With Time Integration Patents (Class 73/861.43)
  • Publication number: 20140026644
    Abstract: By monitoring pressure transients in a liquid within a liquid distribution system using only a single sensor, events such as the opening and closing of valves at specific fixtures are readily detected. The sensor, which can readily be coupled to a faucet bib, transmits an output signal to a computing device. Each such event can be identified by the device based by comparing characteristic features of the pressure transient waveform with previously observed characteristic features for events in the system. These characteristic features, which can include the varying pressure, derivative, and real Cepstrum of the pressure transient waveform, can be used to select a specific fixture where a valve open or close event has occurred. Flow to each fixture and leaks in the system can also be determined from the pressure transient signal. A second sensor disposed at a point disparate from the first sensor provides further event information.
    Type: Application
    Filed: May 7, 2013
    Publication date: January 30, 2014
    Applicant: University of Washington
    Inventor: University of Washington
  • Publication number: 20130104668
    Abstract: A method and apparatus for measuring volume flow rate of a liquid flowing into a container and/or volume of the liquid flowed into the container, with which method, respectively with which apparatus a high measure of automation is achievable in microfluidic systems, especially in the field of analysis Before liquid flows in, gas is enclosed under a starting pressure in a predetermined starting volume in the container, then liquid is allowed to flow into the container to compress the enclosed gas to a gas volume dependent on the volume of the flowed-in liquid, and to effect a rise of gas pressure of the gas in the container relative to the starting pressure dependent on the volume of liquid which has flowed in and on the volume flow rate of the inflowing liquid, the gas pressure in the container is measured as a function of time, and the volume flowed in up to a given time and/or the volume flow rate of inflowing liquid at the given time are/is determined based on the measured gas pressure.
    Type: Application
    Filed: June 20, 2011
    Publication date: May 2, 2013
    Applicant: Endress + Hauser Conducta Gesellschaft fur Mess - und Regeltechnik mbH + Co. KG
    Inventors: Michael Hanko, Stefanie Honncher
  • Patent number: 7424895
    Abstract: Systems and methods for flow verification and validation of mass flow controllers are disclosed. A mass flow controller may be commanded to a specified flow and flow measurement commenced. During an interval, gas is accumulated in a first volume and measurements taken within this volume. The various measurements taken during the interval may then be used to calculate the flow rate. The flow rate, in turn, may be used to determine the accuracy of the mass flow controller relative to a setpoint.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: September 16, 2008
    Assignee: Celerity, Inc.
    Inventors: Stuart A. Tison, Sandeep Sukumaran, James Barker
  • Patent number: 7412986
    Abstract: Systems and methods for flow verification and validation of mass flow controllers are disclosed. A mass flow controller may be commanded to a specified flow and flow measurement commenced. Gas is accumulated in a first volume and while measurements are taken within this volume. Gas may then flow into a second volume while measurements are taken. The various measurements taken during the two intervals may then be used to calculate the flow rate. The flow rate, in turn, may be used to determine the accuracy of the mass flow controller relative to a setpoint. Additionally, these systems and methods may utilize only one volume to perform flow verification by flowing gas into this volume, taking measurements, and calculating the flow rate based only upon this set of measurements.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: August 19, 2008
    Assignee: Celerity, Inc.
    Inventors: Stuart A. Tison, Sandeep Sukumaran, James Barker
  • Patent number: 6789024
    Abstract: A microprocessor based flow meter establishes a series of pump on and off time intervals. Using previously entered flow rate information, the meter establishes quantities of flow during each pumping cycle or totals for predetermined time intervals such as days or weeks. Quantities of flow can be displayed on a per cycle basis or can be accumulated based on predetermined elapsed time intervals such as days or weeks.
    Type: Grant
    Filed: November 16, 2000
    Date of Patent: September 7, 2004
    Assignee: Metropolitan Industries, Inc.
    Inventors: John R. Kochan, Jr., Anton Belehradek, Jr.
  • Patent number: 6343656
    Abstract: A method for optimizing production from a rod-pumping system includes the steps of providing a well having a rod-pumping system for pumping a fluid from a downhole location of the well to a surface location of the well; providing a mathematical model for determining a dynagraph relationship for the well from power consumption of the rod pumping system; measuring power consumption per cycle of the rod pumping system; determining a downhole dynagraph relationship from the power consumption per cycle and the model; measuring real time values of wellhead pressure and preferably wellhead temperature; and determining an optimum operating condition for the rod-pumping system from the downhole dynagraph relationship and the real time values.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: February 5, 2002
    Assignee: Intevep, S.A.
    Inventors: Manuel Vazquez, Jose Fernandes
  • Patent number: 6313645
    Abstract: In a method and apparatus for determining the volumetric proportion of water in snow and the density of snow, a probe consisting of at least three parallel, but differently spaced, electrical conductors is installed in an area so that the probe is surrounded by the snow, an electromagnetic signal is applied repeatedly to pairs of the conductors for determining different dielectricity coefficients, wherefrom the actual dielectricity coefficient is calculated based on probe-specific calibration data and the measuring steps are repeated with a different frequency for which the dielectricity coefficients of the water and ice are known and the volumetric parts of the snow, that is of the water, ice and air in the snow cover is calculated using the law of mass conservation.
    Type: Grant
    Filed: May 10, 2000
    Date of Patent: November 6, 2001
    Assignee: Forschungszenfrum Karlsruhe GmbH
    Inventors: Alexander Brandelik, Christof Hübner
  • Patent number: 6250132
    Abstract: A modular apparatus for analyzing a fluid includes a disposable fluidic sensor module, a replaceable transducer module, and an expendable electronics package. The disposable fluidic sensor includes a fluidic flowmeter and a capillary structure formed in a plate-like member which receives a sample fluid flow. The fluidic flowmeter is responsive to the fluid flow to generate an output indicative of the flow rate of the fluid, and the capillary structure restricts the fluid flow such that a pressure drop across the capillary structure is related to the viscosity of the fluid. The fluidic flowmeter can be a fluidic oscillator whose oscillation frequency is related to the fluid flow rate. The oscillator flowmeter also serves as an orifice, with the pressure drop across the oscillator being related to the density of the fluid.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: June 26, 2001
    Assignee: metaSENSORS, Inc.
    Inventor: Tadeusz M. Drzewiecki