Solid Content Of Gas Patents (Class 73/28.01)
  • Patent number: 9010198
    Abstract: An example aircraft debris monitoring sensor assembly includes an aircraft conduit defining a hollow core passage extending axially from an inlet opening to an outlet opening. A sensor arrangement detects debris carried by a fluid within the hollow core passage.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: April 21, 2015
    Assignee: United Technologies Corporation
    Inventors: Ravi Rajamani, Alexander I. Khibnik, William Donat, Rajendra K. Agrawal
  • Publication number: 20150096351
    Abstract: A device and method for facilitating convenient measurement of airflow in a duct detector. The device may include a detector assembly and an airflow sensor mounted within the detector assembly. The airflow sensor may be coupled to a remote control device, such as via control circuitry. A method for testing airflow in the duct detector may be performed by measuring airflow in the detector assembly, generating a signal that corresponds to the measured airflow in the detector assembly, and determining whether the generated signal exceeds a predetermined threshold signal level. If the generated signal does not exceed the threshold signal level, alarms may be activated and/or blowers in a ventilation system may be deactivated.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 9, 2015
    Applicant: SimplexGrinnell LP
    Inventors: Todd F. Orsini, Donald D. Brighenti, Anthony J. Capowski
  • Publication number: 20150059443
    Abstract: A measuring device for measuring dust in flue gas of small-scale furnace installations for solid fuels includes: a measuring probe; a weighing device having a filter device; a heated suction hose connecting the measuring probe to the weighing device; and a weighing module in which the weighing device is arranged. The weighing device is thermally insulated in the weighing module.
    Type: Application
    Filed: March 25, 2013
    Publication date: March 5, 2015
    Inventor: Stephan Ester
  • Patent number: 8966958
    Abstract: A new installment classifies particles by their aerodynamic size This installment produces a truly monodisperse aerosol, and can produce very narrow distributions over a wide range of sizes Particles suspended in a fluid are classified by supplying particles into suspension in a carrier flow of a fluid and providing an acceleration to the flow at an angle to the velocity of the flow to cause the particles to follow trajectories determined by the acceleration and drag on the particles caused by the fluid The particles are then classified according to their trajectories The installment has a flow channel and a source of particles to supply particles into suspension in a carrier fluid in the flow channel A drive is connected to the flow channel at an angle to the flow of fluid through the carrier flow channel, and a classification system classifies the suspended particles according to their trajectories.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: March 3, 2015
    Assignee: The Governors of the University of Alberta
    Inventor: Jason Olfert
  • Patent number: 8966956
    Abstract: A PM amount detecting apparatus having a PM sensor installed in a sensor case into which a part of exhaust gas of an internal combustion engine allowed to flow through an exhaust gas passage is intaken. The sensor case has a structure which lowers a flow rate of the exhaust gas therein to such an extent that PM is capable of performing thermal phoresis, and a structure which generates therein such a temperature difference that PM is guided to the PM sensor in accordance with the thermal phoresis.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: March 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Mamoru Yoshioka
  • Patent number: 8950239
    Abstract: An apparatus is provided, which includes a dust detector, a voltage source, and a controller. The dust detector includes two opposing surfaces and a conductive dust sensor. The two opposing surfaces are disposed in spaced, opposing relation to allow for the passage of airflow between the surfaces, and the conductive dust sensor is disposed at a surface of the two opposing surfaces. The voltage source is configured and controlled to establish an electrostatic field at least partially between the two opposing surfaces to facilitate directing conductive particles in the airflow passing between the two opposing surfaces towards the dust sensor. The controller monitors for a leakage current within the conductive dust sensor and determines whether the leakage current exceeds a predetermined trigger level indicative of the presence of conductive dust, and if so, automatically indicates a conductive dust warning.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: February 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Joseph Kuczynski, Melissa K. Miller, Prabjit Singh, Heidi D. Williams, Jing Zhang
  • Patent number: 8943873
    Abstract: Sizes or size distribution of aerosol particles of an aerosol gas stream is detected. A particle-free carrier flow is saturated in a saturator by a first condensing medium, after which, the carrier flow is mixed in a mixing section turbulently with aerosol particle flow. Advantageously, a plurality of separate mixtures with different saturation ratios are provided and introduced to the first condensing environment in order to condensate the condensing medium onto the aerosol particles. Depending on the saturation ratio, the particles with different lowest original size are activated and grown in a growing section and/or in the condensing environment. After activation and growing, the particles are detected by a detecting means.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: February 3, 2015
    Assignee: Airmodus Oy
    Inventors: Joonas Vanhanen, Markku Kulmala, Jyri Mikkilä, Erkki Siivola, Mikko Sipilä
  • Patent number: 8939013
    Abstract: A device and method for facilitating convenient functional testing of a duct detector is provided. The device includes a duct detector having a remote-controlled test light mounted in a housing thereof, and a detector chamber defined by a filter screen and a plurality of labyrinth members that allow light emitted by the test light to enter the detector chamber. A functional test of the duct detector can be conducted by activating the test light. If the detector is functioning properly, an amount of light emitted by the test light will be detected by the light detector, thereby simulating the presence of an excessive amount of particulate within the detector chamber. The light detector will then generate an output signal that will cause the actuation of alarms and/or the deactivation of a blower system, thereby indicating functionality of the duct detector.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: January 27, 2015
    Assignee: Tyco Fire & Security GmbH
    Inventors: Donald D. Brighenti, Jeffrey R. Brooks
  • Patent number: 8925370
    Abstract: An object of the present invention is to provide a particulate matter detecting apparatus for an internal combustion engine that can maintain an appropriate balance between reduction in time required for one detecting sequence and limiting of power consumption of a heater for sensor reset. The particulate matter detecting apparatus for an internal combustion engine includes: a sensor disposed at an exhaust passage of an internal combustion engine, the sensor including a pair of electrodes for trapping particulate matter; voltage applying means for applying voltage across the electrodes; discharge amount index acquiring means for acquiring a predetermined index associated with a discharge amount of the particulate matter; and voltage adjusting means for adjusting the voltage to be applied across the electrodes based on the index acquired by the discharge amount index acquiring means such that the voltage is lower when the discharge amount is large than when the discharge amount is small.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: January 6, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroki Nishijima
  • Publication number: 20150000375
    Abstract: In one embodiment, the present disclosure provides a particulate monitoring system. The system includes a vehicle. A wake conditioner is mounted in the vehicle. A sample inlet is placed in communication with an engineered vehicle wake that will be produced by the wake conditioner when the vehicle is in motion.
    Type: Application
    Filed: June 26, 2014
    Publication date: January 1, 2015
    Applicant: Board of Regents of the Nevada System of Higher Education, on behalf of the Desert Research Instit
    Inventors: Vicken Etyemezian, George Nikolich
  • Patent number: 8899097
    Abstract: Systems and methods for detection of airborne impurities in confined spaces are disclosed. In one embodiment, a detection system to detect impurities in a confined chamber comprises an emitter to emit radiation, at least one channel positioned proximate the emitter to receive radiation from the emitter at a first end of the channel, and a receiver positioned proximate a second end of the channel to receive radiation from the emitter, and generate a first signal in response to the radiation received from the emitter. Other embodiments may be described.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: December 2, 2014
    Assignee: The Boeing Company
    Inventor: Tateh Wu
  • Publication number: 20140345364
    Abstract: An apparatus and a method for detecting hazardous substances on a surface of an object are provided. The apparatus for detecting hazardous substances on a surface of an object comprises: a conveyer belt (1) for conveying an object, a capture device (6) provided to match the conveyer belt (1), wherein the capture device (6) may automatically capture a substance adsorbed on the surface of the object when the object is being conveyed by the conveyer belt (1), and a detection module (3) for automatically detecting the substance captured by the capture device (6). The present invention also provides a method for detecting a substance adsorbed on the surface of an object by utilizing the detection apparatus and a method for detecting whether the detected substance is hazardous or not. The detection technique of the present invention enables quick detection for poisons, explosives, and other substance particles attached on the surfaces of cargos and mails.
    Type: Application
    Filed: December 12, 2012
    Publication date: November 27, 2014
    Inventors: Weizhi Lin, Haijun Yu, Yangtian Zhang
  • Patent number: 8869594
    Abstract: A particle detecting device evaluating system having a test chamber provided, in one face thereof, with a plurality of gas intake vents, where respective particle detecting devices are provided; an injecting device for injecting particles into the test chamber; a light sheet forming device for forming a light sheet within the test chamber; and an imaging device for imaging particles made visible by the light sheet.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: October 28, 2014
    Assignee: AZBIL Corporation
    Inventor: Shinsuke Yamasaki
  • Patent number: 8869593
    Abstract: The invention provides an apparatus for increasing the size of gas-entrained particles in order to render the gas-entrained particles detectable by a particle detector, the apparatus comprising an evaporation chamber (2) and a condenser (7); the apparatus is configured so that vapour-laden gas from the evaporation chamber can flow into the condenser and condensation of the vaporisable substance onto gas-entrained particles in the condenser takes place to increase the size of the particles so that they are capable of being detected by a particle detector.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: October 28, 2014
    Assignee: Particle Measuring Systems Inc.
    Inventors: Boris Zachar Gorbunov, Harald Wilhelm Julius Gnewuch
  • Patent number: 8845798
    Abstract: A particulate matter detecting apparatus for an internal combustion engine that can estimate a discharge amount of the particulate matter accurately. The particulate matter detecting apparatus for an internal combustion engine, comprises: a sensor disposed at an exhaust passage of the internal combustion engine, the sensor including a pair of electrodes for detecting particulate matter in an exhaust gas; means for estimating a discharge amount of the particulate matter based on an output of the sensor, and means for acquiring a predetermined parameter that serves as an index for a rate with which the particulate matter in the exhaust gas is deposited on the sensor. The discharge amount estimating means corrects an estimated value of the discharge amount of the particulate matter based on the parameter acquired by the parameter acquiring means.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: September 30, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroki Nishijima
  • Publication number: 20140238108
    Abstract: A method for regenerating a particle sensor, which comprises a ceramic base body, in the exhaust gas duct of an internal combustion engine for driving a motor vehicle, wherein a particle loading of the particle sensor is determined by applying an electrical voltage between at least two electrodes with interdigital arrangement, a temperature of the particle sensor is determined with a temperature sensor mounted to the ceramic base body or from the electrical resistance of a heating element and said particle sensor is regenerated by means of heating with the electrical heating element.
    Type: Application
    Filed: February 24, 2014
    Publication date: August 28, 2014
    Inventors: Ariel Di Miro, Bernhard Kamp, Michael Bessen
  • Patent number: 8813582
    Abstract: A system for testing the efficiency of a test HEPA filter, the system comprises a dilution system and a sampling system. The dilution system processes samples collected upstream of the test HEPA filter. The dilution system has a test portion and a calibrated portion. The calibrated portion aids in determining the dilution ratio of the test portion thereby rendering the dilution system self-calibrating. The sampling system receives upstream samples via the dilution system, and downstream samples collected directly downstream of the test HEPA filter. The sampling system incorporates a flow rate balancing system to ensure accurate counts with respect to samples collected upstream and downstream of the test HEPA filter. The sampling system works well with particle counters fitted with relatively weak fans to draw in samples for counting; this is achieved by connecting the sampling system to both the inlet and exhaust outlet of a particle counter.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: August 26, 2014
    Assignee: The United States of America as Represented the Secretary of the Army
    Inventors: Derek J. Mancinho, Myat S. Win
  • Patent number: 8813540
    Abstract: The invention relates to novel methods and to devices for a measuring and analysis apparatus that measures impurities and/or particles in a gas or air. In a particle separation step, target particles having predetermined particle properties are separated from remaining particles from a gas or gas mixture such as air or a liquid, in short a fluid, that contains a particle mixture, and the occurrence and/or frequency of said target particles is determined in a measuring chamber. The likewise novel cooling of the radiation sources required for measurement permits the use of such having high power, as is required for measuring few particles or the smallest impurities. A further novel expansion of the electrical measurement range allows small but also abundant particles and impurities to be measured. In addition, a novel interface simplifies the start-up of the apparatus.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: August 26, 2014
    Assignee: MaxDeTec AG
    Inventor: Markus Dantler
  • Publication number: 20140230523
    Abstract: A device for measuring the particle concentration in an aerosol using a flow tube includes a cavity in which there is a sleeve, the cavity branching off from the flow tube. The sleeve includes, at its end facing away from the flow tube, a collar. The collar encircles the periphery of the sleeve and is fastened at the periphery of the cavity. There is one or more inflow openings in the collar. At least one outflow opening is in an end of the sleeve, which end extends into the flow tube. A measuring chamber is also included in the cavity on the side of the sleeve facing away from the flow tube.
    Type: Application
    Filed: June 14, 2012
    Publication date: August 21, 2014
    Inventors: Karl Stengel, Gerhard Haaga, Michael Neuendorf, Joerg Staib, Andrea Matteucci
  • Publication number: 20140230522
    Abstract: A cleanliness measuring carriage includes a cleanliness measuring device for measuring cleanliness within a semiconductor manufacturing room, a holding unit for holding the cleanliness measuring device, and a conveying unit for conveying the cleanliness measuring device along a substrate container transport lane.
    Type: Application
    Filed: August 29, 2013
    Publication date: August 21, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Eri UEMURA, Makiko KATANO, Tsunekazu YASUTAKE
  • Patent number: 8783090
    Abstract: The present disclosure provides apparatus and methods to determine real-time total carbon content, non-inclusive of carbon dioxide, and/or solid carbon content of engine exhaust. For a total carbon content determination, substantially all carbon dioxide is removed from the exhaust, and thereafter substantially all the remaining carbon of the exhaust is oxidized to provide a quantity of carbon dioxide which then may be used to determine total carbon content of the exhaust. For solid carbon content determination, in addition to substantially all carbon dioxide being removed from the exhaust, substantially all carbon-containing non-solid substances are also removed from the exhaust, and thereafter substantially all the remaining carbon of the exhaust is oxidized to provide a quantity of carbon dioxide which then may be used to determine solid carbon content of the exhaust.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: July 22, 2014
    Assignee: Southwest Research Institute
    Inventors: Qiang Wei, Imad Said Abdul-Khalek
  • Patent number: 8773533
    Abstract: A detection system on detecting a light source or an object irradiated by the light source serving as an object to be photographed with high accuracy and capturing a vivid image of the object to be photographed and a signal processing method and a smoke sensor. A detection system includes an image pickup unit, a light source, a first computing unit, a second computing unit, a third computing unit, a detecting unit, and a correction instructing unit. The correction instructing unit outputs a correction instructing signal when the absolute value of a computation result A or that of a computation result B exceeds a permissible decrement. The third computing unit corrects the computation result of which absolute value is reduced between the computation results such that the decrement is less than or equal to the permissible decrement when receiving the correction instructing signal, and performs computation.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: July 8, 2014
    Assignee: Rhythm Watch Co., Ltd.
    Inventor: Jun Fujimori
  • Patent number: 8767211
    Abstract: An automated analysis method for an impactor used as a measuring transducer for the selective determination of oil mist or aerosols. The process includes the steps of rotating the deflector plate (5) of the measuring transducer (1) about the symmetry axis thereof and of determining the quantity of oil deposited by means of an optical analyzing device from the extinction of a light beam reflected from deflector plate (5) due to the alternation between the background and the pattern produced by the micronozzles (4).
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: July 1, 2014
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Andreas Seeck, Ralf Strothmann, Andreas Mohrmann
  • Patent number: 8726720
    Abstract: A particulate monitoring system includes a conduit in which to a pass a fluid sample from an input port to an output port. The particulate monitoring system receives a fluid sample inputted to the conduit through the input port. The fluid sample can include different sizes of particulate matter. The particulate monitoring system controls a flow of the fluid sample through the conduit to age the particulate matter. Gravitational forces cause a portion of the particulate matter in the fluid sample to fall into a basin as opposed to being exhausted through the output port, which is disposed at a vertically higher level of the conduit than the input port. Thus, the particulate monitoring system outputs a portion of the original particulate matter in the fluid sample (e.g., particulate matter that does not drop into the basin out due to gravity) for analysis.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: May 20, 2014
    Assignee: Thermo Fisher Scientific Inc.
    Inventors: Kevin J. Goohs, Jeffrey Socha
  • Publication number: 20140125487
    Abstract: This disclosure describes systems, methods, and apparatus for rapidly detecting smoke or other particles or aerosols generated in any one or more compartments of a multi-compartment electronics enclosure. The herein disclosed system includes a particle sensor and an airflow controller that pulls air and particles from the one or more compartments through fluid pathways and into the particle sensor.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 8, 2014
    Applicant: ADVANCED ENERGY INDUSTRIES, INC.
    Inventors: Scott Polak, Jeffrey Roberg, Michael Mueller
  • Patent number: 8713991
    Abstract: A sensor assembly includes a voltage source, a sensor electrode, a grounded assembly, an integration capacitor, and a current meter. The sensor electrode is coupled to the voltage source to receive a voltage. The sensor electrode is disposed within a directed and controlled exhaust flow to facilitate particle agglomeration into particulate matter structures at a surface of the sensor electrode. The grounded assembly is coupled to a ground reference and disposed at a distance from the sensor electrode. The integration capacitor is coupled to a negative side of the voltage source to integrate in time current pulses from charge transfers from the sensor electrode of the particulate matter structures. The current meter is coupled to the voltage source to measure an integrated value of current supplied to the voltage source in response to charge transfers from the sensor electrode to the particulate matter structures in the exhaust flow.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: May 6, 2014
    Assignee: EmiSense Technologies, LLC
    Inventors: Klaus Allmendinger, Brett Henderson, Anthoniraj Lourdhusamy, Lee Sorensen, James Steppan
  • Publication number: 20140116113
    Abstract: A particulate sensor apparatus may include an exhaust line through which exhaust gas flows, and a sensor that may be disposed at one side in the exhaust line and generates electrical charges when a particulate passes near vicinity of the sensor, wherein an electrode portion may be formed on a front surface of the sensor facing the particulate.
    Type: Application
    Filed: December 31, 2012
    Publication date: May 1, 2014
    Applicants: Hyundai Motor Company, SNU R&DB Foundation, Kia Motors Corporation
    Inventors: Jin Ha Lee, Sera Lim, Keunho Jang, Kukjin Chun, Jin-woo Jeong
  • Patent number: 8707761
    Abstract: A shielding part is formed on a detection part in a particulate matter detection element. The detection part has a pair of detection electrodes formed in a comb structure. A shielding layer is made of heat insulating material and formed on the detection part in order to shield a predetermined area having non-uniform electric field intensity. An area having uniform electric field intensity on the detection part is exposed only to exhaust gas as target detection gas when a predetermined voltage is supplied between the detection electrodes in order to detect electric characteristics of the detection part. This structure prevents the area other than the area having the uniform electric field intensity on the detection part from being exposed to the exhaust gas.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: April 29, 2014
    Assignee: Denso Corporation
    Inventors: Eriko Maeda, Takehito Kimata, Yushi Fukuda
  • Patent number: 8711338
    Abstract: The present disclosure describes a method and apparatus for detecting particles in a gas by saturating the gas with vapor and causing the gas to flow through a chamber with walls that are at a temperature different than the temperature of the entering gas creating a gas turbulence within the chamber resulting in the gas becoming super-saturated with vapor and causing said super-saturated vapor to condense on said particles and form droplets, which are then detected and counted by an optical light-scattering detector.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: April 29, 2014
    Assignee: MSP Corporation
    Inventors: Benjamin Y. H. Liu, Thuc M. Dinh, William D. Dick, Aaron M. Collins, Francisco J. Romay
  • Patent number: 8707678
    Abstract: A system for improving operation of an engine having a particulate matter sensor is presented. The system may be used to improve engine operation during cold starts especially under conditions where water vapor or entrained water droplets are present in vehicle exhaust gases. In one embodiment, an engine controller that activates a heater of an exhaust gas sensor after an output of a particulate matter sensor exceeds a threshold value after an engine is started.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: April 29, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Garry Anthony Zawacki, Robert F. Novak, Roberto Teran, Jr., Dave Charles Weber, Michiel J. Van Nieuwstadt, Michael Hopka, William Charles Ruona
  • Publication number: 20140102173
    Abstract: A curved gaseous particle detector includes a stack of two layers that are curved and maintained together by a frame formed of two spars defining a plane. The two spars are connected together by at least two curved bars outside of the plane and the frame being placed between the two layers of the stack.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 17, 2014
    Inventors: Sandrine Cazaux, Thierry Lerch, Stephan Aune
  • Publication number: 20140102174
    Abstract: Secure areas, such as at airports or other security-critical facilities, are entered from freely accessible areas, often by means of access locks. This bottleneck, which is present in any case, is used to check for substances of concern, such as drugs or explosive materials. In the case of solids, as is known, particles extracted from the access lock and retained in a screen are vaporized and the vapor is examined. Several of the screens are arranged on rotatable carrying disks and undergo consecutively the steps of vaporization and analysis. The aim of the invention is to make known methods more efficient in order to increase the throughput through such access locks. The aim is achieved by a device for which available heating and extraction elements are assigned to multiple rotational positions of the carrying disks, whereby adjacent rotational positions lie apart from each other by only half the distance of two screens.
    Type: Application
    Filed: April 5, 2012
    Publication date: April 17, 2014
    Applicant: KABA GALLENSCHUETZ GMBH
    Inventors: Harald Eichner, Michael Huck
  • Patent number: 8677803
    Abstract: A method of detecting particulate matter on a particulate matter sensor includes the steps of measuring an electrical characteristic associated with the sensor, determining a value corresponding to the impedance across the sensor, and compensating the impedance for the temperature at which it was determined. The method further includes determining an estimate of the total amount of particulate matter accumulated while limiting the effects of large particles captured on the sensor or blown off the sensor. The information produced by the method may be used to provide diagnostic information regarding a particulate control system.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: March 25, 2014
    Assignee: Delphi Technologies, Inc.
    Inventors: Lary R. Hocken, Charles S. Nelson
  • Publication number: 20140076025
    Abstract: A microparticle count apparatus that includes or is connected to a gas reservoir for increasing stability of air pressure at the microparticle counter even when air pressure or air flow rate provided by a nozzle coupled to the microparticle measurement apparatus is unstable.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Inventor: Masakazu Okamura
  • Patent number: 8671736
    Abstract: A sensor includes a housing, a central sensor electrode assembly, an insulating member, and a trace. The central sensor electrode assembly is coupled to a supply side of a voltage source. The insulating member is coupled between the housing and the central sensor electrode assembly. The insulating member circumscribes a section of the central sensor electrode assembly. The trace is coupled to the insulating member and circumscribes the section of the central sensor electrode assembly. The trace directs at least a portion of leakage current away from a voltage ground offset on an opposite side of the central sensor electrode assembly.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: March 18, 2014
    Assignee: EmiSense Technologies, LLC
    Inventors: Klaus Allmendinger, Joe Fitzpatrick, Brett Henderson, Anthoniraj Lourdhusamy, Lee Sorensen, James Steppan, Gangquiang Wang
  • Patent number: 8661993
    Abstract: In an exhaust gas treatment system including a denitration device that removes nitrogen oxide in exhaust gas from a heavy fuel-fired boiler, an air preheater that recovers heat in the gas after the nitrogen oxide is removed, an electric precipitator that removes dust while adding ammonia into the gas after heat recovery, a desulfurization device that removes sulfur oxide in the gas after dust removal, and a stack that exhausts the gas after desulfurization to the outside, an ash-shear-force measuring instrument is provided to measure an ash shear force, which is ash flowability, on the downstream side of the electric precipitator, so that a feed rate of an air supply unit that supplies air to the boiler is reduced according to ash shear-force information.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: March 4, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Naoyuki Kamiyama, Tomoo Akiyama, Toshihiko Setoguchi, Koutaro Fujimura, Yoshihisa Yamamoto, Koichi Tagami, Yasutoshi Ueda
  • Publication number: 20140053586
    Abstract: There is disclosed a system and apparatus for connecting remote and environmental sensors and other operating systems to a portable computing and communications device. The portable device configured to receive and process a set of data and transmit a response or message to at least the user on the quality of the data received. The portable device adapted to reconfigure the remote sensors or operating systems to produce a new set of data.
    Type: Application
    Filed: October 19, 2011
    Publication date: February 27, 2014
    Applicant: TSI INCORPORATED
    Inventors: Arndt Poecher, Gerald M. Bark, Rajagopala Menon
  • Publication number: 20140053629
    Abstract: Methods and systems for detecting ambient aerosols are disclosed. An example method can comprise receiving an air sample comprising aerosol particles. A method can comprise determining at least one of concentration of the aerosol particles and size of an aerosol particle from the aerosol particles. A method can also comprise determining a composition of the air sample if at least one of the concentration exceeds a first predetermined threshold and the size exceeds a second predetermined threshold. A method can further comprise providing a notification indicating the presence of volcanic ash based on the determined composition of the aerosol.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 27, 2014
    Inventor: Catherine Cahill
  • Patent number: 8640526
    Abstract: A method for operating a particle sensor (10). The particle sensor (10) has at least two inter-digital electrodes (12, 13) which engage one in the other and to which a sensor voltage U(IDE) (21) is applied in order to determine loading of the particle sensor (10) with soot particles (16). A sensor current I(IDE) (31) across the electrodes (12, 13) is measured and evaluated. In order to remove the loading with soot, a heating element (14) heats the particle sensor (10) in a regeneration phase. The method characterized in that the sensor current I(IDE) (31) is determined, and a shunt diagnosis of the particle sensor (10) is carried out in accordance with the measured sensor current I(IDE) (31).
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: February 4, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Ariel Di Miro, Enno Baars, Johannes Grabis, Alexander Hetznecker, Mathias Klenk, Bernhard Kamp, Bastian Roetzler, Henrik Schittenhelm
  • Patent number: 8635900
    Abstract: A method for performing on-board functional diagnostics on a soot sensor of a vehicle and/or for detecting further components in the soot in a motor vehicle having an internal combustion engine. The soot sensor is electrically connected to an evaluation circuit with is permanently installed in the motor vehicle. In order to specify a method for performing functional diagnostics on a soot sensor and/or for detecting further components in the soot, with which method it is possible to detect a faulty soot sensor and/or further components in the soot in a cost-effective way, the evaluation circuit measures the temperature coefficient of the soot sensor and detects the defectiveness of the soot sensor and/or the presence of further components in the soot on the basis of the temperature coefficient of the soot sensor.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: January 28, 2014
    Assignee: Continental Automotive GmbH
    Inventors: Johannes Ante, Rudolf Bierl, Markus Herrmann, Andreas Ott, Torsten Reitmeier, Willibald Reitmeier, Denny Schädlich, Manfred Weigl, Andreas Wildgen
  • Patent number: 8627645
    Abstract: A method for controlling a particulate matter sensor heater is provided. The method includes operating the heater to burn-off soot accumulated on the sensor; and adjusting the heater level based on sensor output generated during the heater operation. In this way, improved heater control can be achieved using the sensor output already available.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: January 14, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael Hopka, Michiel J. Van Nieuwstadt, Robert F. Novak
  • Publication number: 20140000343
    Abstract: In a sampling head (1) of an analysis arrangement (31), provision is made that a sample stream delivered via a sampling line (2) and a dilution air stream delivered through a dilution air inlet (4) are mixed together in a dilution unit (3) in such a way that a volumetric quantity entrained in at least one receiving space moved along by a movable element (8) between the sampling stream and the dilution air stream are exchanged with each other, wherein the analysis arrangement (31) has a gas analyzer (35) for the analysis of the slightly diluted sample stream and a particle determination unit (32) for the analysis of the enriched dilution air stream.
    Type: Application
    Filed: March 6, 2012
    Publication date: January 2, 2014
    Applicant: Testo AG
    Inventors: Andreas Kaufmann, Florian Beck
  • Patent number: 8601886
    Abstract: Some embodiments relate to an apparatus for metallic particulate detection. The apparatus comprises: an entry stage defining an input chamber to receive an element having particulate matter thereon; a sensor defining a passage in fluid communication with the input chamber to receive the particulate matter from the input chamber and to detect the particles in the particulate matter; a vented recovery stage defining a recovery chamber to receive and capture at least some of the particulate matter passing through the passage; and at least one air outlet positioned in the input chamber to direct pressurized air from the at least one air outlet to impinge on the element to remove the particulate matter from the element.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: December 10, 2013
    Inventor: Andrew James Becker
  • Patent number: 8590791
    Abstract: A test swipe for testing drugs, explosives or a chemical compound includes a base; and one or more swipe pads positioned on the base to receive one or more chemicals thereon, the one or more swipe pads displaying an array of colors after receiving the chemicals to uniquely identify a chemical compound.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: November 26, 2013
    Assignee: Chemspectra, Inc.
    Inventors: Jeffrey Haas, Douglas Haas
  • Publication number: 20130298640
    Abstract: A method for operating a soot sensor that has an interdigital electrode structure, to which a measurement voltage is applied. Soot particles from an exhaust gas flow are deposited onto the interdigital electrode structure and the measurement current is evaluated as a measure of the soot load of the soot sensor. The interdigital electrode structure is burned clean at or above a predetermined soot load, which is detected by means of an upper current threshold. The method includes burning the interdigital electrode structure clean by heating up the soot sensor after the upper current threshold has been reached; monitoring the measurement current while the interdigital electrode structure is being burned clean; and stopping the burning clean when the value of the measurement current has reached a lower current threshold.
    Type: Application
    Filed: December 21, 2011
    Publication date: November 14, 2013
    Applicant: CONTINENTAL AUTOMOTIVE GmbH
    Inventors: Johannes Ante, Philippe Grass, Markus Herrmann, Willibald Reitmeier, Denny Schädlich, Manfred Weigl, Andreas Wildgen
  • Patent number: 8578756
    Abstract: In a PM detection sensor with a sensor element having a pair of detection electrodes formed on a substrate, quantity of PM accumulated in the detection electrode is calculated on the basis of a resistance change between the detection electrodes. A series circuit composed of a temperature detection resistance and a capacitor connected in series is formed on a conductive path in the sensor element. A microcomputer in an ECU instructs a power source to supply a DC voltage to the resistance and the capacitor to make a first state in which no current flows in the resistance when a quantity of PM accumulated in the sensor element is detected. The microcomputer instructs the power source to supply an AC voltage to the resistance and the capacitor to make a second state in which a current flows in the resistance when a temperature of the sensor element is detected.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: November 12, 2013
    Assignee: Denso Corporation
    Inventor: Toshiyuki Suzuki
  • Patent number: 8578796
    Abstract: A device for sampling surfaces for the presence of compounds is provided, including a housing having a proximal end adapted to receive it negative pressure gradient and a distal end adapted to contact the surfaces; a heating element spaced from the distal end; a primary filter spaced from the heating element; and a secondary filter spaced from the primary filter, the secondary filter removably received by the housing. Also provided is as method for sampling a surface for the presence of compounds, the method including contacting the surface to dislodge the compounds from the surface; capturing first fractions of the compounds with a primary filter while allowing second fractions of the compounds to pass through the primary filter; heating the primary filter to volatilize the first fractions; capturing the volatized first fractions and the second fractions with a secondary filter; and analyzing the secondary filter to identify the compounds.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: November 12, 2013
    Assignee: U.S. Departement of Homeland Security
    Inventor: Inho Cho
  • Publication number: 20130283887
    Abstract: A method for operating a soot sensor in the exhaust gas tract of an internal combustion engine. The soot sensor includes an inter-digital electrode structure to which a measurement voltage is applied. Soot particles from the exhaust gas flow deposit themselves on the inter-digital electrode structure and an measuring current is evaluated as a measurement for the soot concentration of the soot sensor. A heating element for burning clean the inter-digital electrode structure is provided. The method for operating the soot sensor has good measurement results and the shortest possible idle time. To this end, a point in time for burning clean the soot sensor is determined in accordance with the operational state of the internal combustion engine and then, the burning clean of the inter-digital electrode structure starts by heating the soot sensor by the heating element.
    Type: Application
    Filed: December 14, 2011
    Publication date: October 31, 2013
    Inventors: Johannes Ante, Markus Herrmann, Andreas Ott, Willibald Reitmerier, Denny Schädlich, Manfred Weigl, Andreas Wildgen
  • Patent number: 8555700
    Abstract: A particulate filter particularly suited for analytical gravimetric weighing applications is disclosed. The particulate filter includes a polytetrafluoroethylene (PTFE) media supported by a ring and yields stable microgram and submicrogram weighing results. The support ring may be PTFE, metal foil, or another non-hygroscopic polymer such that the mass of the filter does not vary with changes in atmospheric moisture. The filter simplifies the discharge of electrostatic charge buildup such that when a conductive filter media is combined with a conductive ring device, the discharge may be accomplished by placing the filter on a grounded weighing pan or other surface. The particulate filter can simplify filter identification by including identification symbols imprinted on each side of the filter media.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: October 15, 2013
    Assignee: Measurement Technology Laboratories, LLC
    Inventor: David A. Dikken
  • Publication number: 20130239659
    Abstract: A device and method for facilitating convenient functional testing of a duct detector is provided. The device includes a duct detector having a remote-controlled test light mounted in a housing thereof, and a detector chamber defined by a filter screen and a plurality of labyrinth members that allow light emitted by the test light to enter the detector chamber. A functional test of the duct detector can be conducted by activating the test light. If the detector is functioning properly, an amount of light emitted by the test light will be detected by the light detector, thereby simulating the presence of an excessive amount of particulate within the detector chamber. The light detector will then generate an output signal that will cause the actuation of alarms and/or the deactivation of a blower system, thereby indicating functionality of the duct detector.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 19, 2013
    Applicant: SIMPLEXGRINNELL LP
    Inventors: Donald D. Brighenti, Jeffrey R. Brooks