Mixture Contains Particles Of Nonmetal Patents (Class 75/252)
  • Patent number: 10370744
    Abstract: A reinforced magnesium composite, and a method of producing thereof, wherein the reinforced magnesium composite comprises elemental magnesium particles, elemental nickel particles, and one or more ceramic particles with elemental nickel particles being dispersed within elemental magnesium particles without having intermetallic compounds therebetween. Various embodiments of the method of producing the reinforced magnesium composite are also provided.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: August 6, 2019
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Syed Fida Hassan, Nasser Al-Aqeeli, Nasirudeen Olalekan Ogunlakin
  • Patent number: 10329670
    Abstract: A nozzle element for applying powder material to a substrate is provided. The powdered material is applied from the nozzle element onto the substrate generating a coating of the powder material defined by a first film thickness and a first particle size of the powder material. A deformation nozzle element is provided for spraying shot toward the coating of powder material disposed upon the substrate deforming particles of the powder material disposed in the coating forming a second particle size being smaller than the first particle size and deforming the coating to define a second film thickness being less than the first film thickness.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: June 25, 2019
    Assignee: Tessonics, Inc.
    Inventors: Roman Gr. Maev, Volf Leshchynsky, Emil Strumban, Damir Ziganshin, Raymond Belenkov, Dmitry Dzhurinskiy
  • Patent number: 10276370
    Abstract: A method for forming nanostructures including introducing a hollow shell into a reactor. The hollow shell has catalyst nanoparticles exposed on its interior surface. The method also includes introducing a precursor into the reactor to grow nanostructures from the interior surface of the hollow shell from the catalyst nanoparticles.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: April 30, 2019
    Assignee: Georgia Tech Research Corporation
    Inventors: Michael A. Filler, Sven Holger Behrens, Laurens Victor Breedveld
  • Patent number: 10259040
    Abstract: The lubricant for metal powder metallurgy of the present invention consists of particulates that contain at least one amide compound selected from the group consisting of amide compounds represented by general formula (1) below and amide compounds represented by general formula (2) below, wherein particulates with a particle diameter larger than 198 ?m are less than 1 mass % and particulates with a diameter of 10 ?m or less are not more than 10 mass %, R1—CONHCH2mNHCO—R2??(1) wherein, R1 and R2 each independently represent a C13-27 aliphatic hydrocarbon group and m represents a number from 1 to 6, R3—CONH2??(2) wherein, R3 represents a C13-27 aliphatic hydrocarbon group. The lubricant for metal powder metallurgy of the present invention realizes low rattler values and low densities without inhibition of the lubricity, and can provide green bodies and sintered bodies free of cracking, chipping, and density imbalances.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: April 16, 2019
    Assignees: ADEKA CORPORATION, ADEKA CHEMICAL SUPPLY CORPORATION
    Inventors: Yukou Mizuno, Kyoushi Adachi
  • Patent number: 10210974
    Abstract: In a coil component (planar coil element), at least part of a third metal magnetic powder constituting a metal magnetic powder and having a minimum average grain diameter is uncoated, which suppresses a reduction in magnetic permeability. On the other hand, the remaining metal powders are coated with glass, which improves the insulating properties of a metal magnetic powder-containing resin and reduces core loss.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: February 19, 2019
    Assignee: TDK CORPORATION
    Inventors: Hitoshi Ohkubo, Masazumi Arata, Manabu Ohta, Shou Kawadahara, Yoshihiro Maeda, Takahiro Kawahara, Hokuto Eda, Shigeki Sato
  • Patent number: 10141110
    Abstract: A multilayer ceramic capacitor includes: a ceramic body in which a plurality of dielectric layers are stacked and first and second internal electrodes are alternately disposed with respective dielectric layers interposed therebetween; and first and second external electrodes formed on first and second surfaces of the ceramic body in a length direction, respectively. The first and second internal electrodes each include a body portion formed to be spaced apart from an edge of the dielectric layer and a lead portion extending from the body portion to be exposed to one surface of the ceramic body in the length direction and portions of the first and second surfaces of the ceramic body in the width direction, and first and second insulating layers are formed on the first and second surfaces of the ceramic body in the width direction, respectively, to insulate portions of the first and second lead portions not in contact with the first and second external electrodes, respectively.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: November 27, 2018
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Min Cheol Park, Young Ghyu Ahn
  • Patent number: 10048150
    Abstract: A strain detection element is provided above a deformable membrane. Moreover, this strain detection element includes an electrode and a stacked body, the stacked body including: a first magnetic layer whose magnetization direction is variable according to a deformation of the membrane; a second magnetic layer provided facing the first magnetic layer; and an intermediate layer provided between these first magnetic layer and second magnetic layer, and at least part of the first magnetic layer is amorphous, and the electrode includes a metal layer configured from a Cu—Ag alloy.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: August 14, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko Fuji, Hideaki Fukuzawa, Akio Hori, Shiori Kaji
  • Patent number: 10010980
    Abstract: A solder paste including a metal component consisting of a first metal powder and a second metal powder having a melting point higher than that of the first metal, and a flux component. The first metal is Sn or an alloy containing Sn, the second metal is one of (1) a Cu—Mn alloy in which a ratio of Mn to the second metal is 5 to 30% by weight and (2) a Cu—Ni alloy in which a ratio of Ni to the second metal is 5 to 20% by weight, and a ratio of the second metal to the metal component is 36.9% by volume or greater.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: July 3, 2018
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Kosuke Nakano, Hidekiyo Takaoka
  • Patent number: 9923202
    Abstract: An antimony based anode material for a rechargeable battery includes nanoparticles of composition SbMxOy, where M is an element selected from the group consisting of Sn, Ni, Cu, In, Al, Ge, Pb, Bi, Fe, Co, and Ga, with 0?x<2 and 0?y?2.5+2x. The nanoparticles form a substantially monodisperse ensemble with an average size not exceeding a value of 30 nm and by a size deviation not exceeding 15%. A method for preparing the antimony based anode material is carried out in situ in a non-aqueous solvent and starts by reacting an antimony salt and an organometallic amide reactant and oleylamine.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: March 20, 2018
    Assignee: Belenos Clean Power Holding AG
    Inventors: Maksym V. Kovalenko, He Meng, Kostiantyn Kravchyk, Marc Walter
  • Patent number: 9855601
    Abstract: An iron-based powder metallurgical composition is provided comprising an iron or iron-based powder and composite lubricant particles, with the composite lubricant particles comprising a core of 10-60% by weight of at least one primary fatty acid amide having more than 18 and not more than 24 carbon atoms and 40-90% by weight of at least one fatty acid bisamide, with the core having nanoparticles of at least one metal oxide adhered thereon. Further provided is a particulate composite lubricant as well as a method of preparing such lubricant.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: January 2, 2018
    Assignee: HÖGANÄS AB (PUBL)
    Inventors: Åsa Ahlin, Anna Ahlquist, Karin Olsson
  • Patent number: 9850579
    Abstract: A feedstock for a cold spray process includes a plurality of globule bodies. The globule bodies include a plurality of discrete particles bonded to one another to define porous globule bodies. The bonds between the particles are of sufficient strength such that the globule bodies can retain both the body integrity as well as the body shape when the body experiences acceleration from a conveying gas in a cold spray technique. Methods of making the feedstock and globule bodies are also described.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: December 26, 2017
    Assignee: Delavan, Inc.
    Inventors: Sergey Mironets, Thomas J. Martin, Aaron T. Nardi, Alexander Staroselsky
  • Patent number: 9831041
    Abstract: A method for producing agglomerated tantalum particles, comprising: a step for grinding secondary tantalum particles, which are obtained by reducing a tantalum salt, and adding water thereto to give a water-containing mass; a step for drying said water-containing mass to give a dry mass; a step for sieving said dry mass to give spherical particles; and a step for heating said spherical particles. A mixed tantalum powder comprising a mixture of agglomerated tantalum particles (X) with agglomerated tantalum particles (Y), wherein said agglomerated tantalum particles (X) show a cumulative percentage of particles with particle size of 3 ?m or less of 5 mass % or less after 25 W ultrasonic radiation for 10 min, while said agglomerated tantalum particles (Y) show a cumulative percentage of particles with particle size of 3 ?m or less of 10 mass % or more after 25 W ultrasonic radiation for 10 min.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: November 28, 2017
    Assignee: Global Advanced Metals USA, Inc.
    Inventors: Ryosuke Matsuoka, Eiji Kataoka, Yoshikazu Noguchi, John Koenitzer, Sridhar Venigalla
  • Patent number: 9818536
    Abstract: A multilayer ceramic capacitor that includes an internal electrode containing at least one kind of metal A selected from the group consisting of In, Ga, Zn, Bi, and Pb and dissolved in Ni to form a solid solution. The internal electrode has a ratio of A of 1.4 atomic percent or more to a total amount of A and Ni in a near-interface region located to a depth of 2 nm from a surface of the internal electrode facing a corresponding ceramic dielectric layer. A relation between a value X of atomic percent representing the ratio of A in the near-interface region and a value Y of atomic percent representing the ratio of A in a central region in a thickness direction of the internal electrode is X?Y?1.0. Such a multilayer capacitor is formed by annealing a ceramic stack under a predetermined condition to increase the ratio of metal A in the near-interface region of the internal electrode.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: November 14, 2017
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Shoichiro Suzuki, Shinichi Yamaguchi, Akitaka Doi
  • Patent number: 9533353
    Abstract: The present invention is directed to metallurgical powder compositions having improved lubricant properties. These compositions of the invention include at least 90 wt. % of an iron-based metallurgical powder; a Group 1 or Group 2 metal stearate; a first wax having a melting range of between about 80 and 100° C.; a second wax having a melting range of between about 80 and 90° C.; zinc phosphate; boric acid; acetic acid; phosphoric acid; and a binder. Methods of compacting the compositions, as well as compacted articles prepared using those methods, are also described.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: January 3, 2017
    Assignee: Hoeganaes Corporation
    Inventors: Francis G. Hanejko, William Tambussi
  • Patent number: 9352393
    Abstract: An iron-based powder for powder metallurgy effectively prevents agglomeration of a lubricant, has excellent flowability, can evenly fill thin-walled cavities, keeps the ejection force after formation low, and does not lower sintered body strength by adhering either or both of an alloy component and a cutting ability improving agent to the surface of iron powder with a binder that has a melting point of 150° C. or lower, adhering carbon black to the surface of the binder, and setting the amount of free binder to 0.02 mass % or less.
    Type: Grant
    Filed: December 24, 2013
    Date of Patent: May 31, 2016
    Assignee: JFE STEEL CORPORATION
    Inventors: Tomoshige Ono, Yukiko Ozaki, Takashi Kawano
  • Patent number: 9350065
    Abstract: A method for manufacturing a resonance tube includes: mixing powder materials, to form homogeneous powder particles, where the powder materials comprise iron powder with a weight proportion of 50% to 90%, at least one of copper powder and steel powder with a weight proportion of 1% to 30%, and an auxiliary material with a weight proportion of 1% to 20%; pressing and molding the powder particles, to form a resonance tube roughcast; sintering the resonance tube roughcast in a protective atmosphere, to form a resonance tube semi-finished product; and electroplating the resonance tube semi-finished product, to form the resonance tube. In the method, the resonance tube, and the filter according to embodiments of the present invention, the resonance tube is manufactured by using multiple powder materials.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: May 24, 2016
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Yanzhao Zhou
  • Patent number: 9243215
    Abstract: The present invention relates to benefit agent containing delivery particles, compositions comprising said particles, and processes for making and using the aforementioned particles and compositions. When employed in compositions, for example, cleaning or fabric care compositions, such particles increase the efficiency of benefit agent delivery, there by allowing reduced amounts of benefit agents to be employed. In addition to allowing the amount of benefit agent to be reduced, such particles allow a broad range of benefit agents to be employed.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: January 26, 2016
    Assignee: The Procter & Gamble Company
    Inventors: Jiten Odhavji Dihora, Ramanan Venkata Ganapathysundaram, Parshuram Gajanan Shukla, Arun Savalaram Jadhav
  • Patent number: 9194492
    Abstract: A method for producing a piston ring for an internal combustion engine includes providing, a substrate and applying a coating by means of thermal spraying of a powder including solid lubricants on the substrate, having the elemental proportions of 15-30% by weight of iron, Fe; 15-30% by weight tungsten, W; 25-35% by weight of chromium, Cr; 10-35% by weight of nickel, Ni; 1-5% by weight of molybdenum, Mo; 0.2-3% by weight of aluminum, Al; 3-20% by weight of copper, Cu; 1-10% by weight of carbon, C; 0.1-2% by weight of sulfur, S; and 0.1-2% by weight of silicon, Si. The resultant piston ring and coating are also provided.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: November 24, 2015
    Assignee: Federal-Mogul Burscheid GmbH
    Inventors: Marcus Kennedy, Michael Zinnabold, Marc-Manuel Matz
  • Patent number: 9196947
    Abstract: A method for manufacturing a resonant tube is provided in the present invention, which comprises: mechanically mixing 88-98 wt. % of iron-nickel alloy powder, 1-8 wt. % of carbonyl iron powder, and 1-8 wt. % of carbonyl nickel powder to form a uniform powder mixture; molding the uniform powder mixture to form a resonant tube blank; and continuously sintering and annealing the resonant tube blank. Also provided in the present invention are a resonant tube and a cavity filter. The method for manufacturing a resonant tube provided in the present invention significantly enhances production efficiency while greatly reducing consumption of raw materials. Moreover, the resonant tube provided in the present invention reduces, to the greatest extent, segregation of alloy components and coarse and uneven microstructures, thereby increasing the performance and stability of the corresponding products.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: November 24, 2015
    Assignee: SHENZHEN TATFOOK NETWORK TECHNOLOGY CO., LTD.
    Inventors: Kelun Zhao, Fengping Shen, Bingbing Wan, Yanzhao Zhou
  • Patent number: 9145598
    Abstract: A water atomized stainless steel powder which comprises by weight-%: 10.5-30.0 Cr 0.5-9.0 Ni 0.01-2.0 Mn 0.01-3.0 Sn 0.1-3.0 Si 0.01-0.4 N optionally max 7.0 Mo optionally max 7.0 Cu optionally max 3.0 Nb optionally max 6.0 V balance iron and max 0.5 of unavoidable impurities.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: September 29, 2015
    Assignee: HOGANAS AB (PUBL)
    Inventor: Denis Oshchepkov
  • Patent number: 9103004
    Abstract: A hardfacing composition (32) that includes a plurality of hard particles (54) wherein the hard particles (54) include a mode particle size distribution, one particle size distribution smaller than the mode particle size distribution, and an other particle size distribution larger than the mode particle size distribution. There is an absence of any substantial fluctuations in the particle size distribution between the mode particle size distribution and the one particle size distribution. There is an absence of any substantial fluctuations in the particle size distribution between the mode particle size distribution and the other particle size distribution.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: August 11, 2015
    Assignee: KENNAMETAL INC.
    Inventor: Moira E. MacLeod
  • Patent number: 9057442
    Abstract: A structure of a piston ring to be installed in an engine includes a matrix. A laminated intermediate layer is formed on a surface of the matrix from hard chromium (Cr), chromium nitride (CrN) and titanium carbide (TiC) in order, and a diamond-like carbon film (DLC) is coated on an outer periphery of the intermediate layer. Thus, the piston ring is wrapped by a skin with a progressive structure having a gradient distribution of hardness. The structure formed from the diamond-like carbon film provides a low wear rate and a low friction coefficient, while applying a high bonding force to the matrix and making the piston ring have an improved normal service life that meets the related environmental regulations.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: June 16, 2015
    Assignee: C.T.I. TRAFFIC INDUSTRIES CO., LTD.
    Inventor: Wan-Jie Lu
  • Patent number: 9044816
    Abstract: A solder paste including a metal component consisting of a first metal powder and a second metal powder having a melting point higher than that of the first metal, and a flux component. The first metal is Sn or an alloy containing Sn, and the second metal is a metal or alloy which forms an intermetallic compound having a melting point of 310° C. or higher with the first metal and has a lattice constant difference, i.e. a difference in between the lattice constant of the intermetallic compound and the lattice constant of the second metal component, of 50% or greater.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: June 2, 2015
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Kosuke Nakano, Hidekiyo Takaoka
  • Publication number: 20150116895
    Abstract: There are provided a conductive paste composition for an external electrode, a multilayer ceramic electronic component using the same, and a manufacturing method thereof, and more specifically, a conductive paste composition for an external electrode, allowing for decreased blister and glass beading defects by improving a removal of residual carbon at low temperature before necking between metal particles is generated and the metal particles are densified during a firing process of the external electrode, a multilayer ceramic electronic component using the same, and a manufacturing method thereof.
    Type: Application
    Filed: January 22, 2014
    Publication date: April 30, 2015
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Seung Hee YOO, Sim Chung KANG, Byung Jun JEON, Jun Hyeong KIM, Eun Joo CHOI, Kyu Ha LEE
  • Patent number: 9017445
    Abstract: A method of making metal nanoparticles and carbon nanotubes is disclosed. A mixture of a transition metal compound and an aromatic polymer, a precursor of an aromatic polymer, or an aromatic monomer is heated to form a metal nanoparticle composition, optionally containing carbon nanotubes.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: April 28, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Teddy M Keller, Matthew Laskoski
  • Patent number: 9011570
    Abstract: Articles containing a matrix material and plurality of copper nanoparticles in the matrix material that have been at least partially fused together are described. The copper nanoparticles are less than about 20 nm in size. Copper nanoparticles of this size become fused together at temperatures and pressures that are much lower than that of bulk copper. In general, the fusion temperatures decrease with increasing applied pressure and lowering of the size of the copper nanoparticles. The size of the copper nanoparticles can be varied by adjusting reaction conditions including, for example, surfactant systems, addition rates, and temperatures. Copper nanoparticles that have been at least partially fused together can form a thermally conductive percolation pathway in the matrix material.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: April 21, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Peter V. Bedworth, Alfred A. Zinn
  • Publication number: 20150104346
    Abstract: A laser sintering powder to be sintered by irradiation with a laser light is provided. The sintering powder includes a plurality of metal particles and a binder which binds the metal particles to one another. The binder is sublimated by the irradiation with the laser light. The average particle diameter of the metal particles is 5 ?m or more and 10 ?m or less, and the average particle diameter of the laser sintering powder is 30 ?m or more and 50 ?m or less. Further, after a powder layer is formed using the laser sintering powder, this powder layer may be compressed in the thickness direction before or after irradiation with the laser light.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 16, 2015
    Inventors: Hidefumi NAKAMURA, Yu MAEDA
  • Patent number: 9005330
    Abstract: Transient liquid phase sintering compositions comprising one or more high melting point metals and one or more low melting temperature alloys are known in the art as useful compositions for creating electrically and/or thermally conductive pathways in electronic applications. The present invention provides transient liquid phase sintering compositions that employ non-eutectic low melting temperature alloys for improved sintering and metal matrix properties.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: April 14, 2015
    Assignee: Ormet Circuits, Inc.
    Inventors: Catherine Shearer, Peter A Matturri, Kenneth C Holcomb, Michael C Matthews
  • Patent number: 9005519
    Abstract: This invention relates to power metallurgical material, production method and application thereof. A metallurgy powder material with pressure-proof & good compactness, satisfactory to the component content requirements for 316 stainless steel, wherein, 5˜9% (by weight) of Fe3P (or Fe3PO4). The powder metallurgical material has properties of pressure resistance and corrosion resistance, and excellent compactness.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: April 14, 2015
    Assignee: Shanghai Xingluo Special Seals Co., Ltd.
    Inventors: Hongqi Chen, Jingtao Fei
  • Patent number: 8999518
    Abstract: The present invention discloses a hierarchical composite material comprising a ferrous alloy reinforced with titanium carbides according to a defined geometry, in which said reinforced portion comprises an alternating macro-microstructure of millimetric areas concentrated with micrometric globular particles of titanium carbide separated by millimetric areas essentially free of micrometric globular particles of titanium carbide, said areas concentrated with micrometric globular particles of titanium carbide forming a microstructure in which the micrometric interstices between said globular particles are also filled by said ferrous alloy.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: April 7, 2015
    Assignee: Magotteaux International S.A.
    Inventor: Francesco Vescera
  • Publication number: 20150093280
    Abstract: A material which can be used to manufacture components which exhibit high strength and high wear resistance, at the same time possessing reasonable ductility. The material also has cost advantages compared to other potential metal powder solutions. An iron based powder composition which achieves desired microstructure/properties and associated sliding wear resistance with reduced content of expensive alloying ingredients such as admixed elemental Ni and Copper.
    Type: Application
    Filed: January 3, 2013
    Publication date: April 2, 2015
    Inventors: Christophe Szabo, Senad Dizdar, Ola Bergman
  • Patent number: 8986420
    Abstract: A powder material, a method for manufacturing a communication device, and a communication device are disclosed. The powder material according to an embodiment of the present invention includes quartz glass powder, tungsten powder, and an auxiliary material, where a weight proportion of the quartz glass powder is 5% to 90%, a weight proportion of the tungsten powder is 5% to 90%, and a weight proportion of the auxiliary material is 0 to 20%. The powder material according to another embodiment of the present invention includes titanium powder, tungsten powder, and iron powder, where a weight proportion of the titanium powder is 4% to 80%, a weight proportion of the tungsten powder is 5% to 90%, and a weight proportion of the iron powder is 4% to 80%.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: March 24, 2015
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Yanzhao Zhou
  • Publication number: 20150068361
    Abstract: A particulate composite lubricant for powder metallurgy comprises: first discrete particles comprising at least about 90 wt % of a fatty primary monoamide wax, being substantially free of fatty bisamide wax, and being at least partially coated with metal oxide nanoparticles and second metal-stearate free discrete particles comprising a fatty bisamide wax. A particulate composite lubricant for powder metallurgy can comprise: a Montan acid ester wax and at least one fatty amide wax comprising at least one of a fatty monoamide wax and a fatty bisamide wax.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 12, 2015
    Inventors: Yannig THOMAS, Vincent PARIS, Sylvain ST-LAURENT
  • Publication number: 20150054158
    Abstract: A functional material includes at least two kinds of particles selected from the group consisting of first metal composite particles, second metal composite particles and third metal composite particles. The first metal composite particles, the second metal composite particles and the third metal composite particles each contain two or more kinds of metal components. The melting point T1(° C.) of the first metal composite particles, the melting point T2(° C.) of the second metal composite particles and the melting point T3(° C.) of the third metal composite particles satisfy a relationship of T1>T2>T3.
    Type: Application
    Filed: August 11, 2014
    Publication date: February 26, 2015
    Applicant: NAPRA CO., LTD.
    Inventors: Shigenobu Sekine, Yurina Sekine
  • Patent number: 8961647
    Abstract: The invention is a process for manufacturing a nano aluminum/alumina metal matrix composite and composition produced therefrom. The process is characterized by providing an aluminum powder having a natural oxide formation layer and an aluminum oxide content between about 0.1 and about 4.5 wt. % and a specific surface area of from about 0.3 and about 5 m2/g, hot working the aluminum powder, and forming a superfine grained matrix aluminum alloy. Simultaneously there is formed in situ a substantially uniform distribution of nano particles of alumina. The alloy has a substantially linear property/temperature profile, such that physical properties such as strength are substantially maintained even at temperatures of 250° C. and above.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: February 24, 2015
    Inventors: Thomas G. Haynes, III, Martin Walcher, Martin Balog
  • Patent number: 8950652
    Abstract: A sintering method is provided which allows components to be joined to each other in a stable way, wherein the processing temperature is less than 200° C. and stable contact points are produced, which have low porosity and also high electrical and thermal conductivity. The method for joining components includes (a) providing a sandwich arrangement having at least (a1) one component 1, (a2) one component 2, and (a3) a metal paste located between component 1 and component 2, and (b) sintering the sandwich arrangement. The metal paste contains (A) 75-90 weight percent of at least one metal present in the form of particles having a coating containing at least one organic compound, (B) 0-12 weight percent of at least one metal precursor, (C) 6-20 weight percent of at least one solvent, and (D) 0.1-15 weight percent of at least one sintering agent selected from the group comprising (i) organic peroxides, (ii) inorganic peroxides, and (iii) inorganic acids.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: February 10, 2015
    Assignee: Heraeus Materials Technology GmbH & Co. KG
    Inventors: Michael Schäfer, Wolfgang Schmitt, Jian Zeng
  • Publication number: 20150017043
    Abstract: A powder metal formulation includes a solid lubricant and is particularly useful for the production of powder metal scroll compressors.
    Type: Application
    Filed: February 11, 2013
    Publication date: January 15, 2015
    Applicant: GKN Sinter Metals, LLC
    Inventors: Ian William Donaldson, John David S. Gurosik
  • Patent number: 8925789
    Abstract: A method is provided for connecting at least two components, in which a sintering preform is used. This preform includes a carrier having a surface that has at least one structuring element containing hardened paste, wherein the hardened paste contains: (a) metal particles having a coating that contains at least one organic compound; and (b) at least one sintering aid selected from the group consisting of (b1) organic peroxides, (b2) inorganic peroxides, (b3) inorganic acids, (b4) salts of organic acids, wherein the organic acids have 1-4 carbon atoms, (b5) esters of organic acids, wherein the organic acids have 1-4 carbon atoms, and (b6) carbonyl complexes. The surface of the carrier having the hardened paste is not reactive to the constituents of the paste.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: January 6, 2015
    Assignee: Heraeus Materials Technology GmbH & Co. KG
    Inventors: Michael Schäfer, Wolfgang Schmitt
  • Publication number: 20150002255
    Abstract: Provided is a composite for manufacturing a chip part for a high frequency, and the composite includes a magnetic powder having a relatively spherical shape, and a metal magnetic body particle having a relatively more amorphous shape than that of the magnetic powder and a lower hardness than that of the magnetic powder.
    Type: Application
    Filed: June 27, 2014
    Publication date: January 1, 2015
    Inventors: Hak Kwan KIM, Sung Yong AN, Jae Yeong KIM, Jung Wook SEO
  • Patent number: 8920533
    Abstract: A powder metal mixture is disclosed that provides improved mechanical properties for parts made from powder metal, such as cam caps. The powder metal mixture, upon sintering, forms an S phase intermetallic in the Al—Cu—Mg alloy system. The S phase is present in a concentration that results in an enhanced response to cold work strengthening of the powder metal part. Further, by minor adjustments to certain alloy elements, such as tin, the tensile properties of the resultant part may be adjusted.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: December 30, 2014
    Assignee: GKN Sinter Metals, LLC
    Inventors: Donald Paul Bishop, Christopher D. Boland, Richard L. Hexemer, Jr., Ian W. Donaldson
  • Publication number: 20140342497
    Abstract: A method for producing a metal article may include: Producing a supply of a composite metal powder by: providing a supply of molybdenum metal powder; providing a supply of a sodium compound; combining the molybdenum metal powder and the sodium compound with a liquid to form a slurry; feeding the slurry into a stream of hot gas; and recovering the composite metal powder; and consolidating the composite metal powder to form the metal article, the metal article comprising a sodium/molybdenum metal matrix. Also disclosed is a metal article produced accordance with this method.
    Type: Application
    Filed: August 1, 2014
    Publication date: November 20, 2014
    Inventors: Naresh Goel, Carl Cox, David Honecker, Eric Smith, Christopher Michaluk, Adam DeBoskey, Sunil Chandra Jha
  • Publication number: 20140341771
    Abstract: An iron-based powder composition is provided comprising, in addition to an iron-based powder, a minor amount of a machinability improving additive comprising at least one silicate from the group of phyllosilicates. The technology further concerns the use of the machinability improving additive and a method for producing an iron-based sintered part having improved machinability.
    Type: Application
    Filed: August 4, 2014
    Publication date: November 20, 2014
    Applicant: HÖGANÄS AB (PUBL)
    Inventors: Olof ANDERSSON, Bo HU
  • Patent number: 8889065
    Abstract: An improved sintered material and product. A nanometer size reinforcement powder is mixed with a micron size titanium or titanium alloy powder. After the reinforcement powder is generally uniformly dispersed, the powder mixture is compacted and sintered, causing the nano reinforcement to react with the titanium or titanium alloy, producing a composite material containing nano and micron size precipitates that are uniformly distributed throughout the material.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: November 18, 2014
    Assignee: IAP Research, Inc.
    Inventors: Bhanumathi Chelluri, Edward Arlen Knoth, Edward John Schumaker, Ryan D. Evans, James. L. Maloney, III
  • Patent number: 8870997
    Abstract: A pre-alloyed iron-based powder is provided including small amounts of alloying elements which make possible a cost efficient manufacture of sintered parts. The pre-alloyed iron-based powder comprises 0.2-1% by weight of Cr, 0.05-0.3% by weight of Mo, 0.1-1% by weight of Ni, 0.09-0.3% by weight of Mn, 0.01% by weight or less of C, less than 0.25% by weight of O, and less than 1% by weight of inevitable impurities, the balance being iron.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: October 28, 2014
    Assignee: Hoganas AB (Publ)
    Inventors: Alexander Klekovkin, David Milligan, Nagarjuna Nandivada
  • Patent number: 8858675
    Abstract: A powder metallurgical combination is provided comprising an iron-based powder A comprising core particles of iron to which core particles nickel is diffusion alloyed and wherein said nickel diffusion alloyed to said core particles comprises 4-7% (preferably 4.5-6%) by weight of said iron-based powder A, and a powder B substantially consisting of particles of pure iron. Further a method is provided for preparing a powder metallurgical combination.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: October 14, 2014
    Assignee: Hoganas AB (Publ)
    Inventor: Mats Larsson
  • Patent number: 8840700
    Abstract: The present invention provides conductive metal compositions for electronic applications, and methods of preparation and uses thereof. More specifically, the present invention provides metallic particle transient liquid phase sintering compositions containing blended formulations of metal and metal alloy components that form interconnected conductive metallurgical networks with increased stability, resistance to thermal stress and ability to mitigate CTE mismatch between materials.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: September 23, 2014
    Assignee: Ormet Circuits, Inc.
    Inventors: Catherine Shearer, Kenneth C. Holcomb, G. Delbert Friesen, Michael C. Matthews
  • Publication number: 20140271327
    Abstract: A powder for molding is a mixture of first constituent particles, which are made up of first metal base particles, and second constituent particles, which are made up of second metal base particles. A first lubricant concentration that is a mass proportion of a first internal lubricant adhered to the surface of the first metal base particles with respect to the total of the first constituent particles, is greater than a second lubricant concentration that is a mass proportion of a second internal lubricant that is adhered to the surface of the second metal base particles with respect to the total of the second constituent particles.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mikio Kondoh, Nobuhiko Matsumoto, Toshitake Miyake, Kazumichi Nakatani
  • Patent number: 8828116
    Abstract: There is provided a metal powder for use in a selective laser sintering method for producing a three-dimensional shaped object, wherein the metal powder comprises a powder mixture of a precipitation-hardening metal composition. In particular, the metal powder of the present invention is configured to have a Fe-based component powder and a Ni-based component powder which are individually included in the powder mixture wherein a powder made of an alloy of Fe-based and Ni-based components is not included as a main powder in the powder mixture.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: September 9, 2014
    Assignee: Panasonic Corporation
    Inventor: Isao Fuwa
  • Patent number: 8814978
    Abstract: A method for providing a porous metal implant. A mixture of a biocompatible metal, a spacing agent, and a binder is provided. The mixture is formed into a shaped the spacing agent is removed to form a plurality of pores in the implant. A shaped porous metal implant is also provided.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: August 26, 2014
    Assignee: Biomet Manufacturing, LLC
    Inventors: Ned M. Hamman, James B. Fleming, Isaac Janson, Mukesh Kumar, Jason Meridew, Elizabeth A. Schlueter
  • Publication number: 20140234548
    Abstract: A cermet powder includes a) from 50 to 90 wt-% of at least one hard material, and b) from 10 to 50 wt-% of a matrix metal composition. The wt.-% for a) and b) are based on a total weight of the cermet powder. The matrix metal composition comprises i) from 40 to 75 wt-% of iron and nickel, ii) from 18 to 35 wt-% of chromium, iii) from 3 to 20 wt.-% of molybdenum, and iv) from 0.5 to 4 wt-% of copper. The wt-% for i) to iv) are based in each case on a total weight of the matrix metal composition. A weight ratio of iron to nickel is from 3:1 to 1:3.
    Type: Application
    Filed: September 4, 2012
    Publication date: August 21, 2014
    Applicant: H.C. STARCK GMBH
    Inventors: Stefan Zimmermann, Benno Gries