Abstract: The present invention relates to a non-contact continuous type sensing device for a flowmeter and a sensing method thereof. The flowmeter includes a movable member that is connected to an operating member and that is driven by a fluid to move, thereby moving the operating member. A projector is mounted above the operating member and projects signals onto the operating member. At least two regions are defined in a side of the operating member facing the projector. At least one of the at least two regions includes metal material to reflect the signals projected thereon. A signal density in a space between the projector and the operating member is changed when the operating member is passing through the space, such that the projection power of the projector is affected to thereby sense a movement condition of the operating member and to thereby continuously know a flowing condition of the fluid.
Type:
Grant
Filed:
December 20, 2016
Date of Patent:
February 6, 2018
Assignee:
Energy Management System Co., Ltd.
Inventors:
Chung-Ming Yang, Wen-Tzu Wu, Cheng-Hsien Su, Chung-Wei Li, Mei-Ling Tseng, Chih-Hsun Lin
Abstract: A multiple mode pre-loadable fiber optic pressure and temperature sensor includes a generally cylindrical structure having at least one compression element, a fiber optic having a Bragg grating in contact with one side of the compression element, a diaphragm in contact with the other side of the compression element, and a fluid port in fluid communication with the diaphragm. According to preferred aspects of the, a groove is provided in at least one compression element for receiving the fiber optic. The sensor is pre-loaded by straining the diaphragm over the adjacent compression element when the cover is attached. The compression element in contact with the diaphragm preferably has a contoured surface contacting the diaphragm and the diaphragm is stretched to match that contour. By varying the contour of the compression element and the thickness of the diaphragm, the dynamic range of the sensor can be changed. The preferred diaphragm has a variable thickness and is made as an integral part of the structure.
Type:
Grant
Filed:
December 16, 2002
Date of Patent:
May 24, 2005
Assignee:
Schlumberger Technology Corporation
Inventors:
Jagdish Shah, Robert Schroeder, Philip Dryden, Rogerio Ramos, Raghu Madhavan
Abstract: The invention relates to a method for determining the current filling level of a liquid, preferably a calibrating, quality control, or cleaning fluid, or waste water, in a container, for example of an analyzer, where an immersion pipe is dipped into the liquid in the container to be filled or drained. The immersion pipe is connected to a pumping device via a tube system. The pressure p in the tube system is measured and increased, starting from the ambient pressure p0, until a first discontinuous pressure change occurs at pressure p1 due to the liquid column in the immersion pipe being forced out of the pipe, and/or the pressure p in the tube system is decreased until the liquid column in the immersion pipe reaches a change in cross-section of the immersion pipe, which change is situated above the maximum filling level of the liquid, such that a second discontinuous pressure change occurs at pressure p2 due to the liquid column reaching the change in cross-section.
Abstract: An elongate probe suitable for measuring one or more properties of a stream of fluid, the probe having an external planar sensing surface, which in use is exposed to the stream of fluid, at a longitudinal end thereof and comprising a plurality of sensors at the planar external sensing surface.
Type:
Grant
Filed:
July 9, 2002
Date of Patent:
December 23, 2003
Inventors:
Holger Babinsky, Colm Durkan, Howard Hodson, Mark Welland, Robert Howell, Uwe Kuschel, David Moore
Abstract: A constant-head soil permeameter for determining hydraulic conductivity of earthen materials is inserted into a borehole at the desired test depth. A calibrated reservoir, disposed on the ground surface, is attached thereto with a suitable length of hose. Water is added to the calibrated reservoir and allowed to flow freely into the borehole until an equilibrium level is reached in the borehole and inside the soil permeameter. The water flowing to the permeameter is throttled by buoyant float pressure that is greatly increased by a lever-and-link valve control assembly which provides considerable mechanical advantage, thereby allowing better constant head control and much greater depths of testing than previously attained by known permeameters. A filtered vent system, backflow check valve, and seals restrict entry of soil particles and debris, thereby minimizing cleaning and maintenance of the invention.