Pressure, Resistive, Or Capacitive Sensor Patents (Class 702/47)
  • Patent number: 10466085
    Abstract: A device for determining a fluid mass flow includes a sensor element for acquiring the fluid, the sensor element being configured within a flow path of the fluid to provide a sensor signal, an integrated circuit having an operating unit for providing an operating signal for operating the sensor element and a conversion unit for converting the sensor signal into a converted signal, the integrated circuit including a first discrete circuit element having a first terminal for receiving the sensor signal, a second terminal for providing the operating signal, and a third terminal for providing the converted signal, and a signal processing unit to determine, using the converted signal, the mass flow of the fluid, the signal processing unit including a second discrete circuit element having a first terminal for receiving the converted signal and a second terminal for providing a mass flow signal representing the mass flow.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: November 5, 2019
    Assignee: Robert Rosch GmbH
    Inventors: Michael Rittmann, Uwe Konzelmann, Norbert Schneider
  • Patent number: 10455393
    Abstract: A gas meter is outfit with near field communication (NFC) devices for in-situ exchange of data. The NFC devices reside in separate compartments. A first compartment houses electronics necessary to generate values for volumetric flow of material in a pipe. The gas meter includes a second compartment with an access point that allows data, including telemetry data, to transmit from the gas meter to a remote device. In operation, the NFC devices exchange data between the first compartment and the second compartment, often through a wall or barrier that prevents flow of fluid between the compartments.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: October 22, 2019
    Assignee: Natural Gas Solutions North America, LLC
    Inventors: Jeff Thomas Martin, Andrew Logan Perkins
  • Patent number: 10430137
    Abstract: Perform printing by a printing portion onto the printing paper sheet after collating a content of a code optically or electromagnetically read by a reading device connected to a printer main body and a content of printing data supplied from a memory connected to this printer main body.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: October 1, 2019
    Assignee: SATO HOLDINGS KABUSHIKI KAISHA
    Inventor: Koji Yoshizawa
  • Patent number: 10425029
    Abstract: A motor controller for an electric motor includes a drive circuit that regulates power supplied to a stator of the electric motor to turn a rotor. The motor controller includes a communication interface that receives coefficients. The motor controller includes a processor coupled to the drive circuit. The processor receives an airflow rate demand, computes a speed, computes a torque set point as a function of at least a sum of first and second terms. The first term is defined as the first coefficient multiplied by the airflow rate demand raised to a power greater than one, and the second term is defined as the second coefficient multiplied by the speed raised to a power greater than one. The processor controls the drive circuit based on the torque set point to supply electrical power to the electric motor.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: September 24, 2019
    Assignee: REGAL BELOIT AMERICA, INC.
    Inventors: Brian L. Beifus, Sanjeev Shirahatti, Paul S. Mullin, Bin Yang
  • Patent number: 10384161
    Abstract: Systems and methods are described for liquid removal to increase the accuracy of gas flow meters, such as venturi meters. Systems and methods include a liquid knockout drum, an impingement plate, a drum separator, and a check valve.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: August 20, 2019
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Abdulmohsen S. Al-Kuait, Muhammad Arsalan
  • Patent number: 10371808
    Abstract: A positioning sensor includes a transmission antenna transmitting a transmission signal, a plurality of reception antennae, each receiving a reception signals, a receiver observing the each of the plurality of reception signals in a predetermined period, a processor, and a memory, in which the processor calculates a plurality of complex transfer functions based on the each of the plurality of reception signals, records each of the plurality of complex transfer functions in the memory as being associated with each time point, extracts, among the plurality of complex transfer functions, a plurality of pairs of two complex transfer functions respectively corresponding to two time points in a predetermined interval, calculates a plurality of pieces of differential information, and estimates to a location of a moving body based on each of the plurality of pieces of differential information.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: August 6, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Naoki Honma, Dai Sasakawa
  • Patent number: 10350551
    Abstract: A method for carrying out an integrity test on a filter element includes filling a fluid into at least one vessel (1), in which a filter element (F) to be tested is arranged. The method proceeds by setting the pressure of the fluid in the vessel (1) to a predetermined test pressure, and maintaining the test pressure in the vessel (1) with controlled replenishment of fluid into the vessel (1) and/or a controlled change in internal volume of the vessel (1). The method continues by determining an integrity characteristic variable for the filter element (F) in a manner dependent on the controlled replenishment of fluid into the vessel (1) and/or dependent on the controlled change in internal volume of the vessel (1) before attaining a substantially continuous volume flow of fluid for maintaining the specific test pressure in the vessel (1).
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: July 16, 2019
    Assignee: Satorius Stedim Biotech Gmbh
    Inventors: Dieter Armgart, Dirk Leiser, Vanessa Rakebrandt, Juergen Van Den Boogaard
  • Patent number: 10324104
    Abstract: A monitoring device includes a cavity assembly with a plurality of cavities. Openings of the plurality of cavities are distributed about a flow-facing surface of the cavity assembly. A gas pressure sensor is disposed within each of the cavities, and is configured to measure an absolute pressure of a gas flow which flows past the monitoring device. Gas pressure measurements from the pressure sensors may be used to determine a flow speed and a flow direction of the gas flow. More specifically, a mapping may be used to map the logarithm of the difference between the maximum and minimum pressures to a flow speed. Further, a lookup table may be used to map a pattern of pressure measurements to a flow direction.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: June 18, 2019
    Inventor: Bradley Charles Ashmore
  • Patent number: 10316835
    Abstract: In a method of an embodiment, a pressure sensor is selected from first and second pressure sensors according to a set flow rate. A measurable maximum pressure of the second pressure sensor is higher than a measurable maximum pressure of first pressure sensor. The target pressure of a chamber is determined according to the set flow rate. Until the pressure of the chamber reaches the target pressure after gas is started to be output from the flow rate controller to the chamber at an output flow rate according to the set flow rate and a pressure controller provided between the chamber and an exhaust apparatus is closed, the pressure of the chamber is measured by the selected pressure sensor. The output flow rate of the flow rate controller is determined from a rate of rise of the pressure of the chamber.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: June 11, 2019
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Jun Yamashima, Shinichiro Hayasaka, Toshihiro Tsuruta, Hiroshi Fujii, Junichi Akiba, Naoya Jami, Naotsugu Hoshi
  • Patent number: 10240999
    Abstract: A method and apparatus for estimating a wave velocity of negative pressure wave in a fluid transportation pipeline. The method including: receiving a plurality of pressure signals from a plurality of sensors; determining time differences produced by the negative pressure wave reaching the adjacent sensors based on the received pressure signals; determining a wave source sensor segment where a wave source of the negative pressure wave is located; and estimating the wave velocities of the negative pressure wave in a non-wave source sensor segment and the wave source sensor segment.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: March 26, 2019
    Assignee: International Business Machines Corporation
    Inventors: Ning Duan, Jin Huang, Juhnyoung Lee, Chunhua Tian, Junchi Yan, Yu Wang
  • Patent number: 10221735
    Abstract: A method of real-time oil consumption is disclosed. A method of real-time oil consumption detection may include capturing a raw oil quantity, calculating a corrected oil quantity, calculating a predicted oil quantity, calculating a prediction error, and calculating an estimated oil consumption rate. Raw oil quantity may be captured from an oil quantity sensor in an engine. Corrected oil quantity may be calculated by taking raw oil quantity and applying environmental and engine operational conditions. Prediction error may be calculated by finding the difference between corrected oil quantity and predicted oil quantity. Oil consumption rate may be calculated by applying a regression algorithm to prediction error.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: March 5, 2019
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Steven Butler, Sean McCutchan, Reade James, Denman James
  • Patent number: 10184380
    Abstract: Systems and methods to determine the pressure differential for selective catalytic reduction systems includes a first sensor coupled to an inlet of a selective catalytic reduction system, a second sensor coupled to an outlet of the selective catalytic reduction system, and a controller communicatively coupled to the selective catalytic reduction system. The controller is configured to interpret a first parameter indicative of a first pressure amount of the selective catalytic reduction system measured by the first sensor, interpret a secondary parameter indicative of a secondary pressure amount of the selective catalytic reduction system measured by the second sensor, determine a plurality of operating parameters based, at least in part, on the interpretation of the first parameter and the secondary parameter, and generate a selective catalytic reduction command based, at least in part, on the determination of the plurality of operating parameters.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: January 22, 2019
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Jaime A. Lugo-Castillo, Alex D. Harrington
  • Patent number: 10107661
    Abstract: A thin-film sensor for a thermal flowmeter with at least a first substrate layer made of electrically non-conductive material, a second layer made of electrically conductive material and a cover layer to protect the resistance layer against abrasion, wherein the second layer is designed as two sensor elements, wherein at least a first of the two sensor elements is designed to introduce a heat quantity into a medium, and at least a second of the two sensor elements is designed to determine the ambient temperature, and the thin-film sensor has a gap that isolates the two sensor elements from one another.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: October 23, 2018
    Assignee: ENDRESS + HAUSER FLOWTEC AG
    Inventors: Harald Muller, Axel Pfau, Florian Krogmann, Thomas Schonstein
  • Patent number: 10054115
    Abstract: Illustrative embodiments of diaphragm pumps having an automatic priming function, as well as related systems and methods, are disclosed. In one illustrative embodiment, a method of priming a diaphragm pump includes sensing, with a pressure sensor disposed at a fluid outlet of the diaphragm pump, a pressure of a fluid being pumped by the diaphragm pump, transmitting a pressure signal associated with the sensed pressure from the pressure sensor to a controller of the diaphragm pump, and identifying, on the controller, whether the diaphragm pump is primed by determining whether a characteristic of the pressure signal has reached a threshold.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: August 21, 2018
    Assignee: Ingersoll-Rand Company
    Inventor: Warren Andrew Seith
  • Patent number: 9958426
    Abstract: The present invention relates to a device and a method for determining mixing ratios of flowing media, in particular for determining the mixing ratios of two gases by using two flow resistances with different characteristic curves, each flow resistance containing a differential pressure sensor and being connected in series, where one flow resistance is formed by a sintered metal filter and another flow resistance is formed by an orifice.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: May 1, 2018
    Assignee: W.O.M. WORLD OF MEDICINE GMBH
    Inventors: Matthias Koelm, Peter Juelg
  • Patent number: 9952078
    Abstract: This disclosure relates to mass flow verification systems for and methods of measuring and verifying the mass flow through a mass flow delivery/measurement device such as a mass flow controller. A mass flow verification system comprises a preset volume, a temperature sensor, and a pressure sensor. The measured verified flow determined by the mass flow verification system can be adjusted to compensate for errors resulting from a dead volume within the mass flow measurement device.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: April 24, 2018
    Assignee: MKS Instruments, Inc.
    Inventors: Junhua Ding, Kaveh H. Zarkar
  • Patent number: 9880038
    Abstract: An in-line measuring device for capturing at least two measurands of a measuring medium—especially, a measuring fluid—flowing through a process receptacle, comprising: a first measuring sensor integrated into the process receptacle, with the former being designed to generate a first measuring signal that is dependent upon a flow measurand—especially, a volume and/or mass flow of the measuring medium; a second measuring sensor integrated into the process receptacle, with the former being designed to generate a second measuring signal dependent upon an analysis measurand—especially, one dependent upon the concentration of at least one analyte in the measuring medium and measuring electronics that are connected with the first measuring sensor and the second measuring sensor, with the measuring electronics being designed to receive and process the first measuring signal and the second measuring signal.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: January 30, 2018
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Detlev Wittmer, Manfred Jagiella
  • Patent number: 9689732
    Abstract: An analysis tool for monitoring and displaying the real time and historical hydraulic conditions in a sewer system as measured by monitors distributed throughout the sewer system and associated weather data. Data about the hydraulic conditions of the sewer system are displayed in a graphical display that incorporates a visual representation of the sewer system infrastructure.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: June 27, 2017
    Assignee: EMNET, LLC
    Inventors: Luis A. Montestruque, Patrick M. Henthorn, Brent P. Hussung
  • Patent number: 9671267
    Abstract: A method for determining the flow rates of a multi-component mixture in a pipe including a gas phase and a liquid phase comprising an emulsion of oil and water, the emulsion being either of the water continuous type or the oil continuous type, the method comprising the following steps: a. the flow rates of the individual components of the multi-component mixture are measured, b. the Reynolds number of the multi-component mixture is measured, c. the emulsion type of the liquid phase of the multi-component mixture is determined, and d. based on the results from steps b and c, a more accurate flow-rate of the individual components of the multi-component mixture and a fluid property of at least one of the components of the multi-component mixture are calculated. An apparatus for performing the method is also disclosed.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: June 6, 2017
    Assignee: FMC KONGSBERG SUBSEA AS
    Inventors: Arnstein Wee, Kenneth Gundersen
  • Patent number: 9410834
    Abstract: The disclosed embodiments include a method, apparatus, and computer program product for verifying a performance of a mass flow controller or mass flow meter on a tool. For example, the disclosed embodiments include a method and a mass flow controller configured to perform, in-situ, by the mass flow controller, a rate of decay measurement during on-line operation of the tool to identify valve leak issues and/or for performing a flow measurement.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: August 9, 2016
    Assignee: Illinois Tool Works Inc.
    Inventors: Bill Valentine, Chris Ellec, Berwin Banares, John Lull, Anthony Kehoe
  • Patent number: 9347899
    Abstract: A system may include a fluid source fluidically coupled to a plenum; a thermal camera; at least one flow meter; and a computing device communicatively connected to the at least one flow meter and the thermal camera. The computing device may be configured to receive flow rate values from the at least one flow meter relating to flow testing of a first component fluidically coupled to the plenum; receive thermographic image data captured by the thermal camera during flowing thermographic testing of a second component fluidically coupled to the plenum; and associate the flow rate values with the thermographic image data to produce quantitative flowing thermographic image data.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: May 24, 2016
    Assignee: Rolls-Royce Corporation
    Inventors: Joseph Peter Henderkott, Kong Ma
  • Patent number: 9347847
    Abstract: A pressure transmitter includes at least one impulse line for coupling a fluid pipe or tank to a pressure sensor that measures a process pressure of a process fluid, a temperature sensor measuring an ambient temperature, and a processor accessing baseline data for the process pressure and ambient temperature. The processor implements an automatic impulse line plugging diagnostic (ILPD) algorithm stored in memory. The processor runs the ILPD algorithm implementing utilizing process measurements including a process pressure from the pressure sensor and an ambient temperature from the temperature sensor, comparing a magnitude of the process pressure to a baseline pressure predicted from the baseline data corresponding to the ambient temperature, and uses results of the comparing to determine whether the impulse line is plugged. The comparing can involve comparing a process pressure change to a baseline pressure change predicted corresponding to an ambient temperature change.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: May 24, 2016
    Assignee: Honeywell International Inc.
    Inventor: George Hershey
  • Patent number: 9212664
    Abstract: A control circuit for controlling the rotational speed of a fan may include a memory element to store operating data corresponding to an operational profile of the fan defined by RPM (revolutions per minute) versus temperature, with the operating data comprising a respective temperature value and a respective RPM value for each respective operating point representing a change in slope of a function that corresponds to the operational profile of the fan. A processing unit may receive a present temperature value, retrieve the operating data from the storage unit, and identify a pair of consecutive operating points corresponding to the present temperature. The processing unit may calculate a desired RPM value corresponding to the present temperature value by performing linear interpolation between the pair of consecutive operating points, and provide the desired RPM value to a closed-loop fan controller to control the fan according to the desired RPM value.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: December 15, 2015
    Assignee: STANDARD MICROSYSTEMS CORPORATION
    Inventors: Chao-Ming Tsai, Lynn R. Kern
  • Publication number: 20150134275
    Abstract: Provided are a steam flow metering device and a metering method therefor. The device mainly comprises a mono-energetic gamma sensor (5), a Venturi-type flowmeter (6), a temperature transmitter (2), a pressure transmitter (3), a pipe connection section at the steam-inlet (1), and a pipe connection section at the steam-outlet (7), the function thereof being to measure the quantity of saturated water and saturated steam within the steam effectively and in real time.
    Type: Application
    Filed: January 16, 2012
    Publication date: May 14, 2015
    Inventors: Jige Chen, Yanzhi Pan, Guodong Wu, Zhiyong Wu
  • Publication number: 20150134276
    Abstract: It is described a method for detecting and identifying obstructions in a pipeline network for transporting fluids, wherein the network is composed of a plurality of pipeline sections (P) and a plurality of junctions (N). The method comprising the following phases: acquiring the geometrical data of a predefined number of pipeline sections (P) for which the presence of obstructions has to be evaluated; measuring the actual flow-rate values (Q1) of the fluid in one or more pipeline sections (P) and of the actual pressure values (h1) of the fluid at one or more junctions (N) of the network; comparison between the values of the nominal diameters (D1) of said pipeline sections (P) and the corresponding equivalent diameters (Dieq) of said pipeline sections (P); calculating, by means of a specific numerical model, the theoretic flow-rate values (QiT) and pressure values (hiT) of the fluid for said equivalent diameters (Dieq).
    Type: Application
    Filed: May 14, 2013
    Publication date: May 14, 2015
    Applicant: ENI S.P.A.
    Inventors: Tommaso Mantegazza, Alberto Giulio Di Lullo, Paolo Bocchini, Alessandro Marzani
  • Patent number: 9026383
    Abstract: A flow rate sensor is disclosed, comprising a flow rate calculation part that calculates a flow rate of a fluid based on an expression using Xd/Xu that satisfies an expression at least in a certain range of the flow rate when an output of a constant temperature control circuit corresponding to an upstream resistor is defined as Vu, an output of a constant temperature control circuit corresponding to a downstream resistor is defined as Vd, and the flow rate is defined as and the flow rate calculation part corrects the zero point output as being an output when the flow rate is zero by using a zero offset function (OFS) defined as a function of Vu+VdXd/Xu.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: May 5, 2015
    Assignee: Horiba STEC, Co., Ltd.
    Inventors: Hiroshi Takakura, Shohei Yamano, Hiroyuki Ebi
  • Patent number: 8977508
    Abstract: The present invention provides a method and a system for determining forces which act on a body with a controlled volume which is provided inside the flow tunnel and in which the body is arranged. A first measuring means is used to measure a pressure distribution for each surface defining the controlled volume. A second measuring means measures a velocity field for each defining surface of the controlled volume. Furthermore, a calculation unit is provided for calculating the forces acting on the body as a function of the pressure distributions and velocity fields measured for the defining surfaces of the controlled volume.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: March 10, 2015
    Assignee: Airbus Operations GmbH
    Inventors: Winfried Kuehn, Klaus-Peter Neitzke, Andreas Schroeder, Eric Wilhelmus Maria Roosenboom
  • Publication number: 20150066395
    Abstract: This disclosure relates to mass flow verification systems for and methods of measuring and verifying the mass flow through a mass flow delivery/measurement device such as a mass flow controller. A mass flow verification system comprises a preset volume, a temperature sensor, and a pressure sensor. The measured verified flow determined by the mass flow verification system can be adjusted to compensate for errors resulting from a dead volume within the mass flow measurement device.
    Type: Application
    Filed: June 13, 2014
    Publication date: March 5, 2015
    Inventors: Junhua Ding, Kaveh H. Zarkar
  • Patent number: 8965725
    Abstract: In order to mitigate the negative effects of a change in atmospheric pressure, an improved capacitance diaphragm gauge (CDG) sensor incorporates an independent ambient atmospheric pressure sensor near the CDG sensor body. The ambient atmospheric sensor is located outside the CDG sensor body to sense the ambient atmospheric pressure surrounding the CDG sensor body. The ambient atmospheric sensor provides an output that represents the ambient atmospheric pressure. A sensor output processing circuit receives the output of the ambient atmospheric sensor as well as the output of the CDG sensor. The processing circuit utilizes the output from the ambient atmospheric pressure sensor to fine tune the CDG measurement of pressure by executing an in situ, real time, automatic calibration adjustment of the CDG.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: February 24, 2015
    Assignee: Reno Technologies, Inc.
    Inventors: David J. Ferran, Robert J. Ferran
  • Patent number: 8949045
    Abstract: A method for determining characteristic values of an electrometrically driven centrifugal pump assembly with a speed controller, said assembly being integrated in an installation, includes determining characteristic values by way of electrical variables of the motor and of the pressure produced by the pump, with which one successively runs to at least two different operating points of the pump. Delivery rates are determined in the installation at the run-to operating points, and the characteristic values are determined based on the delivery rates.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: February 3, 2015
    Assignee: Grundfos Management a/s
    Inventor: Carsten Skovmose Kallesøe
  • Patent number: 8938367
    Abstract: In some embodiments, a motion detecting device is configured to detect whether one or more movement events have occurred. The motion detecting device can include: (a) a processing module configured to run on a computational unit; and (b) a sensing device having: (1) one or more pressure sensors configured to provide two or more pressure measurements; and (2) a transmitter electrically coupled to the one or more pressure sensors and configured to transmit the two or more pressure measurements to the computational unit. The processing module is configured to use the two or more pressure measurements to determine whether the one or more movement events have occurred. The sensing device can be configured to be placed in at least one of ductwork of a heating, ventilation, and air conditioning system or an air handler of the heating, ventilation, and air conditioning system. Other embodiments are disclosed.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: January 20, 2015
    Assignee: Georgia Tech Research Corporation
    Inventors: Shwetak N. Patel, Matthew S. Reynolds, Gregory D. Abowd
  • Patent number: 8935106
    Abstract: A portable test apparatus is for performing a pressure test of a vessel into which a liquid is being forced by a pump. The test apparatus includes a pressure sensor configured to measure pressure in the vessel. A processor is configured to monitor, during the test, stroke counts communicated from the pump and the pressure sensed by the pressure sensor. A graphical user interface includes input fields to receive user-input of test parameter information, and further includes a graphical representation of the stroke counts and measured pressure in real time during the test.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: January 13, 2015
    Assignee: Adalet/Scott Fetzer Company
    Inventors: John A. Balogh, David L. Thomas
  • Patent number: 8924165
    Abstract: The measuring system has a measuring transducer which produces primary signals transmitter electronics for activating the measuring transducer and for evaluating primary signals. The measuring transducer includes at least one measuring tube; at least one electro-mechanical, oscillation exciter, a first oscillation sensor. The transmitter electronics, in turn, delivers at least one driver signal for the oscillation exciter for effecting vibrations of the at least one measuring tube and generates, by means of the first primary signal and by means of the second primary signal, as well as with application of a Reynolds number, measured value representing a Reynolds number, Re, for medium flowing in the measuring transducer, a pressure difference, measured value, which represents a pressure difference occurring between two predetermined reference points in the flowing medium.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: December 30, 2014
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Vivek Kumar, Martin Anklin
  • Patent number: 8917096
    Abstract: A mechanism is provided for determining an isoelectric point of a molecule. A first group of capacitance versus voltage curves of a capacitor is measured. The capacitor includes a substrate, dielectric layer, and conductive solution. The first group of curves is measured for pH values of the solution without the molecule bound to a functionalized material on the dielectric layer of the capacitor. A second group of capacitance versus voltage curves of the capacitor is measured when the molecule is present in the solution, where the molecule is bound to the functionalized material of the dielectric layer of the capacitor. A shift is determined in the second group of curves from the first group of curves at each pH value. The isoelectric point of the molecule is determined by extrapolating a pH value corresponding to a shift voltage being zero, when the shift is compared to the pH values.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: December 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Christopher P. D'Emic, Ashish Jagtiani, Sufi Zafar
  • Patent number: 8918293
    Abstract: A flow meter for monitoring fluid flow through a pipeline, the flow meter comprising a conduit having a fluid inlet and a fluid outlet for communication with respective sections of the pipeline; a target element positioned inside the conduit between the fluid inlet and the fluid outlet, the target element being mounted for resilient axial displacement under a pressure differential between the inlet and the outlet; an arm secured at an anchor point on one side of the conduit and extending radially across the conduit, the target element being coupled to the arm for applying a load to the arm, upon said axial displacement of the target element, so as to deflect the arm relative to the anchor point; a sensor arrangement for measuring deflection of the arm at a point on the opposite side of the applied load to the anchor point; and a processor configured for providing a signal representative of the steam flow through the conduit in response to said measured deflection.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: December 23, 2014
    Assignee: Spirax-Sarco Limited
    Inventors: Richard Quentin Carmichael, Roger Manley, Ben Frisby
  • Publication number: 20140358454
    Abstract: An application-specific integrated circuit comprises: analog inputs having analog-digital converters; at least one digital signal processor, which has input registers and output registers. The analog-digital converters sample and digitize input signals Si with sampling frequencies fSi and forward the digitized signals SDi with output frequencies fSD-out-i to the input registers of the digital signal processor. The digital signal processor processes the digitized signals SDi to m processed signals SPj and forwards such to the output registers of the digital signal processor. The digital signal processor has a clock frequency, wherein, furthermore, the signals of the output registers can be output, respectively read-out, with an output frequency. One or more of the frequencies is, respectively, variable, wherein especially one or more of the frequencies respectively, variable independently of the others of the frequencies.
    Type: Application
    Filed: January 21, 2013
    Publication date: December 4, 2014
    Applicant: Endress + Hauser GmbH + Co. KG
    Inventors: Lars Karweck, Andreas Spitz, Yves Boulenger, Richard Wagner, Klaus Winter, Thomas Zieringer
  • Publication number: 20140343875
    Abstract: A method of calculating a transient flow rate of a flowed process gas comprises flowing process gas through a mass flow controller into a chamber of known volume and measuring successive data sample points which include pressure data, temperature data, and a time value for each successive data sample point. Groups of successive data sample points are identified wherein each group shares one or more successive data sample points with another group, and ratio values are calculated for each of the successive data sample points wherein each ratio value is a ratio between the pressure data and a product of temperature and gas compressibility data for each respective time value.
    Type: Application
    Filed: May 16, 2013
    Publication date: November 20, 2014
    Applicant: Lam Research Corporation
    Inventors: Evangelos Spyropoulos, Iqbal Shareef
  • Patent number: 8878313
    Abstract: A pressure sensor has a sensor body at least partly formed with an electrically insulating material, particularly a ceramic material, defining a cavity facing on which is a diaphragm provided with an electric detector element, configured for detecting a bending of the diaphragm. The sensor body supports a circuit arrangement, including, a plurality of circuit components, among which is an integrated circuit, for treating a signal generated by the detection element. The circuit arrangement includes tracks made of electrically conductive material directly deposited on a surface of the sensor body made of electrically insulating material. The integrated circuit is made up of a die made of semiconductor material directly bonded onto the surface of the sensor body and the die is connected to respective tracks by means of wire bonding, i.e. by means of thin connecting wires made of electrically conductive material.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: November 4, 2014
    Assignee: Metallux SA
    Inventor: Luca Salmaso
  • Patent number: 8880362
    Abstract: Presented herein are a system and method (i.e., utilities) for monitoring the flow of materials used to mark road surfaces and other surfaces. The utilities utilize one or more pressure sensors to monitor in-line pressure of road marking material to determine the amount of material being applied. Electronic equipment receives signals from the pressure sensors, temperature sensors and/or additional monitoring equipment to generate an output indicative of an amount of material flow. In a further arrangement, the equipment generates an output indicative of a thickness of the read marking material as applied to a surface.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: November 4, 2014
    Assignee: EPIC Solutions, Inc.
    Inventors: Jeffrey Arnold Wilkens, Timothy John Marthe, Kalvin Ambrose Hoff
  • Patent number: 8874387
    Abstract: An air flow measurement device measures a flow amount of air. A flow sensor is configured to output a voltage value corresponding to a given flow amount of the air. A temperature sensor is configured to output temperature of the air. A correction coefficient memory portion is configured to store a correction coefficient for correcting the voltage value of the flow sensor to a corrected voltage value associated with the given flow amount based on a predetermined standard temperature. A relationship between the voltage value of the flow sensor and the flow amount of the air changes based on temperature of the air. A correction portion is configured to correct the output voltage value of the flow sensor to the corrected voltage value using the correction coefficient.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: October 28, 2014
    Assignee: Denso Corporation
    Inventors: Akitoshi Mizutani, Takao Ban
  • Patent number: 8874388
    Abstract: A system and method for determining a rate of flow of an output from a vessel. The system includes a vessel having an inlet for receiving an output produced by an output generation device, and a measuring device for measuring a first pressure and a second pressure in the vessel. The first pressure is measured when the output generation device is in a standby mode and the second pressure is measured when the output generation device is in an operational mode. The system includes a programmable logic controller configured to calculate a rate of flow of the output utilizing the first pressure and the second pressure.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: October 28, 2014
    Assignee: On Site Gas Systems, Inc.
    Inventors: Sean Haggerty, Andrew Terwilliger
  • Publication number: 20140305626
    Abstract: A method is provided for determining an air flow in a vehicle air conditioning system that comprises an inlet; a plurality of outlets; at least one air duct for guiding air from the inlet to the outlets, each air duct being characterized by a predetermined flow resistance coefficient; at least one flap characterized by a flow resistance based on a degree of opening of the flap; and a fan for creating an air flow from the inlet to an outlet. The method comprises determining a total equivalent flow resistance between a predetermined location in the system and an interior of the vehicle, wherein flow resistances are treated as resistances in an electric circuit, and a total equivalent flow resistance is determined. Treating a pressure drop as equivalent with a voltage drop, the air flow can be determined, as the pressure is equal to the resistance times the flow squared.
    Type: Application
    Filed: April 7, 2014
    Publication date: October 16, 2014
    Applicant: VOLVO CAR CORPORATION
    Inventor: Jonas JANGE
  • Publication number: 20140309951
    Abstract: A rheometer for measuring non-Newtonian fluids is disclosed. The rheometer includes capillaries with piezometers therein, a pump, flow control valves, flow, density, and speed meters, and a controller. The rheometer has application in providing for online measurements of parameters including viscosity and yield stress in mining suspensions based upon laminar transportation of the suspensions by the capillaries.
    Type: Application
    Filed: October 25, 2013
    Publication date: October 16, 2014
    Applicant: JRI INGENIERIA S.A.
    Inventors: Alejandra ALVAREZ VALLEJOS, Ramon FUENTES AGUILAR, Soledad GUTIERREZ DELGADO, Juan RAYO PRIETO, Mario SOLIS SOTO
  • Publication number: 20140303909
    Abstract: The present invention provides an automated meter station monitoring system for a fluid comprising a processor having algorithms for verifying performance of a fluid flow measurement system. A pressure sensor is operatively connected to the processor to measure the pressure of the fluid. A temperature sensor is operatively connected to the processor to measure the temperature of the fluid. A gas chromatograph is operatively connected to the processor to monitor changes in gas composition and chromatograph response factors of the fluid. An ultrasonic meter is operatively connected to the processor to monitor the velocity of the fluid, speed of sound of the fluid, and meter diagnostics. A flow computer is operatively connected to the processor to record pressure of the fluid, record temperature of the fluid, record gas composition of the fluid, calculate compressibility ratio of the fluid, calculate standard flow rate of the fluid, and calculate energy rate of the fluid.
    Type: Application
    Filed: October 21, 2013
    Publication date: October 9, 2014
    Applicant: Western Energy Support & Technology, Inc.
    Inventors: Ed Hanks, Aaron Kruger, John Lansing, Laura Lawton, Rick Tompkins
  • Patent number: 8854064
    Abstract: A method for measuring for generating a touch capacitance measurement is provided. Gain and offset control signals are generated, where the gain and offset control signals are adjusted to compensate for base capacitance of a touch sensor. The gain control signal is applied to a touch sensor during a first phase of a clock signal, and the offset control signal is applied to an output circuit during a second phase of the clock signal. The output circuit is coupled to the touch sensor during the second phase of the clock signal. The touch capacitance measurement is generated by compensating for the base capacitance with the gain and offset control signals, and a gain is applied to the touch capacitance measurement.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: October 7, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Sualp Aras, Tatsuyuki Nihei, Abidur Rahman
  • Publication number: 20140297203
    Abstract: A flow measurement device includes a first sensor device that responds to stimulus from fluid medium flowing through a measurement section by registering a measure representing a physical characteristic, a processor, and a data storage including a look-up table containing a first collection of values representing a first value of flow of a first fluid or a first value of flow of a second fluid, and a second look-up table containing a second collection of the values representing a second value of the flow of the first fluid or a second value of the flow of the second fluid, the processor receiving the measures registered during a measurement time interval and estimating a flow pattern of the fluid medium during the measurement interval where the flow pattern describes how the first and second fluids are distributed in the measurement section over the measurement time interval.
    Type: Application
    Filed: October 25, 2012
    Publication date: October 2, 2014
    Inventors: Bohao Liao, Torbjorn Petterson
  • Patent number: 8849589
    Abstract: A process fluid flow device includes a power supply module, a process communication module, a processor and measurement circuitry. The process communication circuitry is coupled to the power supply module and to the processor. The measurement circuitry is operably coupleable to plurality of process variable sensors to obtain an indication of differential pressure, static pressure and process fluid temperature. The processor is configured to compute process fluid mass flow, and to use the static pressure and process fluid temperature to obtain an energy per unit mass value relative to the process fluid and to provide an energy flow indication.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: September 30, 2014
    Assignee: Rosemount Inc.
    Inventors: David E. Wiklund, Lowell A. Kleven
  • Publication number: 20140229124
    Abstract: A method and an apparatus for determining leakage volume of fluid in transportation pipelines are provided. The method comprises: obtaining the negative pressure wave signals detected by at least two pressure sensors arranged on the pipeline; determining the pressure signal at the leakage location based on the negative pressure wave signals; determining the leakage rate during a leakage period based on the pressure signal at the leakage location according to a leakage model; and determining the leakage volume of the fluid in the pipeline based on the leakage rate and the leakage period. The apparatus provided corresponds to the method described above. By using the method and apparatus described above, the leakage volume of the transportation pipelines can be obtained to help understand the leakage profile of the pipelines and thus reduce losses.
    Type: Application
    Filed: March 31, 2012
    Publication date: August 14, 2014
    Applicant: International Business Machines Corporation
    Inventors: Felipe Albertao, Ying Chen, Jin Huang, Chunhua Tian, Hao Wang, Jing Xiao
  • Patent number: 8798941
    Abstract: A differential pressure sensor (105) for determining a differential pressure value is provided. The differential pressure sensor (105) includes a selector valve (110) configured to receive a first pressure at a first location and a second pressure at a second location that is spaced-apart from the first location, a single-sided pressure sensor (120) coupled to the selector valve (110) and receiving either the first pressure or the second pressure, and a processing system (130) coupled to the single-sided pressure sensor (120) and configured to receive one or more first single-sided pressure measurements from the single-sided pressure sensor (120), subsequently receive one or more second single-sided pressure measurements from the single-sided pressure sensor (120), and generate the differential pressure value from the one or more first single-sided pressure measurements and the one or more second single-sided pressure measurements.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: August 5, 2014
    Assignee: Norgren Limited
    Inventors: Chris Wheater, Paul Hartley, Gavin Jamieson
  • Patent number: 8793082
    Abstract: This disclosure relates to mass flow verification systems for and methods of measuring and verifying the mass flow through a mass flow delivery/measurement device such as a mass flow controller. A mass flow verification system includes a preset volume, a temperature sensor, and a pressure sensor. The measured verified flow determined by the mass flow verification system can be adjusted to compensate for errors resulting from a dead volume within the mass flow measurement device.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: July 29, 2014
    Assignee: MKS Instruments, Inc.
    Inventors: Junhua Ding, Kaveh Zarkar