Well Logging Or Borehole Study Patents (Class 702/6)
  • Patent number: 9164194
    Abstract: A method for modeling deformation in subsurface strata, including defining physical boundaries for a geomechanical system. The method also includes acquiring one or more mechanical properties of the subsurface strata within the physical boundaries, and acquiring one or more thermal properties of the subsurface strata within the physical boundaries. The method also includes creating a computer-implemented finite element analysis program representing the geomechanical system and defining a plurality of nodes representing points in space, with each node being populated with at least one of each of the mechanical properties and the thermal properties. The program solves for in situ stress at selected nodes within the mesh.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: October 20, 2015
    Inventors: Sheng-Yuan Hsu, Kevin H. Searles, Eric R. Grueschow, Tracy J. Moffett
  • Patent number: 9158024
    Abstract: A system for determining the position of an underground sonde transmitter is disclosed. In some embodiments, the system measures a set of complex electromagnetic field magnitude and phase strengths at one or more positions while traversing a target sonde path at any angle using one or more electromagnetic coil sensors, models a set of expected complex electromagnetic strengths of a hypothetical sonde at the positions for one or more of the electromagnetic coil sensors, the set of expected electromagnetic field values corresponding to a model for the target sonde, and estimates parameters related to the target sonde based on the residual error between the measured set of complex electromagnetic field values and the modeled set of expected complex electromagnetic field strengths. A final estimated parameter set is determined after the residual error has converged to a minimum tolerance to indicate the sonde transmitter position.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: October 13, 2015
    Assignee: Metrotech Corporation Inc.
    Inventors: Johan Överby, James W. Waite, Dimitar Gargov, Kun Li
  • Patent number: 9140117
    Abstract: A method for computing or estimating relative permeability for fractional multi-phase, multi-component fluid flow through a porous medium, which employs a 3D digital representation of a porous medium and a computational fluid dynamics method to calculate flow rates, pressures, saturations, velocities and other flow parameters, is described. The method employs a unique method which integrates a precursor simulation used to generate a set of variables like pressure, saturation and velocity distribution associated with a selected storage plane in the 3D digital representation of a porous medium, which variables are used as inlet condition in the workflow of a second simulation that can generate values of fractional flow rates, pressures, saturations, velocities, or other parameters of wetting and non-wetting phases, which can be used to compute or estimate relative permeability values or other fluid transport properties of the porous medium.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: September 22, 2015
    Assignee: InGrain, Inc.
    Inventor: Giuseppe de Prisco
  • Patent number: 9117169
    Abstract: An apparatus and method for determining a formation/fluid interaction of a target formation and a target drilling fluid is described herein. The method may include training an artificial neural network using a training data set. The training data set may include a formation characteristic of a source formation and a fluid characteristic of a source drilling fluid and experimental data on source formation/fluid interaction. Once the artificial neural network is trained, a formation characteristic of the target formation and fluid characteristic of target drilling fluid may be input. The formation characteristic of the target formation may correspond to the formation characteristic of the source formation. The fluid characteristic of the target drilling fluid may correspond to the fluid characteristic of the source drilling fluid. A formation/fluid interaction of the target formation and the target drilling fluid may be determined using a value output by the artificial neural network.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: August 25, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dale E. Jamison, Shadaab S. Maghrabi, Dhanashree Gajanan Kulkarni, Kushabhau D. Teke, Sandeep D. Kulkarni
  • Patent number: 9116254
    Abstract: A passive method for exploring a region below the surface of the earth. The method comprises using a single sensor located in turn at a plurality of locations to obtain seismic data obtained by recording ambient seismic interface waves in a frequency range whose lower limit is greater than 0 Hz, and whose upper limit is less than or equal to substantially 1 Hz. The data are processed so as to obtain a measure of the energy in a frequency band within the frequency range. For example, the seismic data may be filtered and may be subjected to amplitude normalization before being transformed into the frequency domain. The energy measure may then be calculated by integrating the spectrum in the frequency domain over a desired frequency range. The resulting calculated energy provides information about the region of the earth being explored.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: August 25, 2015
    Assignee: Statoil Petroleum AS
    Inventors: Sascha Bussat, Peter Hanssen, Simone Patricia Kugler
  • Patent number: 9103683
    Abstract: In one embodiment, a system includes a motion detector to determine a motion event or a no motion event for an inertial system. The determination of the events is based upon comparing at least one motion parameter in the inertial system to at least one predetermined threshold. An azimuth update controller (AUC) periodically requests motion detection events from the motion detector and corrects heading information to a previous positional state in the inertial system in response to receipt of the no motion event.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: August 11, 2015
    Assignee: NORTHROP GRUMMAN GUIDANCE AND ELECTRONICS COMPANY, INC.
    Inventor: Linn Zien
  • Patent number: 9081918
    Abstract: Models of underground formations. At least some of the illustrative embodiments are methods including creating a model of an underground formation. The creating may include: calculating a set of probabilities associated with a first horizontal location, each probability indicative of a likelihood of finding abutting geological layers; estimating a plurality of successions of geological layers to create a plurality of estimated successions, and the estimating using the set of probabilities; determining, for each of the estimated succession, a value indicative of how closely each estimated succession matches a measured succession, the measured succession determined by a seismic survey; and selecting from the plurality of estimated successions based on the values, the selecting creates a selected succession of geological layers, and the plurality of modeled values associated with the first horizontal location determined based on the selected succession of geological layers.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: July 14, 2015
    Assignee: LANDMARK GRAPHICS CORPORATION
    Inventors: Jeffrey M. Yarus, Marko Maucec, Richard L. Chambers
  • Patent number: 9058445
    Abstract: A method is presented for modeling reservoir properties. The method includes constructing a coarse computational mesh for the reservoir. The coarse computational mesh comprises a plurality of cells. The method further includes determining a plurality of flows for each of the plurality of cells based on Dirichlet boundary conditions. Additionally, the method includes determining a solution to a coarse pressure equation for the reservoir based on the plurality of flows.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: June 16, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Adam Usadi, Dachang Li, Rossen Parashkevov, Xiaohui Wu, Yahan Yang
  • Publication number: 20150143889
    Abstract: A system and method are provided for determining borehole azimuth. The method comprises receiving a first set of data from a first sensor module, the first sensor module comprising a first plurality of accelerometers; receiving a second set of data from a second sensor module, the second sensor module comprising a second plurality of accelerometers, the second sensor module being positioned further downhole than the first sensor module; determining a first set of gravity components using the first set of data and a second set of gravity components using the second set of data; determining a bend angle and a tilt angle using the first and second sets of gravity components; determining a change in azimuth using the bend and tilt angles; and providing an output indicative of the change in azimuth. The system and method may also use a crustal gravity vector to correct the computed azimuth.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 28, 2015
    Applicant: Mostar Directional Technologies Inc.
    Inventors: Jeong Woo Kim, Brian E. Varcoe, John Petrovic
  • Patent number: 9041547
    Abstract: A method of processing downhole measurement data includes: receiving formation measurement data generated by a downhole tool during a logging-while drilling operation over a selected time period; receiving a measured depth corresponding to the selected time period based on data taken at a surface location; receiving tool rotation data generated by measurements of a rotational rate of the downhole tool taken by a downhole sensor during the selected time period; calculating a new depth of the tool as a function of time over the selected time period based on a relationship between the tool rotation data and the measured depth; and correcting an original depth of the measurement data with the new depth.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: May 26, 2015
    Assignee: Baker Hughes Incorporated
    Inventor: Andreas Hartmann
  • Patent number: 9043152
    Abstract: A method for estimating an inclination and azimuth at a bottom of a borehole includes forming a last survey point including a last inclination and a last azimuth; receiving at a computing device bending moment and at least one of a bending toolface measurement and a near bit inclination measurement from one or more sensors in the borehole; and forming the estimate by comparing possible dogleg severity (DLS) values with the bending moment value.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: May 26, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Frank Schuberth, Hanno Reckmann, John D. Macpherson, James Albert Hood
  • Patent number: 9043153
    Abstract: The present disclosure relates to a method to determine a volume of clearance surrounding a wellbore. A logging tool is provided. The logging tool may be disposed on a wireline, a drill string, or a wired drill pipe. A formation property is obtained using the logging tool. The formation property may include a voltage, a bulk resistivity, a horizontal resistivity, a vertical resistivity, a porosity, a permeability, a fluid saturation, an NMR relaxation time, a borehole size, a borehole shape, a borehole fluid composition, an MWD parameter, or an LWD parameter. The maximum depth of investigation into the subsurface formation is determined using a model response and a noise level, and the volume of clearance is determined using the determined maximum depth of investigation. The maximum depth of investigation and volume of clearance may be determined even though no boundary layers are detected.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: May 26, 2015
    Assignee: Schlumberger Technology Corporation
    Inventor: Jean-Michel Denichou
  • Publication number: 20150142315
    Abstract: In accordance with one aspect of the present technique, a method is disclosed. The method includes receiving sensor data from a first set of sensors mechanically coupled to a first riser joint of a marine riser. The method also includes analyzing the sensor data to determine a condition of the first riser joint and determining whether the condition satisfies a transmission criterion. The method further includes sending a notification including the condition to an on-vessel monitor communicatively coupled to the marine riser in response to determining that the condition satisfies the transmission criterion.
    Type: Application
    Filed: November 15, 2013
    Publication date: May 21, 2015
    Applicant: General Electric Company
    Inventors: Judith Ann Guzzo, John William Carbone, Li Zhang, Shaopeng Liu
  • Publication number: 20150142316
    Abstract: A method for estimating an effect on nuclear magnetic resonance (NMR) measurements of an invasion of solid particles into pores of an earth formation penetrated by a borehole includes conveying a carrier through the borehole and performing an NMR measurement on a volume of interest in the formation to provide a relaxation time constant using an NMR tool disposed at the carrier. The method further includes receiving information describing the solid particles in the pores and quantifying, using a processor, an effect on the measured relaxation time constant due to the invasion of solid particles using the received information.
    Type: Application
    Filed: November 15, 2013
    Publication date: May 21, 2015
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Jinhong Chen
  • Publication number: 20150142317
    Abstract: A method for performing contamination monitoring through estimation wherein measured data for optical density, gas to oil ratio, mass density and composition of fluid components are used to obtain plotting data and the plotting data is extrapolated to obtain contamination levels.
    Type: Application
    Filed: November 20, 2013
    Publication date: May 21, 2015
    Applicant: Schlumberger Technology Corporation
    Inventors: Youxiang Zuo, Adriaan Gisolf, Ryan Lee, Cosan Ayan, Hadrien Dumont, Kang Wang, Chetankumar Desai, Oliver Mullins, Beatriz Barbosa
  • Publication number: 20150134253
    Abstract: A telemetry system and method configured to communicate a wellbore parameter such as fluid composition, temperature, and pressure. In one embodiment, a plurality of tracers is stored downhole, and each of the tracers represents a different value of the wellbore parameter. After measuring the wellbore parameter, the measured value is correlated to one or more of the plurality of tracers that is equivalent to the measured value of the downhole parameter. The one or more tracers representing the measured value are then released from their respective containers to travel upstream. A sensor located upstream may detect the one or more tracers, which are then correlated back to obtain the measured value of the wellbore parameter. In another embodiment, ratiometric amounts of the tracers may be used to represent additional values of the wellbore parameter.
    Type: Application
    Filed: April 16, 2013
    Publication date: May 14, 2015
    Inventors: Lev Ring, Jeffrey John Lembcke, Dean Taylor Lehner, Francis Bostick, III, Brian Keith Drakeley, Sean M. Christian
  • Publication number: 20150120194
    Abstract: A method, system and computer-readable medium for obtaining a temperature profile of a wellbore is disclosed. Raw temperature data are obtained from the wellbore using a distributed temperature sensing system. The raw temperature data includes noise. A numerical decomposition is performed on the raw temperature data within a dynamic window in a measurement space of the raw temperature data to obtain decomposition terms of order of first order and higher. An adaptive filter is applied to the decomposition terms of first order and higher within the dynamic window to reduce noise from the decomposition terms of first order and higher. The filtered decomposition terms of first order and higher are used to obtain a temperature profile of the wellbore.
    Type: Application
    Filed: October 24, 2013
    Publication date: April 30, 2015
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Jeff Chen
  • Patent number: 9016123
    Abstract: In an angle detection method with a resolver, the method being for detecting a rotational angle of a rotator by synchronously detecting a first signal and a second signal that are two phase sine wave modulation signals obtained from a one phase excitation/two phase output resolver, the method includes: a first signal detection process which detects a signal in the order of the first signal and the second signal; and a second signal detection process which detects a signal in the order of the second signal and the first signal.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: April 28, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yoshihiko Kimpara, Yasuaki Hori, Tatsuya Mori, Takayuki Kifuku, Takahiro Okanoue
  • Publication number: 20150112596
    Abstract: Various embodiments include apparatus and methods to operate to record a plurality of acoustic waveforms, to generate an objective function based on the plurality of acoustic waveforms, and to estimate a global minimum of the objective function. The plurality of acoustic waveforms can correspond to a plurality of acoustic dipole receivers azimuthally disposed around a tool to which the receivers are attached. Additional apparatus, systems, and methods are disclosed.
    Type: Application
    Filed: December 30, 2014
    Publication date: April 23, 2015
    Inventor: Mark V. Collins
  • Patent number: 9013322
    Abstract: An apparatus and method for well control and monitoring including an independent web server computer integrated with a pump controller located at each well in an oil field. The well controller locally controls the well pump, processes well and pump data, generates surface and downhole cards, and communicates production reports, recommendations for production improvements, and production statistics to remote sites via the internet. The controller can be queried remotely to provide production reports, etc. Furthermore, the controller can initiate alerts via email, text messaging, or internet messaging, for example, during fault conditions.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: April 21, 2015
    Assignee: Lufkin Industries, LLC
    Inventors: Alan L. Roberson, Doneil M. Dorado, David L. Pinnell, Eric S. Oestreich
  • Publication number: 20150106015
    Abstract: Systems, methods and devices for evaluating a condition of a downhole component of a drillstring. Methods include estimating a value of a tool parameter of the component at at least one selected position on the drillstring; and using the estimated value to evaluate the condition of the downhole component. The estimating is done using a trained artificial neural network that receives information from at least one sensor that is positionally offset from the selected position. The method may further include creating a record representing information from estimated values of the tool parameter at the at least one selected position over time. The at least one selected position may include a plurality of positions, such as positions at intervals along the component, including substantially continuously along the component.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 16, 2015
    Applicant: Baker Hughes Incorporated
    Inventors: Dmitriy Dashevskiy, John D. MACPHERSON
  • Publication number: 20150106016
    Abstract: In some embodiments, an apparatus and a system, as well as a method and an article, may operate to determine spatial orientations of one or more transmitters attached to a first downhole component, relative to one or more receivers attached to a second downhole component, at common points in time during rotation of the first and the second downhole components. The first downhole component may be variably, rotationally coupled to the second downhole component. Further activity may include transforming raw measurements of transmitter signals provided by the receiver(s) into calibrated measurements based on the spatial orientations at the common points in time. Additional apparatus, systems, and methods are described.
    Type: Application
    Filed: June 28, 2012
    Publication date: April 16, 2015
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Hsu-Hsiang Wu, Luis Emilio San Martin
  • Patent number: 9007231
    Abstract: A system and method to synchronize distributed measurements in a borehole are described. The system includes a plurality of wired segments coupled together by couplers and a plurality of nodes configured to measure, process, or relay information obtained in the borehole to a surface processing system, each of the plurality of nodes comprising a local clock and being disposed at one of the couplers or between couplers. The system also includes a surface processing system coupled to a master clock and configured to determine a time offset between the master clock and the local clock of an nth node among the plurality of nodes based on a downhole generated synchronization signal.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: April 14, 2015
    Assignee: Baker Hughes Incorporated
    Inventor: John D. Macpherson
  • Patent number: 9002648
    Abstract: A system and method for use in a downhole tool having distance measurement, feature detection, and primary measurement devices positioned therein are provided. In one example, the method includes recording a first plurality of features and corresponding positions in a first log using the feature detection device and the distance measurement device, respectively. A first feature of the first plurality of features is selected and the position corresponding to the first feature is identified. The feature detection device is aligned relative to the first feature based on the identified position. A first primary measurement is taken using the primary measurement device while the feature detection device is aligned relative to the first feature. The steps of recording, selecting, moving, and taking are repeated to obtain a second primary measurement while the feature detection device is aligned relative to a second feature of a second plurality of features.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: April 7, 2015
    Assignee: Schlumberger Technology Corporation
    Inventor: Harold G. Pfutzner
  • Publication number: 20150094959
    Abstract: A method and system are provided for heterogeneous log analysis. The method includes performing hierarchical log clustering on heterogeneous logs to generate a log cluster hierarchy for the heterogeneous logs. The method further includes performing, by a log pattern recognizer device having a processor, log pattern recognition on the log cluster hierarchy to generate log pattern representations. The method also includes performing log field analysis on the log pattern representations to generate log field statistics. The method additionally includes performing log indexing on the log pattern representations to generate log indexes.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 2, 2015
    Inventors: Xia Ning, Guofei Jiang, Haifeng Chen, Kenji Yoshihira
  • Publication number: 20150094958
    Abstract: Four or more seismic attributes are integrated or merged into imaging formats and displayed for geological interpretation via extended quantization. Multi-attribute integration and classification improves the ability to identify geologic facies, and reservoir properties such as thickness, fluid type, or fracture intensity and orientation. The extended quantization groups up to eight attributes as a single attribute for geophysical data classification. Data group reduction criteria are provided to reveal common geological targets in the data, while preserving small variations or thin layers often found in hydrocarbon reservoirs. By combining multiple attributes, image quality is enhanced while providing analysts the ability to observe channels that might not be visible in any single attribute.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 2, 2015
    Applicant: Saudi Arabian Oil Company
    Inventors: Saleh Al-Dossary, Jimsong Wang
  • Publication number: 20150088424
    Abstract: A method for performing a field operation of a field having a subterranean formation. The method includes analyzing, by a computer processor, a plurality of training well logs of a plurality of training wells in the field to generate a plurality of training well markers, wherein the plurality of training well markers identify where the plurality of training wells intercept a plurality of geologic interval boundaries in the subterranean formation, propagating, by the computer processor and onto a target well log of a target well in the field, the plurality of training well markers to generate a plurality of target well markers, wherein the plurality of target well markers identify where the target well intercepts the plurality of geologic interval boundaries, and performing the field operation based at least on identifying where the target well intercepts the plurality of geologic interval boundaries.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 26, 2015
    Applicant: Schlumberger Technology Corporation
    Inventors: Nikita Sergeyevich Burlakov, Sergio Fabio Courtade, Sergey Nikolayevich Skripkin
  • Publication number: 20150088425
    Abstract: Systems and related methods to simulate, predict, and report progressive failures of rupture disks in response to thermal expansion of trapped annular fluids.
    Type: Application
    Filed: December 4, 2014
    Publication date: March 26, 2015
    Inventor: Robert Franklin Mitchell
  • Patent number: 8990053
    Abstract: Wavelet estimation method, particularly advantageous for full wavefield inversion (“FWI”) of seismic data, that makes use of both the primary and multiple reflections in the data. The inventive method uses an FWI algorithm to generate a subsurface model from primary reflections (101) in a shallow layer before first arrival of multiple reflections (101). The model is then used to simulate multiples (102). The wavelet is subsequently modified (104) such that the simulated multiples closely match the true recorded multiples (103). The simulated multiples may then be subtracted from the measured data (105) thereby creating a deeper top layer of data substantially free of multiples, and the method may then be repeated to extend the subsurface model to a greater depth (106).
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: March 24, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Spyridon K. Lazaratos, Ke Wang
  • Patent number: 8985242
    Abstract: Planning and/or drilling wellbores. At least some of the various embodiments are methods including: receiving data indicative of position of a first wellbore; reading data indicative of position of an offset wellbore; reading data indicative of a fracture diameter for the offset wellbore; calculating a first positional uncertainty of the first wellbore; calculating a second positional uncertainly of the offset wellbore taking into account the data indicative of position and the data indicative of fracture diameter; and generating a value indicative of proximity of the positional uncertainties.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: March 24, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Robello Samuel, Olivier R. Germain, Umesh N. Reddy, R. Daniel Colvin, Ramakrishna R. Chada
  • Patent number: 8990020
    Abstract: A system and method for use in a downhole tool having a fluid density measurement device positioned therein are provided. In one example, the method includes deploying the downhole tool at a first station in a borehole. The downhole tool is moved from the first station to a second station in the borehole. A plurality of fluid density values of fluid within the borehole between the first and second stations are measured using the fluid density measurement device in the downhole tool. The plurality of fluid density values may represent a continuous log of fluid densities between the first and second stations.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: March 24, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Harold Pfutzner, Peter D. Wraight
  • Publication number: 20150078625
    Abstract: Data transmission from a bottom hole assembly (BHA) includes obtaining a scan from multiple scans forming a downhole data log of a borehole within a subterranean formation. The scan includes a sequence of data items from a sensor in the BHA located in the borehole. Each data item corresponds to an azimuth angle of the sensor. Further, compressed scan data is generated from the sequence of data items on a per-scan basis, and transmitted, using a pre-determined borehole telemetry, to a surface unit.
    Type: Application
    Filed: November 20, 2014
    Publication date: March 19, 2015
    Inventors: Bo Yu, Han Yu, Remi Hutin, Yong Sun
  • Publication number: 20150066371
    Abstract: A method for acquiring and processing wellbore measurements includes measuring at least one wellbore parameter. The measured wellbore parameters are communicated to a data hub. A computer in signal communication with the data hub automatically processes the measured wellbore parameter using a predefined automatic process. The automatically processed measured wellbore parameter is communicated to at least one user interface based on assigned tasks of a user interacting with the at least one user interface with respect to a wellbore construction procedure.
    Type: Application
    Filed: November 5, 2014
    Publication date: March 5, 2015
    Inventors: James C. Brannigan, Lucian Johnston, Ginger Hildebrand
  • Patent number: 8964503
    Abstract: Formation evaluation measurements are used to estimate formation lithology. The estimated lithology is used to provide an estimate of acoustic wave slowness. The estimated acoustic wave slowness is used to provide processing parameters for acoustic data that are less sensitive to noise.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: February 24, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Michael J. Manning, Luis Jordan Andonof, Terrence H. Quinn
  • Patent number: 8965701
    Abstract: Disclosed is a method for detecting a pair of opposing breakouts in a borehole penetrating an earth formation. The method includes: conveying a downhole tool configured to perform measurements of a property of the earth formation; producing an image of the earth formation from the measurements, the image comprising a plurality of sectors; dividing the sectors into radial segments, each segment corresponding to an opposite segment; rotating the segments at least one sector at a time until a specified angle is achieved; calculating an average value for the measurements associated with each segment for each rotation of the segments; stacking the average values for opposing segments to produce stack values; determining a maximum or minimum stack value; determining if the maximum or minimum stack value exceeds a threshold value; and detecting the first breakout and the second breakout if the maximum or minimum stack value exceeds the threshold value.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: February 24, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Stefan Wessling, Jianyong Pei
  • Patent number: 8958989
    Abstract: The apparatus employs the remote field eddy-current (RFEC) inspection technique to electromagnetically measure physical parameters of a metallic pipe. RFEC devices inserted into and displaced along a cylindrical pipes may be used to measure the ratio of pipe thickness to electromagnetic skin-depth and thus allow for the non-invasive detection of flaws or metal loss. Typically these RFEC thickness measurements exhibit a so-called double-indication of flaws, an undesired artifact due to a double-peaked geometrical sensitivity function of the device. The method describes a means by which this double indication artifact may be removed by an appropriate processing of RFEC measurements performed by an apparatus specifically designed for this purpose. The invention is particularly well designed for applications in the oilfield industry.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: February 17, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Emmanuel Legendre, Thilo M. Brill, Richard A. Rosthal, Gerald N. Minerbo
  • Patent number: 8954280
    Abstract: Methods and systems for characterizing a formation are disclosed. A tool is placed in the formation. The tool comprises a perpendicular antenna set and a parallel antenna set. The perpendicular antenna set comprises at least one transmitter antenna oriented perpendicular to at least one receiver antenna and the parallel antenna set comprises at least one transmitter antenna oriented parallel to at least one receiver antenna. Data is obtained from the tool and used to determine a compensated geosignal for each of the perpendicular antenna set and the parallel antenna set. The determined compensated geosignal is used to characterize the formation.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: February 10, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Shanjun Li, Hsu-Hsiang Wu, Michael Bittar
  • Publication number: 20150039230
    Abstract: A method, and corresponding system, for formation testing includes establishing a control parameter and a test criterion for testing a formation, providing a formation tester equipped with the control parameter and the test criterion in a well bore at a test location, performing a first formation test, controlling the first formation test using the control parameter and the test criterion, collecting test data from the first formation test, and adjusting the control parameter using the test data. The method may include performing a second formation test, and controlling the second formation test using the adjusted control parameter and the test criterion. The method may include collecting additional test data from the second formation test, and readjusting the control parameter using the additional test data.
    Type: Application
    Filed: February 20, 2012
    Publication date: February 5, 2015
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Mark A. Proett, Anthony Herman Van Zuilekom
  • Patent number: 8949029
    Abstract: A method of estimating influx profile for well fluids (oil, gas, or water) to petroleum well with influx locations to a production flow, including: arranging tracer sources with tracer materials in levels of the well, arranged downstream and exposed to the fluids in the influx zones, each of the tracer sources having even release rate to the well fluid, inducing a transient in the production rate of the entire production flow by shutting in by a valve topside, changing the local exposure times of the tracer sources to the fluid, collecting samples, downstream at known sampling times, analyzing the samples for concentration and type of tracer material from the possible sources, based on the concentrations and their sampling sequence and the well geometry, calculating influx volumes from flow models.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: February 3, 2015
    Assignee: Resman AS
    Inventor: Fridtjof Nyhavn
  • Publication number: 20150025805
    Abstract: An apparatus, method and computer-readable medium for locating a joint of a casing disposed in a borehole are disclosed. The apparatus includes a sensor oriented in a plane orthogonal to a longitudinal axis of the casing. The sensor measures a magnetic field induced in the casing by the earth's magnetic field. A tool conveys the sensor through the casing along a path that is radially offset from a longitudinal axis of the casing. Transverse magnetic field measurements are obtained by the sensor at a plurality of depths along the casing. A change in the transverse measurements is identified and used to determine the location of the casing joint.
    Type: Application
    Filed: July 17, 2013
    Publication date: January 22, 2015
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Francis Chad Hanak, Martin Blanz
  • Publication number: 20150019134
    Abstract: A method and a system are provided for determining the relative positions of a wellbore and an object. The wellbore is represented by a first ellipse and the object is represented by a second ellipse. The first ellipse represents the positional uncertainty of the wellbore and the second ellipse represents the positional uncertainty of the object. The method includes receiving input data relating to a measured or estimated position of the wellbore and the object. In addition, the method includes calculating an expansion factor representing an amount by which one, or both, of the first ellipse and the second ellipse can be expanded with respect to one or both of respective first and second sets of elliptical parameters so that the first and second ellipses osculate. Further, the method includes determining, based on the calculated expansion factor, position data indicative of the relative positions of the wellbore and the object.
    Type: Application
    Filed: January 17, 2013
    Publication date: January 15, 2015
    Applicant: BP EXPLORATION OPERATING COMPANY LIMITED
    Inventor: Steven James Sawaryn
  • Patent number: 8930143
    Abstract: Enhancing resolution of distributed optical measurements along a wellbore can include acquiring optical signals during an acquisition time period, thereby producing a convolved profile along the wellbore, and deconvolving the profile using a first function corresponding to the acquisition time period, thereby determining a second function. Another method of enhancing resolution of distributed temperature measurements along a wellbore can include acquiring optical backscatter signals during at least first and second acquisition time periods, thereby producing respective first and second convolved temperature profiles along the wellbore; deconvolving the first temperature profile using a first function corresponding to the first time period, thereby determining a second function; and deconvolving the second temperature profile using the second function, thereby determining the first function corresponding to the second time period.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: January 6, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Jose R. Sierra, Gerard Glasbergen
  • Patent number: 8917094
    Abstract: Downhole tools and techniques acquire information regarding nearby conductors such as pipes, well casing, and conductive formations. At least some method embodiments provide a current flow along a drill string in a borehole. The current flow disperses into the surrounding formation and causes a secondary current flow in the nearby conductor. The magnetic field from the secondary current flow can be detected using one or more azimuthally-sensitive antennas. Direction and distance estimates may be obtainable from the azimuthally-sensitive measurements, and can be used as the basis for steering the drillstring relative to the distant conductor. Possible techniques for providing current flow in the drillstring include imposing a voltage across an insulated gap or using a toroid around the drillstring to induce the current flow.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: December 23, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael S. Bittar, Jing Li
  • Publication number: 20140365129
    Abstract: A system comprising a piece of oilfield equipment, an identifier assembly and a reader. The piece of oilfield equipment has an exterior surface. The identifier assembly comprises an identification tag storing a unique identifier. The identification tag is capable of outputting a signal indicative of the unique identifier. The identification tag is mounted to the exterior surface of the piece of oilfield equipment beyond an external surface perimeter of the piece of oilfield equipment such that the identification tag is isolated from the exterior surface of the piece of oilfield equipment. The reader has an antenna receiving the signal indicative of the unique identifier from the identification tag.
    Type: Application
    Filed: August 27, 2014
    Publication date: December 11, 2014
    Inventors: Lawrence A. Denny, Edward Patterson
  • Patent number: 8909478
    Abstract: A method and a tool that implements a method which includes measuring the viscosity and flow rates of formation fluids and obtaining the ratio of relative permeabilities of the formation fluids and wettability of the formation using the same.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: December 9, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Maki Ikeda, Sophie Nazik Godefroy, Go Fujisawa
  • Publication number: 20140358443
    Abstract: A system for calculating the radius of investigation of a radial, composite reservoir, comprises a processor; a memory and, preferably, a clock electronically coupled to the processor; a display electronically coupled to said processor; and an electronic input coupled to said processor. The processor is programmed to calculate the radius of investigation, at any given time, in the reservoir based upon a plurality of user inputs including the number of concentric regions n into which the reservoir is to be divided, a starting time or elapsed time, and data relating to the reservoir rock, fluids, and geometries of each of the n regions. The processor computes the radius of investigation using at least one of Equations (1), (2) and (6) through (12) set forth in the specification, if using the System of U.S. Oilfield Units, or using an equivalent equation if using other units.
    Type: Application
    Filed: June 4, 2013
    Publication date: December 4, 2014
    Inventors: Noor M. Anisur Rahman, Faisal M. Al-Thawad, Saud A. BinAkresh
  • Patent number: 8902221
    Abstract: Prospect assessment and play chance mapping tools are provided. For assessing potential resources, example systems provide dynamically linked chance maps, transformed in real time from geological properties. Input geological maps or other data are dynamically linked to resulting chance maps, so that changes in the input maps automatically update the chance map in real time. Users can generate a custom risk matrix dynamically linking geological maps with chance maps via interface tools, dropping maps directly into the matrix. A transform may programmatically convert the geologic domain to the chance domain. The user can navigate input maps, select areas of interest, and drag-and-drop geologic properties into an uncertainty engine and distribution builder for uncertainty assessment based on geologic reality. A merge tool can programmatically unify multiple geological interpretations of a prospect. The merge tool outputs a single chance of success value for multiple geologic property values at each grid node.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: December 2, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Thomas Hantschel, Alexander Martin Wilson, Nicola Tessen, Glenn Koller, Martin Neumaier
  • Patent number: 8902695
    Abstract: The disclosure provides a method which includes transmitting signals over a time period between a downhole location and a surface location during drilling of a wellbore; recording the time of each signal at the surface using a surface clock and the time of each signal downhole using a downhole clock; and correcting the downhole measurements using the recorded times.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: December 2, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Dmitriy Dashevskiy, Patrick J. McGinley, John D. Macpherson, Andrew G. Brooks, Thomas G. Dahl, Mitchell G. Pinnell, Paul Gerard Cairns, Robin F. Randall, Mark Andrew Hill, Edward W. Robnett
  • Patent number: 8901931
    Abstract: A method for water monitoring about a deviated well is disclosed. The method includes positioning a series of electromagnetic (EM) receivers in a completed deviated wellbore, said receivers being spaced along substantially the length of the well located in a region of a reservoir to be monitored. The method also includes positioning an electromagnetic (EM) source at a first Earth surface location. Then the EM source is activated for a first survey measurement of the reservoir, and an EM field detected at each EM receiver is recorded. The EM source is moved to a second Earth surface location, and activated for a second survey measurement of the reservoir, and an EM field detected at each EM receiver is recorded. From the first and second survey measurements at each of the receivers, an inversion is performed to determine position of water about (and specifically below) the horizontal well.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: December 2, 2014
    Assignee: Schlumberger Technology Corporation
    Inventor: Cengiz Esmersoy
  • Publication number: 20140350857
    Abstract: A method of mapping a subterranean formation having at least one wellbore therein may include operating an electromagnetic (EM) signal source and an EM receiver to generate wellbore position data. The method may also include operating a seismic signal source and a seismic receiver to generate seismic data, and generating subterranean formation data based upon the wellbore position data and the seismic data.
    Type: Application
    Filed: June 18, 2012
    Publication date: November 27, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Herve Denaclara, Andrew Morgan, Ping Zhang, David L. Alumbaugh, Bradley Bryans