Base Metal Confined To Tungsten(w) Patents (Class 75/248)
  • Patent number: 4965044
    Abstract: The present invention relates to a method of sintering ceramics and ceramics obtained by said method. According to the present invention, the synthesis and sintering of ceramics can be simultaneously carried out by utilizing the reaction heat generated when at least one metallic element selected from metallic elements of IIb, IVb, Vb and VIb groups of the Periodic Table is combined with at least one nonmetallic element such as B, C N and Si without heat or by preliminarily heating the ceramics at temperatures remarkably lower than the usual sintering temperature ceramics thus-produced are superior in abrasion resistance and corrosion resistance.
    Type: Grant
    Filed: August 11, 1989
    Date of Patent: October 23, 1990
    Assignees: I. Sumitomo Electric Industries, Ltd., Yoshinari Miyamoto, Osamu Yamada, Mitsue Koizumi
    Inventors: Yoshinari Miyamoto, Osamu Yamada, Mitsue Koizumi, Osamu Komura, Eiji Kamijo, Masaaki Honda, Akira Yamakawa
  • Patent number: 4954170
    Abstract: High density compacts are made by providing a compactable particulate combination of Class 1 metals selected from at least one of Ag, Cu and Al, with material selected from at least one of CdO, SnO, SnO.sub.2, C, Co, Ni, Fe, Cr, Cr.sub.3 C.sub.2, Cr.sub.7 C.sub.3, W, WC, W.sub.2 C, WB, Mo, Mo.sub.2 C, MoB, Mo.sub.2 B, TiC, TiN, TiB.sub.2, Si, SiC, Si.sub.3 N.sub.4, usually by mixing powders of each, step (1); uniaxially pressing the powders to a density of from 60% to 95%, to provide a compact, step (2); hot densifying the compact at a pressure between 352 kg/cm.sup.2 (5,000 psi) and 3,172 kg/cm.sup.2 (45,000 psi) and at a temperature from 50.degree. C. to 100.degree. C. below the melting point or decomposition point of the lower melting component of the compact, to provide densification of the compact to over 97% of theoretical density; step (3); and cooling the compact, step (4).
    Type: Grant
    Filed: June 30, 1989
    Date of Patent: September 4, 1990
    Assignee: Westinghouse Electric Corp.
    Inventors: Maurice G. Fey, Natraj C. Iyer, Alan T. Male, William R. Lovic
  • Patent number: 4940404
    Abstract: A method of making a tungsten tantalum material comprising generally 80 percent by weight tungsten and 20 percent by weight tantalum and forming the material into a high strength full density round bar, which can be utilized in a high velocity armor penetrator.
    Type: Grant
    Filed: April 13, 1989
    Date of Patent: July 10, 1990
    Assignee: Westinghouse Electric Corp.
    Inventors: Robert L. Ammon, Raymond W. Buckman, Jr., Ram Bajaj
  • Patent number: 4938798
    Abstract: A high melting metal silicide sputtering target which comprises a fine texture whose stoichiometric composition grains of MSi.sub.2, where M represents a high melting metal, have a maximum grain size of 20 .mu.m, whose free silicon grains have a maximum grain size of 50 .mu.m and whose oxygen content is not more than 200 ppm and has a density ratio to the theoretical density of 99% or more has good film characteristics including the reduction in the number of grains formed on the sputtered film and is useful as an electrode material or a wiring material in semi-conductor devices.
    Type: Grant
    Filed: March 7, 1988
    Date of Patent: July 3, 1990
    Assignee: Hitachi Metals, Ltd.
    Inventors: Yoshitaka Chiba, Noriyoshi Hirao, Toru Sugihara, Kenji Hasegawa
  • Patent number: 4938799
    Abstract: The invention relates to heavy tungsten-nickel-iron alloys with high mechanical characteristics and a specific gravity between 15.6 and 18. The alloys include a tungsten .alpha.-phase in the shape of butterfly wings with dislocation cells of dimensions between 0.1 and 1 .mu.m, and a nickel-iron bonding .gamma.-phase having a mean free path of less than 15 .mu.m and an Ni/Fe ratio greater than or equal to 2.
    Type: Grant
    Filed: October 5, 1988
    Date of Patent: July 3, 1990
    Assignee: Cime Bocuze
    Inventor: Guy Nicolas
  • Patent number: 4931252
    Abstract: A process for reducing disparities of mechanical properties in tungsten-nickel-iron alloys containing in % by weight 85 to 99% of tunsten, 1 to 10% of iron, the alloys being obtained from tungsten, nickel and iron powders which have the same or different grain diameter, shape and size distribution, which entails simultaneously adding an effective amount of each of cobalt and manganese powders to tungsten powder or to a mixture of tungsten, nickel and iron powders.
    Type: Grant
    Filed: May 27, 1988
    Date of Patent: June 5, 1990
    Assignee: Cime Bocuze
    Inventors: Laurent Brunisholz, Guy Nicolas
  • Patent number: 4906295
    Abstract: The present invention relates to a method of sintering ceramics and ceramics obtained by said method. According to the present invention, the synthesis and sintering of ceramics can be simultaneously carried out by utilizing the reaction heat generated when at least one metallic element selected from metallic elements of IIIb, IVa, Vb and VIb groups of the Periodic Table is combined with at least one nonmetallic element such as B, C, N and Si without heat or by preliminarily heating the ceramics at temperatures remarkably lower than the usual sintering temperature ceramics, thus-produced are superior in abrasion resistance and corrosion resistance.
    Type: Grant
    Filed: February 16, 1988
    Date of Patent: March 6, 1990
    Assignees: Sumitomo Electric Industries, Ltd., Yoshinari Miyamoto, Osamu Yamada, Mitsue Koizumi
    Inventors: Yoshinari Miyamoto, Osamu Yamada, Mitsue Koizumi, Osamu Komura, Eiji Kamijo, Masaaki Honda, Akira Yamakawa
  • Patent number: 4897117
    Abstract: Hardened penetrators (armor penetrating projectiles) of tungsten alloy can be work hardened such that they are hard at the surface, tough in the center to resist bending, and with hardness gradient such that the surface hardness is materially harder than the center or the core thereof.
    Type: Grant
    Filed: September 13, 1988
    Date of Patent: January 30, 1990
    Assignee: Teledyne Industries, Inc.
    Inventor: Thomas W. Penrice
  • Patent number: 4894088
    Abstract: A pellet for fabricating a metal matrix composite is made of a mixture of a matrix member of a metal powder and at least one reinforcement selected from whiskers, short fibers and suitable particles, the reinforcement being uniformly distributed in a matrix of the metal powder and said mixture being kept in a shape with a binder, wherein said pellet has a surface layer of dried and rigid portion of said mixture which is rigid enough to keep its shape under an external pressure applied thereto. The pellet is formed from a flat cake of the mixture separated from a slurry consisting of a solution medium and the mixture dispersed therein uniformly. Alternatively, the pellet is formed from the mixture in a dried condition with a granulation binder diluted with a solution medium.
    Type: Grant
    Filed: December 15, 1987
    Date of Patent: January 16, 1990
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Yoshihiro Yamaguchi, Hiroyuki Murata, Shunichi Mizukami, Kenichiro Ohuchi, Hiroyuki Morimoto, Jun Hirose
  • Patent number: 4894273
    Abstract: Bonding additives for refractory metallization compositions allow for circuit traces having good resistivities and adhesion values in excess of 6 kpsi, generally between about 10 and 20 kpsi. The inks are provided in formulations devoid of a glass component, and are suitable for co-sintering circuit traces and vias with 96% alumina substrates, and especially for 99% alumina substrates. Suitable bonding additives are the oxides of molybdenum, tungsten, niobium, manganese, yttrium, and titanium, or mixtures of such oxides.
    Type: Grant
    Filed: June 16, 1988
    Date of Patent: January 16, 1990
    Assignee: Ceramics Process Systems Corp.
    Inventors: Sheldon I. Lieberman, Eric A. Barringer, Brian C. Foster
  • Patent number: 4885031
    Abstract: A consolidated tungsten heavy alloy body consisting essentially of from about 88% to about 98% by weight of nickel, from about 0.25% to about 1.5% by weight of a grain size reducing additive selected from the group consisting of ruthenium, rhenium and mixtures thereof, balance iron and nickel in a weight ratio of nickel to iron of from about 1:1 to about 9:1 wherein the consolidated body has greater than about 2500 grains per square millimeter as determined from the microstructure of the body. A process for producing the consolidated body comprises forming a relative uniform blend of the described metal powders, compacting the powders to form a green body then solid state sintering to remove binders followed by liquid phase sintering the green body to full density.
    Type: Grant
    Filed: January 4, 1988
    Date of Patent: December 5, 1989
    Assignee: GTE Products Corporation
    Inventors: James R. Spencer, James A. Mullendore
  • Patent number: 4859239
    Abstract: An electrode, and method of producing same, including tungsten which has been heated in wet hydrogen at 1050.degree. C. for 5 to 10 minutes, then heated at about 1500.degree. C. for about three hours in a vacuum, and then further heated at about 2800.degree. C. for about 5 minutes in a vacuum.
    Type: Grant
    Filed: December 20, 1988
    Date of Patent: August 22, 1989
    Assignee: GTE Products Corporation
    Inventor: Edmund M. Passmore
  • Patent number: 4851042
    Abstract: A tungsten heavy alloy system is modified by replacing from 2% to 10% of the tungsten by weight with tantalum to increase the strength and hardness characteristics for the alloy. This renders the alloy particularly useful for kinetic energy penetrators.
    Type: Grant
    Filed: July 18, 1988
    Date of Patent: July 25, 1989
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Animesh Bose, Randall M. German
  • Patent number: 4847045
    Abstract: A process is disclosed for producing a sheet of tungsten heavy alloy which involves uniformly blending elemental metal powder components of the alloy by forming a slurry of the powder components in a liquid medium, introducing the slurry onto a filter medium and applying vacuum to the bottom of the slurry to form a planar cake of the powder components. The cake is then dried and sintered to a density equal to or greater than about 90% of the theoretical density of the alloy to form the sheet.
    Type: Grant
    Filed: February 29, 1988
    Date of Patent: July 11, 1989
    Assignee: GTE Products Corporation
    Inventors: Preston B. Kemp, Jr., Walter A. Johnson
  • Patent number: 4832907
    Abstract: A process is disclosed for producing a sheet of tungsten heavy alloy which involves uniformly blending elemental powder components of the alloy by forming a slurry of the powder components in a liquid medium, removing the liquid medium from the powders and forming a planar cake of the powders, drying the cake, sintering the cake to a density equal to or greater than about 90% of the theoretical density of the alloy to form the sheet.
    Type: Grant
    Filed: January 14, 1988
    Date of Patent: May 23, 1989
    Assignee: GTE Products Corporation
    Inventors: Walter A. Johnson, Preston B. Kemp, Jr., James R. Spencer
  • Patent number: 4800064
    Abstract: A process is disclosed for producing a sheet of tungsten heavy alloy which involves forming a solution of chemical compounds containing the metal values of the alloy in the correct proportion as in the alloy, crystallizing the compounds from solution and drying the compounds, reducing the compounds to their respective metals wherein each particle is an admixture of the allow components; forming a slurry of the metals and a liquid medium, removing the liquid medium from the metals and forming a planar cake of the metals, drying the cake, and sintering the cake to a density equal to or greater than about 90% of the theoretical density of the alloy to form the sheet.
    Type: Grant
    Filed: January 14, 1988
    Date of Patent: January 24, 1989
    Assignee: GTE Products Corporation
    Inventors: Preston B. Kemp, Jr., Walter A. Johnson, Nelson E. Kopatz
  • Patent number: 4793969
    Abstract: A process is disclosed for producing a sheet of tungsten heavy alloy which comprises forming metal particles of the alloy wherein each metal particle is a uniform admixture of the alloy components, entraining the particles in a carrier gas, passing the particles and the carrier gas into a high temperature zone at a temperature above the melting point of the matrix phase of the particles and maintaining the particles in the zone for a sufficient time to melt at least the matrix phase of the particles and form spherical particles, followed by rapidly and directly solidifying the high temperature treated material while the material is in flight. A slurry is formed of this high temperature treated material and a liquid medium, the liquid medium is removed from the material and a planar cake is formed of the material, the cake is dried, and sintered to a density equal to or greater than about 90% of the theoretical density of the alloy to form the sheet.
    Type: Grant
    Filed: January 14, 1988
    Date of Patent: December 27, 1988
    Assignee: GTE Products Corporation
    Inventors: Walter A. Johnson, Preston B. Kemp, Jr., Nelson E. Kopatz
  • Patent number: 4784690
    Abstract: A low density tungsten alloy article is disclosed and the method for producing the article. The method involves compacting a relatively uniform tungsten alloy powder with the tungsten content comprising no greater than about 90% by weight of the alloy and the balance a matrix phase to produce a preformed article which is then sintered in a reducing atmosphere at a temperature below the melting point of the matrix phase for a sufficient time to form a densified article which is mechanically worked to produce the final article.
    Type: Grant
    Filed: October 11, 1985
    Date of Patent: November 15, 1988
    Assignee: GTE Products Corporation
    Inventor: James A. Mullendore
  • Patent number: 4777015
    Abstract: A process is disclosed for producing a sheet of tungsten heavy alloy which involves uniformly blending metal powder compnents of the alloy by forming a slurry of the powder components and one or more chemical compounds of at least one of the components of the alloy as an inorganic binder in a liquid medium, the chemical compound being soluble in the liquid medium and capable of being decoposed into one or more of the metal components of the alloy below the melting point of the metal powder components, removing the liquid medium from the powder components and forming a planar cake of the powder components and said inorganic binder, drying the cake, heating the cake to a temperature sufficient to decompose the inroganic binders into their elemental components or oxides, followed by heating the cake in a reducing atmosphere at a temperature sufficient to reduce any oxides forming during the previous steps to the metals, and sintering the cake to a density equal to or greater than about 90% of the theoretical den
    Type: Grant
    Filed: January 14, 1988
    Date of Patent: October 11, 1988
    Assignee: GTE Products Corporation
    Inventors: Preston B. Kemp, Jr., Walter A. Johnson, James R. Spencer
  • Patent number: 4762559
    Abstract: A tungsten-nickel-iron-cobalt high density alloy having unexpected improved strength and hardness properties and the method of making such alloy are disclosed. The alloy has from about 85-98% by weight tungsten with the remainder being a nickel-iron-cobalt binder in which the cobalt is present in amounts of from at least about 5% up to 47.5% by weight of the binder and the amount of cobalt being equal to or less than the amount of nickel. After the powders of the elements in the indicated amounts are homogeneously blended, compacted into a shape and sintered, the sintered shape is subjected to a heat treatment in a flowing argon atmosphere for a period of time and at a temperature at least sufficiently high to solubilize the intermetallic or .mu. phase, Co.sub.7 W.sub.
    Type: Grant
    Filed: July 30, 1987
    Date of Patent: August 9, 1988
    Assignee: Teledyne Industries, Incorporated
    Inventors: Thomas W. Penrice, James Bost
  • Patent number: 4749410
    Abstract: An article of tungsten heavy alloy material is disclosed, the article having essentially elongated tungsten grains, the alloy material comprising tungsten, nickel, and iron, the elongated tungsten grains having a length to diameter ratio of at least about 2 to 1.A method is disclosed for producing the above article which involves rolling a pressed and sintered body of tungsten heavy alloy material comprising tungsten, iron, and nickel in a tandem rolling mill having a succession of roll stands, each stand consisting essentially of three rolls positioned at about 120.degree. to each other so that the gap between the rolls is a triangle, each stand being rotated about 180.degree. with respect to the adjacent roll stands, the rolling being done at a sufficient temperature to produce the article which has essentially elongated tungsten grains.
    Type: Grant
    Filed: February 17, 1987
    Date of Patent: June 7, 1988
    Assignee: GTE Products Corporation
    Inventors: James A. Mullendore, James R. Spencer
  • Patent number: 4744944
    Abstract: A process is disclosed for producing tungsten heavy alloy billets. The process involves forming a uniform blend of elemental powders to form a tungsten alloy having a tungsten content of equal to or less than about 91% by weight and wherein the particle size of the tungsten is no less than about 2 micrometers in diameter. This blend is uniformly packed into a container having thermal expansion similar to that of the powder. The blend is then sintered in a hydrogen atmosphere at a temperature sufficient to impart strength to the powder and to reduce oxides and remove volatile impurities from the powder without significant densification in the powder. The powder is then solid state sintered in a reducing atmosphere at a sufficient temperature to densify the powder to at least about 90% of the theoretical density but at a temperature below the liquid phase sintering temperature of the powder, to form the billet.
    Type: Grant
    Filed: August 5, 1987
    Date of Patent: May 17, 1988
    Assignee: GTE Products Corporation
    Inventors: James R. Spencer, De Wayne R. Grover
  • Patent number: 4743512
    Abstract: A method of manufacturing a flat form from blended metallic powder including a major constituent by weight having a high melting point and a minor constituent by weiht having a substantially lower melting point includes selection of the powder to provide continuous and reproducible compacted flat forms. Powder is selected on the basis of compressibility and flowability. The selected powder is compacted to a flat green form and then liquid phase sintered. The flat form may be stacked to provide a flat article of a desired thickness which will result in a monolithic or composite cross section when subsequently sintered. Liquid phase sintering is carried out in a manner designed to avoid undesirable embrittlement and to provide a uniform microstructure in the fully consolidated article. The process is especially useful in the production of tungsten heavy alloy plate.
    Type: Grant
    Filed: June 30, 1987
    Date of Patent: May 10, 1988
    Assignee: Carpenter Technology Corporation
    Inventors: David T. Marlowe, Gregory J. Del Corso, Robert E. Carnes, David Esposito, William J. Burns, II, Edward F. Holland, David L. Strobel
  • Patent number: 4710223
    Abstract: A sintered, metal infiltrated article and a method for preparing same is disclosed. The method permits mass production by injection molding, of metal infiltrated sintered articles of complex shape without excessive machining of the final product. The articles so produced have desirable physical properties such as abrasion resistance, high hardness, and high resistance to erosion at extreme temperatures encountered in use.
    Type: Grant
    Filed: March 21, 1986
    Date of Patent: December 1, 1987
    Assignee: Rockwell International Corporation
    Inventor: Daniel E. Matejczyk
  • Patent number: 4698096
    Abstract: This invention relates to a sintering process. More particularly, this invention relates to a process for preparing a sintered form having a tungsten content which comprises the steps of:(a) sintering a porous form of pressed tungsten alloy powders having a high tungsten content in solid phase, and(b) heat treating the sintered part from step (a) in a liquid phase.
    Type: Grant
    Filed: October 21, 1985
    Date of Patent: October 6, 1987
    Inventors: Rainer Schmidberger, Sylvia Hardtle
  • Patent number: 4670216
    Abstract: A three step process in which a metal alloy selected from a tungsten based alloy and molybdenum based alloys is provided to prevent the decarbonization of the alloys. The process involves a three step sintering process wherein the atmosphere during the initial heating step is a mixture of carbon monoxide and hydrogen, thereafter at a intermediate temperature range the atmosphere is hydrogen and a final heating step at a elevated temperature is employed and the atmosphere is a mixture of inert gas and a source of carbon.
    Type: Grant
    Filed: September 25, 1986
    Date of Patent: June 2, 1987
    Assignee: GTE Products Corporation
    Inventors: Thomas J. Patrician, Vito P. Sylvester, Harry D. Martin, III
  • Patent number: 4640711
    Abstract: The method of consolidating a metallic, metallic and ceramic, or ceramic body in any of initially powdered, sintered, fibrous, sponge, or other form capable of compaction, includes the steps:(a) providing a bed of flowable particles within a contained zone, said particulate primarily including flowable and resiliently compressible carbonaceous particles,(b) positioning said body in said bed,(c) and effecting pressurization of said bed to cause pressure transmission via said particles to said body, thereby to compact the body into desired shaped, increasing its density,(d) said body and bed being at elevated temperatures prior to said pressurization step.
    Type: Grant
    Filed: May 10, 1985
    Date of Patent: February 3, 1987
    Assignee: Metals Ltd.
    Inventors: Wayne P. Lichti, Alfred F. Hofstatter
  • Patent number: 4613370
    Abstract: A hollow charge, or plate charge, lining, and a projectile charge coating, made from a composite material of tungsten and copper. Indicated are material proportions, grain sizes, and manufacturing methods.
    Type: Grant
    Filed: October 3, 1984
    Date of Patent: September 23, 1986
    Assignees: Messerschmitt-Bolkow Blohm GmbH, Bayerische Metallwerke GmbH
    Inventors: Manfred Held, Alfred Leidig, Wilhelm A. Merl, Gunter Stempel
  • Patent number: 4612162
    Abstract: An improvement is disclosed in a method for producing a metal article of high density comprising pressing a metal powder at a sufficient pressure to form a green article and sintering said green article at a sufficient temperature for a sufficient time to form a sintered article, the improvement being pressing the sintered article at a sufficient temperature for a sufficient time at a sufficient pressure of a non-oxidizing atmosphere to produce the final high density article.
    Type: Grant
    Filed: September 11, 1985
    Date of Patent: September 16, 1986
    Assignee: GTE Products Corporation
    Inventors: Ricky D. Morgan, Vito P. Sylvester, Robert L. Ward
  • Patent number: 4608317
    Abstract: A method for manufacturing a metal sintered body disclosed herein is characterized by the use of steps of: mixing 70 to 90 weight % of self-fluxing alloy powder and 10 to 30 weight % of metal powder of high melting point having a higher melting point than that of the self-soluble metal powder and in which the self-fluxing alloy powder is liable to be deposited thereon to obtain a metal powder having a sintering property; using a material in which 1 to 10 weight % of plastic binder is kneaded with the metal powder having a sintering property to obtain a molded body having a predetermined shape; and sintering the molded body at a temperature in excess of a liquid phase line of the self-fluxing alloy powder.
    Type: Grant
    Filed: April 15, 1985
    Date of Patent: August 26, 1986
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Osamu Kobayashi, Hiroshi Sasaki, Toshiki Kaneko, Hideaki Ikeda, Yoshihisa Yamamura
  • Patent number: 4605599
    Abstract: A method of producing a high density tungsten alloy sheet product is disclosed which utilizes as a starting material a thin-gage sheet or foil substrate of a first alloy constituent, such as pure iron or an alloy thereof. A prescribed mixture of tungsten metal powder and a second metal alloy constitutent powder, such as nickel, is loaded on the substrate and partially consolidated in a protective atmosphere furnace to form a porous tungsten alloy skeleton which is also partially bonded to the substrate. The product is then preferably cooled in a protective atmosphere and sheared into desired lengths. The sized pieces are then further heated in a protective atmosphere at gradually increasing temperatures to a point above the melting point of the substrate, whereupon the substrate sheet or foil melts and infiltrates the porous tungsten alloy skeleton to complete the densification of the product.
    Type: Grant
    Filed: December 6, 1985
    Date of Patent: August 12, 1986
    Assignee: Teledyne Industries, Incorporated
    Inventors: Thomas W. Penrice, James Bost
  • Patent number: 4587095
    Abstract: A super heatresistant cermet and process of producing the same. A mixture, which contains about 10 to about 65% by weight of a powder of the carbonitride having titanium and tungsten, about 0.5 to about 10.0% by weight of a magnesium oxide powder and a tungsten powder, is pressed to form a compact, which is thereafter sintered in a vacuum or in an atmosphere of a nitrogen gas or an inert gas within the temperature range of about 1800.degree. to 2700.degree. C. to thereby decarburize the carbonitride with the magnesium oxide evaporated during the sintering, whereby there is produced a super heatresistant cermet containing about 10 to about 65% by weight of a carbonitride containing titanium and tungsten, about 0.01 to about 1.0% by weight of magnesium oxide, and tungsten as a binder. The super heatresistant cermet is excellent in impact resistance, wear resistance and plastic deformation resistance, and suitable for cutting tools.
    Type: Grant
    Filed: January 12, 1984
    Date of Patent: May 6, 1986
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Hironori Yoshimura, Naohisa Ito, Kenichi Nishigaki, Katsunori Anzai
  • Patent number: 4587174
    Abstract: A tungsten cermet for use in cutting tools, including a carbonitride, having titanium and tungsten, and aluminum oxide. The cermet contains about 10 to about 50% by weight of the carbonitride, about 0.5 to about 10% by weight of aluminum oxide and tungsten as a binder. The tungsten cermet has excellent properties in toughness, impact resistance and oxidation resistance, combined with wear resistance and plastic deformation resistance, and is useful for cutting tools used in heavy cutting, hot working and the like.
    Type: Grant
    Filed: December 23, 1983
    Date of Patent: May 6, 1986
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Hironori Yoshimura, Naohisa Ito, Kenichi Nishigaki, Katsunori Anzai
  • Patent number: 4458599
    Abstract: A material consisting essentially of tungsten having from 5 to about 20 grains per square millimeter and a hardness on the Rockwell C scale from about 31 to about 35 is suited for armor penetration.
    Type: Grant
    Filed: August 27, 1981
    Date of Patent: July 10, 1984
    Assignee: GTE Products Corporation
    Inventors: James A. Mullendore, Scott K. Reiman, Andrew J. Kegel
  • Patent number: 4430124
    Abstract: This invention provides a vacuum type breaker contact material prepared by infiltrating copper into a sintered tungsten matrix, wherein elementary particle size and the growth of the particle size by heat processing are controlled in such a manner that the ratio of the largest value/the smallest value of tungsten particle size becomes not more than 10, and that the maximum value of tungsten particle size is not larger than 2 .mu.m and the minimum value of tungsten particle size is not smaller than 0.3 .mu.m.
    Type: Grant
    Filed: March 22, 1982
    Date of Patent: February 7, 1984
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Masaru Kato
  • Patent number: 4427445
    Abstract: A hard fine-grained internally stressed material of tungsten and carbon or tungsten, carbon and oxygen is described which is produced by thermochemical deposition. The material consists primarily of a two phase mixture of pure tungsten and an A15 structure, is free of columnar grain distribution, and has a hardness of greater than 1,200 VHN. The average grain size is less than 0.1 micron.
    Type: Grant
    Filed: July 21, 1982
    Date of Patent: January 24, 1984
    Assignee: Dart Industries, Inc.
    Inventors: Robert A. Holzl, Robert E. Benander, Robert D. Davis
  • Patent number: 4414029
    Abstract: This invention relates to mixtures of tungsten carbide, niobium metal, and molybdenum metal powders for use in the hardfacing of drill pipe couplings used in earth boring operations. It has been found that the addition of small amounts of niobium metal alone, or in combination with molybdenum, are effective to substantially submerge the tungsten carbide particles in the weld pool produced during hardfacing while, also, minimizing the occurrence of cracks which may be produced as the weld pool freezes.
    Type: Grant
    Filed: May 20, 1981
    Date of Patent: November 8, 1983
    Assignee: Kennametal Inc.
    Inventors: Harold C. Newman, William M. Stoll
  • Patent number: 4373952
    Abstract: A hot pressed intermetallic composite comprises titanium diboride and boron nitride and an effective amount of tungsten to reduce erosion of the composite and reduce the rate at which the electrical resistivity of the composite changes during its use.
    Type: Grant
    Filed: October 19, 1981
    Date of Patent: February 15, 1983
    Assignee: GTE Products Corporation
    Inventor: Edward D. Parent
  • Patent number: 4331476
    Abstract: Metallic sputtering targets having minimal mobile ion contamination are produced by forming a compacted slab of particles of the constituent metal(s) in an isostatic pressing operation. The slab is then transferred to a heat resistant support faced with a material, such as alumina, that is inert at high temperatures. Next, the supported slab is placed in a vacuum oven and heated to a temperature sufficient to bond the metal particles together and volatilize mobile ion contaminants. The sintered slab is usable as a cathodic sputtering target with minimal additional treatment. The level of mobile ion contaminants in the completed target may be monitored by fabricating an MOS capacitor using the target, plotting its capacitance versus applied voltage over a suitable range, then measuring the extent to which the plot shifts after a high temperature-positive bias stress treatment.
    Type: Grant
    Filed: January 31, 1980
    Date of Patent: May 25, 1982
    Assignee: Tektronix, Inc.
    Inventors: Earl R. Helderman, Robert R. Zimmerman
  • Patent number: 4302514
    Abstract: A contact for a vacuum interrupter has excellent characteristics of high withstand voltage, low melt bonding property, large current durability and low chopping current and is prepared by uniformly distributing, in a copper matrix, two kinds of high melting point metal powders having a melting point of higher than 1450.degree. C. which have different particle diameters of (1) 80-300 .mu.m and (2) less than 30 .mu.m. The low chopping current characteristic is imparted by incorporating more than 10 wt. % of the high melting point metal powder. The high melting point metal powder can be selected from the group consisting of Cr, W, Mo, Ir and Co.
    Type: Grant
    Filed: May 23, 1979
    Date of Patent: November 24, 1981
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Masaru Kato, Hitoshi Takeuchi, Toshiaki Horiuchi
  • Patent number: 4299889
    Abstract: A contact for a vacuum interrupter has excellent characteristics of high withstand voltage, large current durability and low chopping current and is prepared by infiltrating copper into a skeleton obtained by sintering a specific tungsten powder having an average diameter of less than 1 .mu.m.The skeleton is preferably prepared by a vacuum sintering process and the copper is infiltrating into the skeleton in hydrogen atmosphere or in vacuum.
    Type: Grant
    Filed: May 21, 1979
    Date of Patent: November 10, 1981
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Masaru Kato, Hitoshi Takeuchi, Toshiaki Horiuchi
  • Patent number: 4292078
    Abstract: Electrical contact material of this invention consists of 10 to 20 percent by weight of nickel, 0.05 to 2 percent by weight of titanium boride and the balance tungsten. Conventionally, nickel-tungsten alloy shows poor mechanical properties (e.g. brittleness) although the alloy shows high oxidation resistance and can be produced in an inexpensive way. Inclusion of titanium boride greatly improves the mechanical properties of such alloy, thereby enabling the cheap production of electrical contact material which has sufficient practical use.
    Type: Grant
    Filed: November 5, 1979
    Date of Patent: September 29, 1981
    Assignee: Nippon Tungsten Co., Ltd.
    Inventors: Sinya Honda, Takeshi Komura, Naomi Sugita, Tatuya Okamoto
  • Patent number: 4189522
    Abstract: A multi-layer bearing is obtained by laying and distributing metal powder which contains aluminum as a main component thereof, uniformly on a steel plate or a steel plated with Ni or the like in the form of a multi-layer composite metal plate, cold rolling the metal powder loaded plate and then sintering the same into a sufficiently bonded composite material. There is good adhesion between the steel plate and the sintered metal powder, and the bearing material is excellent in fatigue resistance and is satisfactory in surface properties as well.
    Type: Grant
    Filed: December 8, 1977
    Date of Patent: February 19, 1980
    Assignee: Daido Metal Company, Ltd.
    Inventor: Sanae Mori
  • Patent number: 4090875
    Abstract: The tensile elongation of a tungsten-nickel-iron alloy containing essentially 95 weight percent reprocessed tungsten, 3.5 weight percent nickel, and 1.5 weight percent iron is increased from a value of less than about 1 percent up to about 23 percent by the addition of less than 0.5 weight percent of a reactive metal consisting of niobium and zirconium.
    Type: Grant
    Filed: October 1, 1973
    Date of Patent: May 23, 1978
    Assignee: The United States of America as represented by the Department of Energy
    Inventor: Robert L. Ludwig