on the acquired magnetic resonance image using the coil sensitivity map to generate a corrected magnetic resonance image.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: May 19, 2015
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Paul R. Harvey, Thomas H. Rozijn, Gerrit H. Ijperen, Willem M. Prins, Wilhelmus R. M. Mens, Franciscus J. M. Benschop
  • Patent number: 9021293
    Abstract: A method for quickly calibrating a memory interface circuit from time to time in conjunction with operation of a functional circuit is described. The method uses controlling the memory interface circuit with respect to read data capture for byte lanes, including controlling CAS latency compensation for the byte lanes. In the method control settings for controlling CAS latency compensation are determined and set according to a dynamic calibration procedure performed from time to time in conjunction with functional operation of a circuit system containing one or more memory devices connected to the memory interface circuit. In the method, determining and setting the control settings for controlling CAS latency compensation is performed independently and parallely in each of the byte lanes.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: April 28, 2015
    Assignee: Uniquify, Incorporated
    Inventors: Jung Lee, Mahesh Goplan
  • Publication number: 20150094978
    Abstract: An optical coherence tomography device includes an SS-OCT optical system which includes a wavelength swept optical source which sweeps an emission wavelength, an optical splitter which splits an interference signal light caused by interference between a measurement light and a reference light into a first interference signal light and a second interference signal light having a phase difference from the first interference signal light, a balance detector which includes a first detector configured to detect the first interference signal light and a second detector configured to detect the second interference signal light, and which processes detection signals from the first and second detectors to perform balance detection, and an optical member which is disposed between the optical splitter and one of the first detector and the second detector to generate a fixed pattern noise by one of the first interference signal light and the second interference signal light.
    Type: Application
    Filed: September 29, 2014
    Publication date: April 2, 2015
    Applicant: NIDEK CO., LTD.
    Inventors: Masaaki HANEBUCHI, Yasuhiro FURUUCHI
  • Patent number: 8995496
    Abstract: A method to estimate parameters of a system to spread a spectrum of a first periodic signal according to a modulation period. An embodiment comprises sampling the first signal using a second periodic signal, determining based on the sampling result each occurrence where the first and second signals are synchronous, incrementing a first counter at each sampling, the first counter being reset at each said occurrence, storing at each said occurrence the last value of the first counter before the resetting, providing a third periodic signal at a first level when said last value is greater than a threshold and at a second level when said last value is smaller than the threshold, and determining the modulation period based on the period of the third signal.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: March 31, 2015
    Assignee: STMicroelectronics SAS
    Inventor: Hervé Le-Gall
  • Patent number: 8990607
    Abstract: A memory interface circuit for read operations is described. The circuit includes one or more controller circuits, one or more read data delay circuits for providing CAS latency compensation for byte lanes. In the system, control settings for the read data delay circuits for providing CAS latency compensation are determined and set using controller circuits according to a dynamic calibration procedure performed from time to time. In the system, determining and setting the control settings for the read data delay circuits for providing CAS latency compensation is performed independently and parallely in each of a plurality of byte lanes.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: March 24, 2015
    Assignee: Uniquify, Inc.
    Inventors: Jung Lee, Mahesh Goplan
  • Patent number: 8972216
    Abstract: Methods and apparatus for a power regulator according to various aspects of the present invention may comprise a sensor adapted to generate a measurement of a voltage or a current. A memory may store a correction parameter that corresponds to the measurement, and a correction system may be adapted to adjust the measurement according to the correction parameter.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: March 3, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Benjamim Tang, Chun-Yen Lin, Rohan Samsi, Jinghong Guo, Tim M. Ng, Richard Pierson
  • Patent number: 8942945
    Abstract: A computer is programmed to acquire calibration data from a calibration scan, the calibration data configured to characterize high order eddy current (HOEC) generated magnetic field error of an imaging system. The computer is also programmed to process the calibration data to generate a plurality of basis coefficients and a plurality of time constants and to calculate a plurality of basis correction coefficients based on the plurality of basis coefficients, the plurality of time constants, and gradient waveforms in a given pulse sequence. The computer is further programmed to execute a diffusion-weighted imaging scan that comprises application of a DW-EPI pulse sequence to acquire MR data from an imaging subject and reconstruction of an image based on the acquired MR data. The computer is also programmed to apply HOEC-generated magnetic field error correction during application of the DW-EPI pulse sequence configured to reduce HOEC-induced distortion in the reconstructed image.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: January 27, 2015
    Assignee: General Electric Company
    Inventors: Dan Xu, Joseph K. Maier, Kevin F. King, Bruce David Collick
  • Patent number: 8924765
    Abstract: A method and apparatus for generating an accurate clock generator timing source, comprising minimal jitter, excellent resolution, and an extended calibration range, for use, for example, in a system requiring accurate low power operation. In particular, a clock generation system is adapted to receive a generated clock input, a reference clock input, and an adjustment parameter comprising a sign bit and p data bits. The calibration logic system is further adapted to output and modify a calibrated clock, using distributed pulse modification. The adjustment parameter may be automatically generated.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: December 30, 2014
    Assignee: Ambiq Micro, Inc.
    Inventor: Stephen Sheafor
  • Patent number: 8903672
    Abstract: Calibration equipment for calibrating multiple test stations in a test system is provided. Each test station may include a test unit, a test fixture, and a radio-frequency (RF) cable that connects the test unit to the test fixture. A control test setup may be used to calibrate uplink and downlink characteristics associated with each test station (e.g., to determine path loss associated with the RF cable and test fixture and variations associated with the test unit). The control test setup may calibrate each test station at desired frequencies to generate a test station error (offset) table. The test unit of each test station may be individually configured based on the test station error table so that offset is minimized among the different stations and so that the test stations may reliably measure hundreds or thousands of wireless electronic devices during product testing.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: December 2, 2014
    Assignee: Apple Inc.
    Inventors: Justin Gregg, Tomoki Takeya, Adil Syed
  • Patent number: 8887120
    Abstract: An on-chip timing slack monitor that measures timing slack at the end of a critical path includes a master-slave flip-flop having a tap on the Q output of the master and a logic module coupled to the flip-flop for producing a pulse whose width is a function of the slack. A pulse width shrinking delay line removes glitches on the flip-flop output and, in combination with a digital integrator and counter, also performs a time to digital conversion operation for determining a value for timing path slack. The determined value is used by a decision module for yield analysis. The monitor can discriminate a glitch from a slack pulse at the flip-flop output for any width of glitch up to one-half of a clock cycle.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: November 11, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Chetan Verma, Amit Kumar Dey, Amit Roy, Vijay Tayal
  • Patent number: 8874397
    Abstract: A user obtains a set of modules, inserts them into slots of a chassis, and interconnects the modules to form a modular instrument. A signal path extends through the modules. To support calibration of the signal path, a first of the modules (or the chassis or a calibration module) includes a calibration signal generator. A computer directs the first module to apply the calibration signal from the generator to the signal path, and measures the power (or amplitude) of the output of the signal path. The computer reads a factory-measured value A of the calibration signal amplitude from a memory of the first module (or the chassis or the calibration module). The value A and the measured output power of the signal path are used to determine a gain of the signal path. The system compensates for that gain when the signal path is used to measure live operational signals.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: October 28, 2014
    Assignee: National Instruments Corporation
    Inventors: Tamir E. Moran, Jatinderjit S. Bains, Daniel S. Wertz
  • Patent number: 8849602
    Abstract: A method of calibrating a reconstructed signal from a plurality of sub-signals is provided. The method includes injecting a calibration signal having multiple tones into a received input signal; dividing the input signal into a first and second sub-signal, including an overlapping frequency band; performing a first frequency translation by converting frequency components of the second sub-signal; digitizing the first sub-signal and the frequency converted second sub-signal; performing a second frequency translation to reverse the first frequency translation to obtain a reconstructed second sub-signal; and quantifying impairments to the digital first sub-signal and reconstructed second sub-signal caused by differences in magnitude and phase of frequency components within the overlapping frequency band.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: September 30, 2014
    Assignee: Agilent Technologies, Inc.
    Inventors: Ken A. Nishimura, Kenneth Rush
  • Patent number: 8843778
    Abstract: A method for calibrating a DDR memory controller is described. The method provides an optimum delay for a core clock delay element to produce an optimum capture clock signal. The method issues a sequence of read commands so that a delayed version of a dqs signal toggles continuously. The method delays a core clock signal to sample the delayed dqs signal at different delay increments until a 1 to 0 transition is detected on the delayed dqs signal. This core clock delay is recorded as “A.” The method delays the core clock signal to sample the core clock signal at different delay increments until a 0 to 1 transition is detected on the core clock signal. This core clock delay is recorded as “B.” The optimum delay value is computed from the A and B delay values.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: September 23, 2014
    Assignee: Uniquify, Incorporated
    Inventors: Jung Lee, Mahesh Goplan
  • Patent number: 8825431
    Abstract: A fluorescence intensity calculating apparatus, includes: a measuring section configured to receive fluorescences generated from plural fluorescent dyes excited by radiating a light to a microparticle multiply-labeled with the plural fluorescent dyes having fluorescence wavelength bands overlapping one another by photodetectors which correspond to different received light wavelength bands, respectively, and whose number is larger than the number of fluorescent dyes, and obtain measured spectra by collecting detected values from the photodetectors; and a calculating section configured to approximate the measured spectra based on a linear sum of single-dyeing spectra obtained from the microparticle individually labeled with the fluorescent dyes, thereby calculating intensities of the fluorescences generated from the fluorescent dyes, respectively.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: September 2, 2014
    Assignee: Sony Corporation
    Inventors: Yasunobu Kato, Yoshitsugu Sakai
  • Patent number: 8804378
    Abstract: A method of optimizing a gain adjustment value Kadj for a digital controller in an isolated switched mode power supply. The power supply includes an opto-coupler having a current transfer ratio (CTRX) within a range defined by a minimum current transfer ratio (CTRMIN) and a maximum current transfer ratio (CTRMAX). The method includes determining the CTRX of the opto-coupler, determining an optimal gain adjustment value KadjX based on the determined CTRX of the opto-coupler, and storing the optimal gain adjustment value KadjX in the digital controller. The method can be performed by the digital controller or by a programming device external to the power supply.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: August 12, 2014
    Assignee: Astec International Limited
    Inventors: Antonio Remetio Soleno, Jonathan Ross Bernardo Fauni
  • Patent number: 8798953
    Abstract: A calibration method for radio frequency scattering parameter measurement applying three calibrators and measurement structure thereof, comprising a transmission line segment calibrator, an offset series device calibrator, an offset shunt device calibrator and a tested object measuring instrument, wherein the length of the transmission lines for the offset series device calibrator and the offset shunt device calibrator is equal to the one of the transmission line for the tested object measuring instrument such that the offset series device calibrator, the offset shunt device calibrator and the tested object measuring instrument have the identical error boxes, and after having acquired the scattering parameter matrix of the error box by means of the calibration method, it is possible to connect the tested electronic device onto the tested object measuring instrument and perform operations on uncorrected measurement data thereof thereby obtaining the radio frequency scattering parameter of the tested object.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: August 5, 2014
    Assignee: Yuan Ze University
    Inventor: Chien-Chang Huang
  • Patent number: 8788234
    Abstract: In a multi-channel oscilloscope a method of calibrating interleaved digitizer channels initially calibrates each digitizer channel to produce a bandwidth enhanced filter for each digitizer channel to match the respective channel frequency and phase characteristics. The oscilloscope is then configured for interleaved operation whereby an input signal is applied to at least two digitizers via a switch through a common preamplifier to produce a reference digitizer channel and an interleaved digitizer channel where the bandwidth enhanced filter for the interleaved digitizer channel is now not correct. Fast Fourier transforms are performed on the data from the reference digitizer channel and the interleaved digitizer channel, from which are derived a match filter for the interleaved digitizer channel so the interleaved digitizer channel and reference digitizer channel are matched in phase and magnitude at all frequencies.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: July 22, 2014
    Assignee: Tektronix, Inc.
    Inventor: John J. Pickerd
  • Patent number: 8781777
    Abstract: A bridge circuit includes a plurality of half-bridges formed of sensor elements, which change impedance in accordance with a rotation angle of a detection target. A control circuit acquires output signals of the half-bridges and calculates a phase correction value for correcting a phase deviation. A memory circuit stores the phase correction value. The control circuit corrects a pre-correction rotation angle by the phase correction value. Since the pre-correction rotation angle is corrected by the phase correction value, a rotation angle of the detection target is detected with high accuracy even if the sensor elements are assembled with some positional deviations.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: July 15, 2014
    Assignee: Denso Corporation
    Inventors: Takafumi Satou, Nobuhiko Uryu
  • Patent number: 8781759
    Abstract: Meter electronics (20) for processing sensor signals for a multi-phase flow material in a flowmeter (5) is provided according to an embodiment of the invention. The meter electronics (20) includes an interface (201) for receiving first and second sensor signals (210 and 211) for the multi-phase flow material and a processing system (203).
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: July 15, 2014
    Assignee: Micro Motion, Inc.
    Inventors: Mark James Bell, Craig B. McAnally
  • Patent number: 8744020
    Abstract: A frequency offset of a received signal comprising a number of subsequently received data symbols is estimated. A first estimate is determined from a calculated change in phase of the received signal between two received symbols having a first time distance between them. At least one further estimate is determined from a calculated change in phase of the received signal between two received symbols having a different time distance. A frequency periodicity is determined for each estimate from the distance between the two received symbols from which the estimate was determined. A set of integer values is determined for each estimate so that frequency values calculated for each estimate as the frequency periodicity multiplied by the integer value added to the estimate are at least approximately equal to each other, and a corrected estimate of the frequency offset is determined from the integer values.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: June 3, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Niklas Andgart, Fredrik Nordström
  • Patent number: 8742791
    Abstract: An embodiment of a technique to determine an expected occurrence of a signal is disclosed. The technique includes receiving first and second signals, and storing delay information representing an expected time delay from an occurrence of the first signal to a point in time corresponding approximately to an expected occurrence of the second signal. The technique further includes responding to an occurrence of the first signal by: waiting for a time interval equivalent to the expected time delay, evaluating the second signal at approximately the end of the time interval, and adjusting the stored delay information if the second signal occurred outside a time window associated with the end of the time interval.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: June 3, 2014
    Assignee: Xilinx, Inc.
    Inventors: Schuyler E. Shimanek, Mikhail A. Wolf
  • Patent number: 8742713
    Abstract: Motor control circuits and associated methods to control an electric motor provide a plurality of drive signal channels at the same phase, resulting in reduced jitter in the rotational speed of the electric motor.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: June 3, 2014
    Assignee: Allegro Microsystems, LLC
    Inventor: Chee-Kiong Ng
  • Patent number: 8731837
    Abstract: A system and a method for associating measurements from a wellbore with times and depths is provided. Tools located in a wellbore obtain the measurements and provide time data used to determine the times. The tools and a surface clock may be synchronized. The times may be used to associate the measurements with corresponding depths of the wellbore.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: May 20, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Shyam Mehta, Sachin Bammi, Keith Ray, Hiroshi Nomura
  • Patent number: 8725447
    Abstract: A method for correcting a wave front analyzer, in which the analyzer detects a signal from an incident wave front to be analyzed (FO), the detected signal providing phase and intensity local information. The method includes correcting the phase computation according to intensity space variations. A wave front analyzer for implementing the method is also described.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: May 13, 2014
    Assignee: Imagine Optic
    Inventors: Xavier Levecq, Guillaume Dovillaire
  • Patent number: 8712716
    Abstract: Disclosed are a method and an NDT/NDI inspection device deploying digital circuitry to conduct detection and compensation of phase and amplitude shift in responding signals. A digital waveform generator, such as a direct digital synthesizer (DDS) is used to generate a digital sine-wave of a specific frequency and amplitude, mimicking the pulser frequency and amplitude. The sine-wave is converted to analog signal through a DAC and transmitted to the transducer. The received analog sine-wave from the transducer is converted back to a digital signal through an ADC. The transmitted and received digital signals are then compared for phase and amplitude differences. A null circuit involving another waveform generating component is employed to compensate the detected phase and amplitude differences. As a result the phase and amplitude differences are effectively eliminated before being further processed and analyzed for defects information.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: April 29, 2014
    Assignee: Olympus NDT inc.
    Inventors: Andrew Thomas, Marc Dulac
  • Patent number: 8688399
    Abstract: A method of operation in a memory controller is disclosed. The method includes receiving a strobe signal having a first phase relationship with respect to first data propagating on a first data line, and a second phase relationship with respect to second data propagating on a second data line. A first sample signal is generated based on the first phase relationship and a second sample signal is generated based on the second phase relationship. The first data signal is received using a first receiver clocked by the first sample signal. The second data signal is received using a second receiver clocked by the second sample signal.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: April 1, 2014
    Assignee: Rambus Inc.
    Inventor: Scott C. Best
  • Patent number: 8661285
    Abstract: A DDR memory controller is described wherein a core domain capture clock is created by programmably delaying the core clock of the memory controller. The delay of this capture clock is typically calibrated during a power on the initialization sequence in concert with a DDR memory in a system environment, thereby minimizing the effects of system delays and increasing both device and system yield. An additional embodiment also includes programmably delaying the incoming dqs signal. To compensate for voltage and temperature variations over time during normal operation, a runtime dynamic calibration mechanism and procedure is also provided.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: February 25, 2014
    Assignee: Uniquify, Incorporated
    Inventors: Jung Lee, Mahesh Goplan
  • Patent number: 8660812
    Abstract: Calibration equipment for calibrating multiple test stations in a test system is provided. Each test station may include a test unit, a test chamber with an over-the-air antenna, and a radio-frequency (RF) cable that connects the test unit to the test chamber. Reference devices under test (DUTs) may be used to calibrate uplink and downlink path loss (e.g., OTA path loss, RF cable path loss, and variations of the test unit) associated with each test station. The reference DUTs may calibrate each test station at desired frequencies to generate a path loss table. Once calibrated, the test chambers may be used during production testing to test factory DUTs. During production testing, the transmit/receive power efficiency of each factory DUT may be calculated based on values in the path loss table to determine whether a particular production DUT is a passing or failing DUT according to pass/fail criteria.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: February 25, 2014
    Assignee: Apple Inc.
    Inventors: Justin Gregg, Tomoki Takeya, David A. Donovan
  • Publication number: 20140039824
    Abstract: A patient monitoring device and method that determines and monitors at least one patient parameter is provided. A configuration processor generates configuration information in response to a first input signal and an adaptive notch filter receives a second input signal. The second input signal includes a signal of interest and an interference signal in a predetermined frequency range. The adaptive notch filter automatically estimates the interference signal within the second input signal based on a filter parameter and removes the estimated interference signal from the second input signal to generate a target signal. A step processor is electrically coupled between the configuration processor and the adaptive notch filter and sets a value of the filter parameter based on the configuration information, wherein the adaptive notch filter uses the filter parameter to reduce a ringing artifact on the target signal below a threshold level.
    Type: Application
    Filed: April 20, 2012
    Publication date: February 6, 2014
    Inventors: Ling Zheng, Yu Chen
  • Patent number: 8600694
    Abstract: A method for processing a noisy digital time signal yk of digital pitch k, corresponding to an initial analogue signal st after being conditioned by a conditioning chain. The initial analogue signal st includes at least one pulse representing information concerning at least one radiation from a radiation source, the radiation and the pulse having an energy distribution. The method includes the determination of a non-noisy digital estimation signal sk from the noisy time signal yk by using a state model representing the conditioning imposed by the conditioning chain and in that the state model includes a Markovian variable rk to be estimated whereof at least two values are associated with physical characteristics of at least two typical pulses constituting a possible representation, at least approximate, of the pulse in the signal st.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: December 3, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Luc Eglin, Eric Barat
  • Patent number: 8589104
    Abstract: A color value for an optical fiber of a fiberscope can be generated on the basis of the intensity values of a plurality of sensor elements of a sensor element arrangement that are sensitive to one spectral region each from a set of sensor spectral regions, if calibration values are provided for each of the spectral regions associated with the optical fiber. The intensity values of all sensor elements of the respective spectral region that are illuminated by the light guide can be combined with the provided calibration values, in order to obtain the color value associated with the optical fiber, which reproduces the color of the light transported by the optical fiber.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: November 19, 2013
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V., Friedrich-Alexander Universitaet Erlangen-Nuernberg
    Inventors: Christian Winer, Thorsten Zerfass
  • Patent number: 8583394
    Abstract: Objects such as manufactured goods or articles, works of art, media such as identity documents, legal documents, financial instruments, transaction cards, other documents, and/or biological tissue are sampled via sequential illumination in various bands of the electromagnetic spectrum, a test response to the illumination is analyzed with respect to reference responses of reference objects. The sequence may be varied. The sequence may define an activation order, a drive level and/or temperature for operating one or more sources. Illumination may be in visible, infrared, ultraviolet, or other portions of the electromagnetic spectrum. Elements of the evaluation system may be remote from one another, for example coupled by a network.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: November 12, 2013
    Assignee: Visualant, Inc.
    Inventors: Brian T. Schowengerdt, Thomas A. Furness, III, Nicholas E. Walker
  • Patent number: 8552739
    Abstract: In an electronic device and a method of correcting time-domain reflectometers, two channels of a time-domain reflectometer are connected to a corrector using cables, and the two channels are enabled to transmit pulses. Parameters Step Deskew and Channel Deskew of the two channels are zeroed. Resistance values of the two channels are measured simultaneously, and the value of the parameter Step Deskew of one of the two channels is adjusted according to the Resistance values of the two channels. Times of achieving the same resistance value of the two channels are measured after the cables and the connector have been disconnected, and the value of the parameter Channel Deskew of one of the two channels is adjusted according to the times of achieving the same resistance value. The adjusted values of the parameters Step Deskew and Channel Deskew are displayed through a display unit.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: October 8, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsien-Chuan Liang, Shen-Chun Li, Shou-Kuo Hsu
  • Patent number: 8554504
    Abstract: Disclosed is a positioning apparatus including: an autonomous navigation sensor which is held by a pedestrian and which outputs periodic oscillation and direction information; a step length data storage section which stores step length data; a movement distance calculating section which calculates movement distance; a traveling direction calculating section which calculates a traveling direction; and a movement direction calculating section which calculates a movement direction for each step, wherein the movement distance calculating section includes a taken step angle calculating section which calculates a taken step angle from the movement direction for each step with respect to the traveling direction; and the movement distance calculating section corrects a value of the step length data so that the step length is larger as the taken step angle becomes larger to calculate a movement distance for each step.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: October 8, 2013
    Assignee: Casio Computer Co., Ltd.
    Inventor: Masao Sambongi
  • Patent number: 8542127
    Abstract: A device and method for discovering, identification and monitoring of mechanical flaws in metallic structures is disclosed, based on magneto-graphic/magnetic tomography technique to identify stress-related defects. The technique is specifically optimized for extended, not-accessible underground and underwater metallic structures quality control, emergency alarms as well as timeline planning for structural repairs and maintenance work. Examples of the technique implementation include pipes for oil and gas industry, detection of flaws in rolled products in metallurgical industry, welding quality of heavy duty equipment such as ships, reservoirs, etc. It is especially important for loaded constructions, such as pressured pipes, infrastructure maintenance, nuclear power plant monitoring, bridges, corrosion prevention and environment protection.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: September 24, 2013
    Inventors: Valerian Goroshevskiy, Svetlana Kamaeva, Igor Kolesnikov, Leonid Ivlev