Boron(b) Containing Particles Patents (Class 75/254)
  • Patent number: 9601979
    Abstract: An alloy material for an R-T-B system rare earth permanent magnet having a high orientation rate and high coercivity (Hcj), and a method for producing an R-T-B system rare earth permanent magnet using the alloy material. The alloy material includes a plurality of R-T-B system alloys having different compositions and a metal powder. The respective R-T-B system alloys are formed of R which is composed of two or more kinds selected from rare earth elements, T which is composed of a transition metal essentially containing Fe, B, and unavoidable impurities. A first alloy having the greatest Dy content contains 17 mass % or greater of Dy, and a Dy concentration difference between the first alloy and a second alloy having the smallest Dy concentration difference with respect to the first alloy among the plurality of R-T-B system alloys is 5 mass % or greater.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: March 21, 2017
    Assignee: SHOWA DENKO K.K.
    Inventors: Kenichiro Nakajima, Takashi Yamazaki
  • Publication number: 20150086776
    Abstract: The present invention relates to a blend of at least one boron source and at least one silicon source, wherein the blend comprises boron and silicon in a weight ratio boron to silicon within a range from about 5:100 to about 2:1, wherein silicon and boron are present in the blend in at least 25 wt %, and wherein the at least one boron source and the at least one silicon source are oxygen free except for inevitable amounts of contaminating oxygen, and wherein the blend is a mechanical blend of powders, and wherein particles in the powders have an average particle size less than 250 ?m. The present invention relates further to a composition comprising the blend a substrate applied with the blend, a method for providing a brazed product, and uses.
    Type: Application
    Filed: March 27, 2013
    Publication date: March 26, 2015
    Applicant: ALFA LAVAL CORPORATE AB
    Inventors: Per Sjödin, Kristian Walter
  • Publication number: 20150054158
    Abstract: A functional material includes at least two kinds of particles selected from the group consisting of first metal composite particles, second metal composite particles and third metal composite particles. The first metal composite particles, the second metal composite particles and the third metal composite particles each contain two or more kinds of metal components. The melting point T1(° C.) of the first metal composite particles, the melting point T2(° C.) of the second metal composite particles and the melting point T3(° C.) of the third metal composite particles satisfy a relationship of T1>T2>T3.
    Type: Application
    Filed: August 11, 2014
    Publication date: February 26, 2015
    Applicant: NAPRA CO., LTD.
    Inventors: Shigenobu Sekine, Yurina Sekine
  • Publication number: 20150017043
    Abstract: A powder metal formulation includes a solid lubricant and is particularly useful for the production of powder metal scroll compressors.
    Type: Application
    Filed: February 11, 2013
    Publication date: January 15, 2015
    Applicant: GKN Sinter Metals, LLC
    Inventors: Ian William Donaldson, John David S. Gurosik
  • Publication number: 20130224060
    Abstract: The present invention is directed to metallurgical powder compositions having improved lubricant properties. These compositions of the invention include at least 90 wt. % of an iron-based metallurgical powder; a Group 1 or Group 2 metal stearate; a first wax having a melting range of between about 80 and 100° C.; a second wax having a melting range of between about 80 and 90° C.; inc phosphate; boric acid; acetic acid; phosphoric acid; and polyvinylpyrrolidone. Methods of compacting the compositions, as well as compacted articles prepared using those methods, are also described.
    Type: Application
    Filed: February 22, 2013
    Publication date: August 29, 2013
    Applicant: HOEGANAES CORPORATION
    Inventor: HOEGANAES CORPORATION
  • Publication number: 20120094147
    Abstract: Provided is a corrosion-resistant and wear-resistant member where a thermal-sprayed layer having corrosion resistance and wear resistance is formed on a surface of a metallic member which is brought into contact with a resin which generates a highly corrosive gas. Also provided is a thermal-spraying powder. The highly corrosion-resistant and wear-resistant member having a thermal-sprayed layer is one obtained by thermally spraying metallic powder on a metallic base material to form a thermal-sprayed layer on a surface of the metallic base material. The member is characterized in that the thermal-sprayed layer is a composite boride cermet of a tetragonal Mo2(Ni,Cr)B2-type or a tetragonal Mo2(Ni,Cr,V)B2-type. The powder for forming a thermal-sprayed layer is made of a composite boride cermet of a Mo2(Ni, Cr)B2-type and comprises 4.0 to 6.5 mass % of boron, 39.0 to 64.0 mass % of molybdenum, and 7.5 to 20.0 mass % of chromium, a balance being 5 mass % or more of nickel and unavoidable elements.
    Type: Application
    Filed: March 10, 2009
    Publication date: April 19, 2012
    Applicant: TOYO KOHAN CO., LTD.
    Inventors: Kengo Iwanaga, Yuji Yamazaki, Kourou Hirata
  • Patent number: 8075662
    Abstract: A nickel braze alloy composition includes a blend of a first nickel alloy and a second nickel alloy. The first nickel alloy includes about 4.75 wt %-10.5 wt % of chromium, about 5.5 wt %-6.7 wt % of aluminum, up to about 13 wt % cobalt, about 3.75 wt %-9.0 wt % of tantalum, about 1.3 wt %-2.25 wt % of molybdenum, about 3.0 wt %-6.8 wt % of tungsten, about 2.6 wt %-3.25 wt % of rhenium, up to about 0.02 wt % of boron, about 0.05 wt %-2.0 wt % of hafnium, up to about 0.14 wt % of carbon, up to about 0.35 wt % of zirconium, and a balance of nickel. The second nickel alloy includes about 21.25 wt %-22.75 wt % of chromium, about 5.7 wt %-6.3 wt % of aluminum, about 11.5 wt %-12.5 wt % of cobalt, about 5.7 wt %-6.3 wt % of silicon, boron in an amount no greater than 1.0 wt %, and a balance of nickel.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: December 13, 2011
    Assignee: United Technologies Corporation
    Inventors: Michael Minor, Paul M. Pellet, Michael L. Miller
  • Publication number: 20110260565
    Abstract: An alloy material for an R-T-B based rare earth permanent magnet of the present invention includes: an R-T-B based alloy that comprises R, T, and B (wherein R represents at least one selected from the group consisting of Nd, Pr, Dy, and Tb, with Dy or Tb being essentially contained at 4% by mass to 10% by mass in the R-T-B type alloy; T represents a transition metal which essentially contains Fe; and B represents boron, a part of which can be substituted by carbon or nitrogen); and a high melting point compound having a melting point of 1080° C. or higher.
    Type: Application
    Filed: December 14, 2009
    Publication date: October 27, 2011
    Applicant: SHOWA DENKO K.K.
    Inventor: Kenichiro Nakajima
  • Patent number: 7767138
    Abstract: Semi-finished or finished parts are made from a molybdenum alloy with intermetallic phases, preferably molybdenum-silicide, molybdenum-boron-silicide, optionally also molybdenum-boride phases. Starting from mechanically alloyed powder, hot compacted material exhibits superplastic forming behavior. It is thus possible to lower the forming temperature by at least 300° C., thus permitting processing on conventional plants.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: August 3, 2010
    Assignee: Plansee SE
    Inventors: Pascal Jehanno, Martin Heilmaier, Heinrich Kestler
  • Publication number: 20100047622
    Abstract: The invention provides for a cermet powder containing 75-90% by weight of at least one hard material powder, from 10 to 25% by weight of one or more matrix metal powders and up to 3% by weight of at least one modifier, wherein the matrix metal powder or powders contain from 0 to 38% by weight of cobalt, from 0 to 38% by weight of nickel, from 0 to 20% by weight of aluminum, from 0 to 90% by weight of iron and from 10 to 35% by weight of chromium and the sum of the contents of iron and chromium is in the range from 10 to 95% by weight and the sum of the contents of cobalt, nickel and iron is in the range from 65 to 95% by weight. The invention also relates to a cermet and a process to make the cermet containing the cermet powder and shaped article coated with the cermet powder and a process to make the shaped article.
    Type: Application
    Filed: September 21, 2007
    Publication date: February 25, 2010
    Applicant: H.C. Starck GmbH
    Inventors: Jürgen Fischer, Aloys Eiling, Frank Schrumpf, Stefan Zimmermann, Peter Thienel, Roland Scholl
  • Patent number: 7582362
    Abstract: A thermal spray composition and method of deposition for abradable seals for use in gas turbine engines, turbochargers and steam turbines. The thermal spray composition includes a solid lubricant and a ceramic preferably comprising 5 to 60 wt % total of the composition in a ratio of 1:7 to 20:1 of solid lubricant to ceramic, the balance a matrix-forming metal alloy selected from Ni, Co, Cu, Fe and Al and combinations and alloys thereof. The solid lubricant is at least one of hexagonal boron nitride, graphite, calcium fluoride, lithium fluoride, magnesium fluoride, barium fluoride, tungsten disulfide and molybdenum disulfide particles. The ceramic includes at least one of albite, illite, quartz and alumina-silica.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: September 1, 2009
    Assignee: Sulzer Metco (Canada) Inc.
    Inventors: Petr Fiala, Anthony Peter Chilkowich, Karel Hajmrle
  • Publication number: 20090183598
    Abstract: It is an object to provide a composite material having a satisfactory sintering density and exhibiting excellent abrasion resistance and a method for manufacturing the same. The composite material contains a Ti alloy matrix containing Ti as a primary component and TiB and NiB dispersed in the Ti alloy matrix. The method for manufacturing the composite material includes the step of conducting sintering by using a mixed powder containing a Ti powder and/or a Ti alloy powder containing Ti as a primary component and a Ni—B alloy powder.
    Type: Application
    Filed: May 31, 2007
    Publication date: July 23, 2009
    Applicant: KYOCERA CORPORATION
    Inventors: Takehiro Oonishi, Takanori Nishihara
  • Patent number: 7491256
    Abstract: The invention concerns an iron-based powder composition comprising, in addition to the iron-based powder, 0.02% and 1.0%, weight of a machinability improving additive, comprising calcium fluoride and hexagonal boron nitride. The invention also concerns the additive per se.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: February 17, 2009
    Assignee: Höganäs AB
    Inventor: Olof Andersson
  • Patent number: 6808568
    Abstract: Methods, apparatuses and systems for producing powder particles of extremely small, highly uniform spherical shape and high sphericity, composed of metal including single metals and alloys, including nanocomposite structures, using a self-assembling procedure. The invention further includes the produced spherical particles. The metal spherical particles are produced whereby molten metal, alloys or composites are directed onto a fast-rotating disk in an atmosphere containing one or more inert gases and small amounts of an oxidizing gas and the molten metal drops are dispersed as tiny droplets for a predetermined time using centrifugal force within a cooling-reaction gas, and then cooled rapidly to form solid spherical particles. The spherical particles comprise a crystalline, amorphous or porous composition, having a size of 1-300 &mgr;m±1% with a uniformity of size being ≦60-70% and a precise spherical shape of less than or equal to ±10%.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: October 26, 2004
    Inventor: Shigenabu Sekine
  • Publication number: 20040112174
    Abstract: A powder material for forming an abradable coating, the material comprising a metal powder based for the most part on aluminum and containing manganese or calcium. The material is applicable to seals of a turbomachine.
    Type: Application
    Filed: December 5, 2003
    Publication date: June 17, 2004
    Applicant: SNECMA MOTEURS
    Inventors: Philippe Le Biez, Philippe Perruchaut, Karim Larabi, Pierre Bertrand, Christian Coddet
  • Publication number: 20030200835
    Abstract: A diffusion-brazing filler powder for a part made of a nickel-, cobalt- or iron-based alloy A comprising particles of a defined alloy material B having specific functional properties tailored to the area of application of said part. The particles are substantially spherical and carry, on their surfaces, in the form of incrustations, add-ons comprising at least one fluxing element taken from the group: boron and silicon, these encrusted add-ons also being present in a free state in said powder.
    Type: Application
    Filed: April 11, 2003
    Publication date: October 30, 2003
    Applicant: SNECMA SERVICES
    Inventors: Andre Malie, Pascal Etuve, Christian Michel, Frederic Jacquot
  • Patent number: 6530971
    Abstract: A braze material and method for repairing an article, such as a gas turbine engine combustor liner formed from a nickel-base or cobalt-base superalloy. The braze material is composed of a nickel-base braze alloy that is preferably in powder form and may be dispersed in a suitable vehicle to yield a slurry, putty or solid tape. The braze alloy is formulated to be capable of withstanding the high temperature operating environment of a combustor liner, and to have a melting temperature below the grain growth or incipient melting temperature of the superalloy to be repaired. A preferred braze alloy is formed by combining at least two nickel-base powders. A suitable composition for the braze alloy is, in weight percent, about 10 to about 19 chromium, about 3 to about 10.5 cobalt, about 1.75 to about 4.9 titanium, about 0.75 to about 3.4 aluminum, about 1.25 to about 4.1 tungsten, about 1.25 to about 4.1 molybdenum, about 0.025 to about 0.225 carbon, about 0.005 to about 0.15 zirconium, about 0.50 to about 2.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: March 11, 2003
    Assignee: General Electric Company
    Inventors: Joel Heywood Cohen, David Edwin Budinger, James Michael Caldwell, Michael Glenn Gordon, Edward John Emilianowicz
  • Publication number: 20020153064
    Abstract: Disclosed herein is a magnetic powder which can provide magnets having excellent magnetic properties and having excellent reliability especially excellent heat stability. The magnetic powder is composed of an alloy composition represented by Rx(Fe1−aCoa)100−x−y−zByMz (where R is at least one kind of rare-earth element excepting Dy, M is at least one kind of element selected from Ti, Cr, Nb, V, Mo, Hf, W, Mn, Zr and Dy, x is 7.1-9.9 at %, y is 4.6-8.0 at %, z is 0.1-3.0 at %, and a is 0-0.
    Type: Application
    Filed: June 6, 2001
    Publication date: October 24, 2002
    Inventors: Akira Arai, Hiroshi Kato
  • Publication number: 20020148535
    Abstract: Disclosed herein is a magnetic powder which can provide magnets having excellent magnetic properties and having excellent reliability especially excellent heat stability. The magnetic powder is composed of an alloy composition represented by (R1−aDya)x(Fe1−bCOb)100−x−yBy (where R is at least one kind of rare-earth element, x is 7.1-9.9 at %, y is 4.6-8.O at %, a is 0.02-0.2, and b is 0-0.30), wherein the magnetic powder is constituted from a composite structure having a soft magnetic phase and a hard magnetic phase, and the intrinsic coercive force (HCJ) of the magnetic powder at a room temperature is in the range of 400-750 kA/m.
    Type: Application
    Filed: May 22, 2001
    Publication date: October 17, 2002
    Inventors: Akira Arai, Hiroshi Kato
  • Patent number: 6361581
    Abstract: A protective coat formed by thermal spraying, and having an outstanding durability against corrosion by a molten light alloy. A thermal spraying composite material used to form such a coat contains from about 30 to about 70% by weight of molybdenum boride, from about 20 to about 40% by weight of nickel or cobalt, from about 5 to about 20% by weight of chromium, and from about 5 to about 10% by weight of at least one metal boride selected from the borides of Cr, W, Zr, Ni and Nb.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: March 26, 2002
    Assignees: Chubu Sukegawa Enterprise Co., LTD, Showa Denko K.K.
    Inventors: Tsujihiko Yasuda, Akiyoshi Banno, Tamio Ito, Koji Kiyoshi, Kunimoto Ishibayashi
  • Patent number: 6296682
    Abstract: The object of the present invention is to provide an iron based blended powder for powder metallurgy that can provide a reformable sintered article that has a good sliding property with less variation in the property and a good impact resistance. More specifically, the iron based blended powder for powder metallurgy is formed by blending an atomized alloy iron powder with 0.01% to 1.0% of one or more types of compound powder containing B in terms of B, 1 to 10% of Ni powder, 1 to 6% of Cu powder, 1.3 to 3.0% of graphite powder by weight %, as well as 0.5 to 2.0 parts by weight of a lubricant with respect to 100 parts by weight of the total weight of said powder. The iron based blended powder for powder metallurgy wherein the atomized alloy iron powder comprises, by weight %, 0.03 to 1.00% of Mn, 0.5 to 4.0% of Cr, 0.03 to 0.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: October 2, 2001
    Assignees: Kawasaki Steel Corporation, Mitsubishi Materials Corporation
    Inventors: Satoshi Uenosono, Ji-bin Yang
  • Patent number: 6284014
    Abstract: An extrudable and weldable matrix alloy composite comprising: a) a base material metal of about 50 to 99.9% by weight, b) boron carbide or silicon carbide of about 0.1 to 50% by weight, c) less than about 3.0% by weight of at least one metal having an intermetallic phase temperature lower than the melting point of the base material metal, and d) a reinforcement agent of up to about 5% by weight.
    Type: Grant
    Filed: November 8, 1999
    Date of Patent: September 4, 2001
    Assignee: Alyn Corporation
    Inventor: Robin Carden
  • Publication number: 20010016252
    Abstract: A conductive paste is provided which can ensure plating adhesion and joint strength between an external electrode and a ceramic body, and which can prevent sticking between electronic devices. The conductive paste, which contains substantially no alkaline earth metal and no lead, comprises powdered silver; a powdered glass containing an alkali metal oxide, boron oxide, silicon oxide, zinc oxide, and aluminum oxide; and an organic vehicle; wherein the powdered glass is composed of about 5 to 12 percent by weight of alkali metal oxide as M2O, M being at least one element selected from the group consisting of Li, Na, K, Rb, Cs and Fr, about 35 to 45 percent by weight of boron oxide as B2O3, about 10 to 20 percent by weight of silicon oxide as SiO2, about 35 to 45 percent by weight of zinc oxide as ZnO, and about 1 to 5 percent by weight of aluminum oxide as Al2O3.
    Type: Application
    Filed: February 6, 2001
    Publication date: August 23, 2001
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Toshiki Nagamoto, Kunihiko Hamada
  • Patent number: 6261336
    Abstract: A composition for forming molded metal containing articles having improved stability. More particularly, a corrosion resistant composition for forming injection molded articles having a sodium silicate corrosion inhibiting additive. The corrosion inhibitor prevents metal oxidation when a metal containing powder is mixed with a water based binder, providing stability to the article and preventing generation of hydrogen gas. This significantly enhances the shelf life of the moldable composition prior to molding.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: July 17, 2001
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Mohammad Behi, Jerry C. LaSalle, George A. Glandz
  • Publication number: 20010001048
    Abstract: A protective coat formed by thermal spraying, and having an outstanding durability against corrosion by a molten light alloy. A thermal spraying composite material used to form such a coat contains from about 30 to about 70% by weight of molybdenum boride, from about 20 to about 40% by weight of nickel or cobalt, from about 5 to about 20% by weight of chromium, and from about 5 to about 10% by weight of at least one metal boride selected from the borides of Cr, W, Zr, Ni and Nb.
    Type: Application
    Filed: December 22, 2000
    Publication date: May 10, 2001
    Applicant: Chubu Sukegawa Enterprise Co., Ltd.
    Inventors: Tsujihiko Yasuda, Akiyoshi Banno, Tamio Ito, Koji Kiyoshi, Kunimoto Ishibayashi
  • Patent number: 6193930
    Abstract: Two or more metal or alloy parts (such as catalytic convertor parts) are brazed by melting a homogeneous nickel-based brazing filler alloy containing boron in an amount of not more than 0.2% by weight; converting the molten alloy to a powder of uniform composition; and using the powder as a brazing filler alloy to braze a metal or alloy part to a further metal or alloy part. Typically, the parts are of stainless steel with a relatively high aluminum content; at least one of the parts is generally in the form of a thin foil.
    Type: Grant
    Filed: May 26, 1998
    Date of Patent: February 27, 2001
    Assignee: Wall Colmonoy Limited
    Inventor: Norman Allnatt
  • Patent number: 6139765
    Abstract: A magnetic powder and a permanent magnet are provided which have magnetic properties enhanced by magnetic interaction. Disclosed are a magnetic powder comprising a mixture of two or more powders including a magnetic powder A (residual magnetic flux density: BrA, coercive force: HcA) and a magnetic powder B (residual magnetic flux density: BrB, coercive force: HcB) of which the residual magnetic flux densities and the coercive forces have the following relationships: BrA>BrB and HcA<HcB, and a bonded magnet or a sintered magnet produced from the magnetic powder, and a method for mixing magnetic powders and a process for producing a magnet.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: October 31, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Atsunori Kitazawa, Toshiyuki Ishibashi, Koji Akioka
  • Patent number: 6110252
    Abstract: Powder is composed of ferrite stainless steel containing: C: .ltoreq.0.1 wt %, Si: .ltoreq.3.0 wt %, Mn: .ltoreq.0.30 wt %, Ni: .ltoreq.2.0 wt %, Cr: 11 to 22%, Mo: .ltoreq.3.0 wt %, and the rest being substantially Fe. The metal compound of B, preferably CrB, is added to the powder as the amount of B being between more than 0.03 wt % and less than 0.2 wt % based on the amount of the powder.
    Type: Grant
    Filed: December 3, 1998
    Date of Patent: August 29, 2000
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventors: Takayoshi Shimizu, Tetsuya Kondoh
  • Patent number: 6074454
    Abstract: The invention relates to bullets having increased frangibility (or which can be easily fragmented) and to materials and processes for the manufacture of such bullets. The bullets of the present invention are typically made from copper or copper alloy powders (including brass, bronze and dispersion strengthened copper) which are pressed and then sintered under conditions so as to obtain bullets with the desired level of frangibility. In preferred embodiments of the invention, the bullets also contain several additives that increase or decrease their frangibility.
    Type: Grant
    Filed: July 11, 1996
    Date of Patent: June 13, 2000
    Assignee: Delta Frangible Ammunition, LLC
    Inventors: John T. Abrams, Anil V. Nadkarni, Roy Kelly
  • Patent number: 6060181
    Abstract: A more resistive, low loss magnetic alloy containing at least 80% cobalt, at least 10 wt % iron, about 2.5 wt % nickel, and about 0.3-2 wt % impurities including boron and manganese. The alloy is well suited for deposition upon dielectric substrates such as polyimide or polyester tape by electroless deposition processes and allows for greater film thickness in a single layer and that has lower loss than other alloys presently available for such uses.
    Type: Grant
    Filed: August 17, 1998
    Date of Patent: May 9, 2000
    Assignee: McDonnell Douglas Corporation
    Inventor: Richard D. Stolk
  • Patent number: 6054495
    Abstract: The present invention relates to a powder of unagglomerated metallic particles. More particularly, the present invention relates to a powder of unagglomerated metallic particles having an average diameter of about 1-100 nm and the process for making the same. Additionally, the powder of unagglomerated metallic particles can be formed into a lyophilized form which upon reconstitution maintains the average diameter of between about 1-100 nm wherein the particles remain unagglomerated.
    Type: Grant
    Filed: September 29, 1998
    Date of Patent: April 25, 2000
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Michael Markowitz, Gan Moog Chow, Alok Singh
  • Patent number: 5981081
    Abstract: A new family of transition metal boride coatings having excellent wear and corrosion resistance is disclosed. The coatings comprise hard, ultrafine, transition metal boride particles dispersed in a metal matrix, the particles constituting from about 30 to about 90 volume percent of the coating, the balance being metal matrix. The average size of the particles ranges from about 0.5 to about 3.0 microns. The metal matrix contains at least one metal selected from the group consisting of nickel, cobalt and iron. The coatings may be prepared by a process which comprises depositing a mechanically blended powder mixture of a transition metal and a boron-containing alloy onto a substrate and then heat treating the as-deposited coating. The heat treatment effects a diffusion reaction between the deposited elements resulting in the formation of ultrafine particles of a transition metal boride dispersed in the metal matrix. The coating can be deposited onto the substrate using any of the known deposition techniques.
    Type: Grant
    Filed: September 18, 1984
    Date of Patent: November 9, 1999
    Assignee: Union Carbide Coatings Service Corporation
    Inventor: Jiinjen Albert Sue
  • Patent number: 5976695
    Abstract: Thermally sprayable powders for the formation of abradable seals and abradable seals formed by thermally spraying the powders include an alloyed metal phase material and a solid lubricant ceramic phase material. The alloyed metal phase material includes a major amount of a matrix metal which can be one or more of Ag or Cu, at least one melting point depressing metal which can be one or more of Si, B, Mn, or Al, and at least one oxidation resistant metal which can be one or more of Al, Cr, or Si. The solid lubricant ceramic phase is preferably hexagonal boron nitride, molybdenum sulphide, graphite, talc, bentonite or mica. Abradable seals formed by thermally spraying the powders are suitable for use with Ti alloy blades at temperatures up to 700.degree. C.
    Type: Grant
    Filed: October 2, 1996
    Date of Patent: November 2, 1999
    Assignee: Westaim Technologies, Inc.
    Inventors: Karel Hajmrle, Hougong Wang
  • Patent number: 5972070
    Abstract: A sintered friction material includes a copper alloy base and hard particles. The copper alloy base includes copper and at least one of, and preferably both, Zn and Ni within a total range of 5 to 40 wt % of the copper alloy base. The hard particles are uniformly dispersed in a matrix formed by the original composite copper alloy powder constituting the base, in a content amount j within a range of 10 to 30 wt % of the friction material.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: October 26, 1999
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Katsuyoshi Kondoh, Yoshishige Takano
  • Patent number: 5966585
    Abstract: A new family of titanium carbide/tungsten boride coatings having excellent wear and corrosion resistance is disclosed. The coatings comprise hard, ultrafine, titanium carbide particles and tungsten boride precipitates dispersed in a metal matrix, the two phases constituting from about 30 to about 80 volume percent of the coating, the balance being metal matrix. The metal matrix contains at least one metal selected from a group consisting of nickel, cobalt and iron. The coatings may be prepared by a process which comprises depositing a mechanically blended powder mixture composed of separate components including a first component containing tungsten carbide and a second component containing boron and at least one metal selected from the group consisting of nickel, cobalt and iron, the powder mixture including titanium in the first or second component or in a separate third component, at least one of the first, second or third components having a melting point below about 1200.degree. C.
    Type: Grant
    Filed: September 18, 1984
    Date of Patent: October 12, 1999
    Assignee: Union Carbide Coatings Service Corporation
    Inventor: Jiinjen Albert Sue
  • Patent number: 5938814
    Abstract: An iron based powder mixture for powder metallurgy is provided which can produce a sintered material having by far higher machinability and sliding properties than conventional sintered materials, and also a sintered material containing alloy elements but having adaptability to sizing even after sintering; it comprises an atomized iron powder comprising S in a content of 0.03 to 0.30 wt %, Mn in a content of 0.05 to 0.40 wt % and the balance Fe and incidental impurities, to which is added one or more than one B-containing compound powder selected from boron nitride (BN), boric acid (H.sub.3 BO.sub.3), boron oxide (B.sub.2 O.sub.3) and the like in an amount of 0.001 to 0.3 wt % expressed as B, and incorporated with an MnS powder in an amount of 0.05 to 1.0 wt %, optionally alloyed partially with or prealloyed with Ni, Mo and Cu.
    Type: Grant
    Filed: February 24, 1998
    Date of Patent: August 17, 1999
    Assignee: Kawasaki Steel Corporation
    Inventors: Satoshi Uenosono, Kuniaki Ogura, Jibin Yang
  • Patent number: 5936170
    Abstract: A blend of pre-alloyed stainless steel powder for use in producing sintered stainless steel, said powder consisting essentially of, by weight, up to 0.05% carbon, 22% to 26% chromium, 10% to 24% nickel, 2.7% to 5% molybdenum, 0.1% to 1% boron, up to 2.0% manganese, up to 2.0% silicon, balance iron and residuals, together with manganese sulfide particles added thereto until they comprise up to 4%, by weight, of the overall blend, experimental results having shown that the blend offers significant improvements in the machinability of the resulting steel. The patent also claims a method for making sintered steel using the blend, as well as the sintered steel resulting from the process.
    Type: Grant
    Filed: February 9, 1998
    Date of Patent: August 10, 1999
    Assignee: Intech P/M Stainless Steel, Inc.
    Inventors: David J. Hanlin, Sr., Orville W. Reen
  • Patent number: 5910376
    Abstract: A gamma titanium aluminide substrate is hardfaced by providing a hardfacing material with a titanium-aluminum, gamma-titanium aluminide alloy component having a composition of titanium and about 42 to about 49 atomic percent aluminum, and a nonmetallic powder, such as titanium diboride. This hardfacing material is preferably furnished as a hardfacing alloy source in the form of a hollow tube of metallic titanium tube material, and a filler powder within the hollow tube. The filler powder is a filler mixture of an aluminum-containing alloy powder comprising more than about 50 atomic percent aluminum, and the nonmetallic powder. The relative proportions of the titanium tube material and the aluminum-containing alloy powder are such that their net composition is a gamma phase titanium aluminide composition. The hardfacing material is applied to the substrate, as by a welding process.
    Type: Grant
    Filed: December 31, 1996
    Date of Patent: June 8, 1999
    Assignee: General Electric Company
    Inventor: Thomas J. Kelly
  • Patent number: 5902943
    Abstract: The invention relates to an aluminum powder blend and sintered components produced from the aluminum powder blend. The powder is based on the precipitation hardenable 7000 series Al-Zn-Mg-Cu alloys with trace addition of lead or tin. The powder blend comprises 2-12 wt. % zinc, 1-5 wt. % magnesium, 0.1-5.6 wt. % copper, 0.01-0.3 wt. % lead or tin, and the balance aluminum. The invention also provides a composite powder comprising the foregoing powder blend and a reinforcing element or compound.
    Type: Grant
    Filed: October 31, 1997
    Date of Patent: May 11, 1999
    Assignee: The University of Queensland
    Inventors: Graham Barry Schaffer, Roger Neil Lumley, Shuhai Huo
  • Patent number: 5733664
    Abstract: A matrix powder for formation along with an infiltrant into a matrix for use as a wear element or for use in retaining at least one discrete hard element. The matrix powder includes crushed sintered cemented tungsten carbide particles. The composition of the crushed sintered cemented tungsten carbide comprises between about 6 weight percent and about 13 weight percent binder metal and between about 87 weight percent and about 94 weight percent tungsten carbide.
    Type: Grant
    Filed: December 18, 1995
    Date of Patent: March 31, 1998
    Assignee: Kennametal Inc.
    Inventors: Harold E. Kelley, William E. Silvis, Charles J. Terry, Gary R. Peterson
  • Patent number: 5698006
    Abstract: The improved intermetallic compounds represented by xNiAl+X (x=50.5-63.5), with dopant element X being selected from among Ti, Fe, V, W, Cr, Cu, Mo, Nb, Ta, Hf, Zr and B, are lightweight and have satisfactory oxidation resistance and high-temperature strength and, hence, are useful as structural materials in aerospace (as in space shuttles) and nuclear fields (for use in reprocessing facilities). A representative intermetallic compound having the formula NiAl+x(Mo/Re)+cB, wherein the ratio of Ni:Al is 56.5:43.5, the ratio of Mo:Re is either 1:1 or 1:0.5, x is between 0.1 and 1 at. %, and c is from 0 to 0.2 at. %, is disclosed.
    Type: Grant
    Filed: January 5, 1996
    Date of Patent: December 16, 1997
    Assignee: Japan Atomic Energy Research Institute
    Inventor: Shintaro Ishiyama
  • Patent number: 5690716
    Abstract: A thermal spray powder for producing high hardness, low friction, wear resistant coatings on friction surfaces, comprising a blend of an agglomerated molybdenum/dimolybdenum carbide powder and a self-fluxing NiCrFeBSi alloy powder.
    Type: Grant
    Filed: February 17, 1995
    Date of Patent: November 25, 1997
    Assignee: Osram Sylvania Inc.
    Inventor: Sanjay Sampath
  • Patent number: 5607887
    Abstract: The present invention provides a method for preparing a ceramic mixed-oxide of at least two metals including mixing an alloy with a ceramic oxide. The alloy including a metal selected from the group consisting of aluminum, calcium, lithium, magnesium, silicon, titanium, yttrium, and zirconium. The alloy also includes an element that is to be present in the ceramic mixed-oxide. The element is different from the metal and is selected from the group consisting of aluminum, calcium, lithium, magnesium, a combination of magnesium and silicon, silicon, titanium, yttrium, and zirconium. The ceramic oxide includes a metal that is to be present in the ceramic mixed oxide. The alloy and ceramic oxide are co-milled. The mixed and co-milled alloy and ceramic oxide are reaction-sintered, thereby oxidizing the metal and element of the alloy to produce the ceramic mixed-oxide.
    Type: Grant
    Filed: February 15, 1995
    Date of Patent: March 4, 1997
    Assignee: Volvo Aero Aktiebolag
    Inventors: Lars Pejryd, Robert Lundberg, Jesper Brandt
  • Patent number: 5605559
    Abstract: Alloy steel powders capable of obtaining high strength in a sintered state and having excellent compacting compressibility and methods of manufacturing a sintered body. The alloy steel powder comprises, by wt %, about 0.5-2% of Cr, not greater than about 0.08% of Mn, about 0.1-0.6% of Mo, about 0.05-0.5% of V, not greater than about 0.015 of S, not greater than about 0.2% of O, and the balance being Fe and incidental impurities. The alloy steel powder is compacted and sintered at a temperature of about 1100.degree.-1300.degree. C. and then cooled at a cooling rate no higher than about 1.degree. C./s in a temperature range of from about 800.degree. C. to 400.degree. C. The alloy steel powder can contain Nb and/or Ti and one or more of Co, W and B. Additionally, Ni powder and/or Cu powder may be adhered and dispersed onto the surface of the alloy steel powder.
    Type: Grant
    Filed: February 22, 1995
    Date of Patent: February 25, 1997
    Assignee: Kawasaki Steel Corporation
    Inventors: Shigeru Unami, Satoshi Uenosono
  • Patent number: 5599377
    Abstract: A mixed iron powder for powder metallurgy containing less than about 0.1 wt % of Mn, about 0.08 to 0.15 wt % of S, a total of about 0.05 to 0.70 wt % of one or more compounds selected from MoO.sub.3 and WO.sub.3, about 0.50 to 1.50 wt % of graphite powder, and the balance Fe and incidental impurities. The mixed iron powder can be manufactured by an atomizing process using water, and be used to manufacture a sintered steel having excellent machinability, strength and toughness without forming soot, even if sintered in a hydrogen-containing atmosphere.
    Type: Grant
    Filed: July 24, 1995
    Date of Patent: February 4, 1997
    Assignee: Kawasaki Steel Corporation
    Inventors: Satoshi Uenosono, Kuniaki Ogura
  • Patent number: 5595608
    Abstract: A permanent magnet which contains R, T and B as main ingredients wherein R is Y or a rare earth element and T is Fe or Fe and Co and has a primary phase of R.sub.2 T.sub.14 B is produced by compacting a mixture of 60 to 95 wt % of a primary phase-forming master alloy and a grain boundary phase-forming master alloy both in powder form and sintering the compact. The primary phase-forming master alloy has columnar crystal grains of R.sub.2 T.sub.14 B with a mean grain size of 3-50 .mu.m and grain boundaries of an R rich phase and contains 26-32 wt % of R. The grain boundary phase-forming master alloy is a crystalline alloy consisting essentially of 32-60 wt % of R and the balance of Co or Co and Fe. In anther form, a permanent magnet which contains R, T and B as main ingredients wherein R is yttrium or a rare earth element, T is Fe or Fe+Co/Ni and has a primary phase of R.sub.2 T.sub.
    Type: Grant
    Filed: November 2, 1994
    Date of Patent: January 21, 1997
    Assignee: TDK Corporation
    Inventors: Katashi Takebuchi, Shinya Fujito, Shinya Hashimoto, Koichi Yajima
  • Patent number: 5486224
    Abstract: To a fine R--Fe--B alloy powder comprised predominantly of 10-30 atomic % of R (wherein R stands for at least one element selected from rare earth elements including yttrium), 2-28 atomic % of B, and 65-82 atomic % of Fe in which up to 50 atomic % of Fe may be replaced by Co, at least one boric acid ester compound such as tributyl borate is added as a lubricant in a proportion of 0.01%-2% by weight and mixed uniformly before, during, or after fine grinding of the alloy powder. The resulting powder mixture is compacted by compression molding in a magnetic field and the green compacts are sintered and aged. Compression molding can be performed continuously without need of mold lubrication, and the resulting magnets have improved magnet properties with respect to residual flux density, maximum energy product, and intrinsic coercive force.
    Type: Grant
    Filed: December 27, 1994
    Date of Patent: January 23, 1996
    Assignees: Sumitomo Metal Industries, Ltd., Sumitomo Special Metals Co., Ltd.
    Inventors: Yoshihisa Kishimoto, Nobushige Hiraishi, Wataru Takahashi, Masakazu Ohkita, Naoyuki Ishigaki, Yutaka Matsuura
  • Patent number: 5464463
    Abstract: Disclosed are heat resistant aluminum alloy powder and alloy including Ni in an amount of from 5.7 to 20% by weight, Si in an amount of from 6.0 to 25% by weight, at least one of Fe in an amount of from 0.6 to 8.0% by weight and Cu in an amount of from 0.6 to 5.0% by weight, and at least one of B in a form of the simple substance in an amount of from 0.05 to 2.0% by weight (or from 0.05 to 10% by weight for the alloy) and graphite particles (especially for the alloy) in an amount of from 0.1 to 10% by weight. The alloy powder and alloy are not only superb in the tensile strength at room temperature and high temperatures but also superior in the sliding characteristic, they can be further upgraded in the wear resistance and the fretting fatigue resistance by dispersing at least one of nitride particles, boride particles, oxide particles and carbide particles in an amount of from 0.
    Type: Grant
    Filed: April 14, 1993
    Date of Patent: November 7, 1995
    Assignees: Toyota Jidosha Kabushiki Kaisha, Toyo Aluminum Kabushiki Kaisha
    Inventors: Hirohisa Miura, Kunihiko Imahashi, Hirohumi Michioka, Yasuhiro Yamada, Jun Kusui, Akiei Tanaka
  • Patent number: 5443617
    Abstract: The present invention aims at providing a powdery raw material composition for a permanent magnet superior in the magnetic properties and easy in preparation, a magnetically anisotropic permanent magnet, and a method for producing the magnet by use of the powdery raw material composition. A powdery raw material composition for a permanent magnet according to the present invention is one prepared by subjecting a mixture composed of 13-18 weight % of a neodymium powder, 4-10 weight % of a boron powder and the rest of an acicular iron powder coated with aluminum phosphate to a temperature above 600.degree. C. in an atmosphere initially of a hydrogen-containing reducing gas followed later by an inert gas, and a magnetically anisotropic permanent magnet is prepared by compression molding a mixture obtained from the powdery composition and a binder under heating in the presence of a magnetic field.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: August 22, 1995
    Assignees: Kawasaki Teitoku Co., Ltd., Komeya Inc., Sanei Kasei Co., Ltd.
    Inventor: Yasunori Takahashi
  • Patent number: 5401292
    Abstract: A carbonyl iron powder (CIP) premix composition suitable for metal injection molding is provided herein. The composition comprises (a) CIP having a particle size in the range of about 0.2-7 microns, preferably about 0.2-5 microns, and a narrow particle size distribution; and (b) an alloying material, having a particle size in the range of about 0.02 to 5 microns, preferably about 0.03 to 3.0 microns, and a narrow particle size distribution, comparable to the CIP, and present in an amount of about 0.1-60% by weight of the composition, preferably 0.5-50%. The alloy material substantially covers the surface of the iron particles and is adhered thereto by attractive forces. Preferably the alloy material includes elemental metal powders which are smaller in particle size than the CIP.The premix composition is prepared by intensive mixing of its powder components, e.g.
    Type: Grant
    Filed: August 3, 1992
    Date of Patent: March 28, 1995
    Assignee: ISP Investments Inc.
    Inventor: Joseph E. Japka