At 300 Degrees C Or Greater Patents (Class 75/363)
  • Patent number: 7645318
    Abstract: In various aspects provided are methods for producing a nanoparticle within a cross-linked, collapsed polymeric material. In various embodiments, the methods comprise (a) providing a shape-static polymer template with a size in the range between about 1 nm to about 100 nm; (b)) incorporating one or more nanoparticle precursor moieties with the shape-static polymer template; and either (c) oxidizing the precursor moieties to form a composite nanoparticle comprising one or more of an inorganic oxide and hydroxide nanoparticle; or (c) adding an ion with an opposite charge polarity to the at least one nanoparticle precursor moieties to effect formation of a composite nanoparticle.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: January 12, 2010
    Assignee: Vive Nano, Inc.
    Inventors: Darren Anderson, Jose Amado Dinglasan, Nikolai Loukine
  • Patent number: 7604679
    Abstract: An efficient process for producing fine nickel powder, capable of metallizing the powder at low temperature to prevent its sintering, and fine nickel powder produced by the process, composed of particles having a flat shape, diameter of limited variations and uniform thickness, and suitable for internal electrodes for laminate ceramic capacitors of high electric capacity. The process comprises a step for forming a nickel compound coated with gelatin by adsorbing gelatin on preformed nickel compound particles with different size and shape (Step (A)), and another step for converting said nickel compound coated with gelatin into fine particles containing metallic nickel and nickel oxide by heating the nickel compound coated with gelatin produced in Step (A) in an inert gas atmosphere (Step (B)). It may include an additional step (Step (C)), subsequent to Step (B), for completely reducing nickel oxide in said fine particles by heating at temperature lower than that for Step (B) in a reducing gas atmosphere.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: October 20, 2009
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Yasumasa Hattori, Egon Matijevic
  • Patent number: 7601198
    Abstract: Ammonium hexachlororuthenate is produced by adding ammonium chloride to a hydrochloric acid solution containing ruthenium. The ammonium hexachlororuthenate is baked to obtain the ruthenium powder. When the moisture content of the ammonium hexachlororuthenate is high, the baked product is so hard sintered product that its pulverization is not easy. In accordance with the present invention, the following steps are carried out. Hydrochloric acid solution containing ruthenium is held at a temperature of 80 to 95° C. for three hours or longer. The ammonium chloride is then added to the hydrochloric acid solution which is stirred by a stirring mill at the rotation of 200 revolutions per minute or more. The hydrochloric acid solution is held at a temperature of from 85 to 95° C. for 1 hour while being stirred at 200 rpm. The resultant precipitate of ammonium hexachlororuthenate is filtered. The inventive crystals of precipitated ammonium hexachlororuthenate has 10 mass % or less of moisture content.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: October 13, 2009
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Hifumi Nagai, Yuji Kawano
  • Patent number: 7591871
    Abstract: A method for providing a route for the synthesis of a Ge(0) nanometer-sized material from. A Ge(II) precursor is dissolved in a ligand heated to a temperature, generally between approximately 100° C. and 400° C., sufficient to thermally reduce the Ge(II) to Ge(0), where the ligand is a compound that can bond to the surface of the germanium nanomaterials to subsequently prevent agglomeration of the nanomaterials. The ligand encapsulates the surface of the Ge(0) material to prevent agglomeration. The resulting solution is cooled for handling, with the cooling characteristics useful in controlling the size and size distribution of the Ge(0) materials. The characteristics of the Ge(II) precursor determine whether the Ge(0) materials that result will be nanocrystals or nanowires.
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: September 22, 2009
    Assignee: Sandia Corporation
    Inventors: Henry Gerung, Timothy J. Boyle, Scott D. Bunge
  • Patent number: 7544229
    Abstract: The present invention discloses a novel method for the production of metallic nano-powder. This cost-effective, simple process is customized for a full-scale production of metallic nano-powders containing a first metal, and comprising the following of forming an alloy comprising said first metal and at least one soluble metal; applying first thermal treatment in the manner homogenized alloy is obtained; applying a cold work to the homogenized alloy so thin strips are obtained; applying a second thermal treatment to the alloy until a phase composition of predetermined characteristics is obtained; subjecting the said alloy to a leaching agent adapted to effectively leach out the least one soluble metal; filtering and washing the powder; washing the powder; drying the powder; coating the powder with chemicals; and then de-agglomerating the coated powder. The present invention also discloses a cost-effective and highly pure metallic powder produced by the method defined above.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: June 9, 2009
    Assignee: Cima NanoTech Israel Ltd.
    Inventors: Arkady Garbar, Fernando De La Vega, Einat Matzner
  • Patent number: 7537636
    Abstract: A method of making a superfine alloy comprises: incorporating a grain growth inhibitor polymeric precursor into a composition for synthesis of a superfine material; synthesizing the superfine material from the composition comprising the incorporated precursor; incorporating an alloy additive into the composition for synthesis of the superfine material before synthesizing the superfine material, or alternatively, into the as-synthesized superfine material to produce a superfine alloy-grain growth inhibitor polymeric precursor composite; and treating the superfine alloy-grain growth inhibitor polymeric precursor composite to convert the grain growth inhibitor polymeric precursor to a grain growth inhibitor.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: May 26, 2009
    Assignee: Inframat Corporation
    Inventors: Danny T. Xiao, Chris W. Strock, Donald M. Wang, Peter R. Strutt
  • Publication number: 20090095131
    Abstract: Method for producing molybdenum metal powder. The invention includes introducing a supply of ammonium molybdate precursor material into a furnace in a first direction and introducing a reducing gas into a cooling zone in a second direction opposite to the first direction. The ammonium molybdate precursor material is heated at an initial temperature in the presence of the reducing gas to produce an intermediate product that is heated at a final temperature in the presence of the reducing gas, thereby creating the molybdenum metal powder comprising particles having a surface area to mass ratio of between about 1 m2/g and about 4 m2/g, as determined by BET analysis, and a flowability of between about 29 s/50 g and 86 s/50 g as determined by a Hall Flowmeter. The molybdenum metal powder is moved through the cooling zone.
    Type: Application
    Filed: December 18, 2008
    Publication date: April 16, 2009
    Applicant: Climax Engineering Materials, LLC
    Inventors: Loyal M. Johnson, JR., Sunil Chandra Jha, Patrick Ansel Thompson
  • Patent number: 7513930
    Abstract: In the method of producing metals or metal alloys of high purity, in particular metallic chromium, granules of metal containing non-metallic inclusions and a reducing agent are treated under predetermined conditions of temperature and pressure so that the reducing agent reacts on the inclusions. During the treatment, the granules (26) are placed in a crucible (2) having an opening (14), and a wall (4) presenting at least one orifice (24).
    Type: Grant
    Filed: January 20, 2003
    Date of Patent: April 7, 2009
    Assignee: Delachaux S.A.
    Inventor: Philippe Liebaert
  • Publication number: 20080314202
    Abstract: The present invention relates to a combustion reactor for nanopowders, a synthesis apparatus for nanopowers using the combustion reactor, and a method of controlling the synthesis apparatus. The combustion reactor for nanopowders comprises an oxidized gas supply nozzle connected to an oxidized gas tube; a gas supply unit supplying a fuel gas and a precursor gas; and a reaction nozzle forming concentricity on an inner wall of the oxidized gas supply nozzle to be connected to the gas supply unit and having an inlet opening for supplying an oxidized gas disposed at a region adjacent to a jet orifice for spraying flames.
    Type: Application
    Filed: December 30, 2005
    Publication date: December 25, 2008
    Applicant: Korea Institute of Science and Technology
    Inventors: Jong-Ku Park, Jae-Pyoung Ahn, Hyoung-Chul Kim, Seung-Yong Lee, Hyun-Seock Jie, Hoon Park
  • Publication number: 20080268246
    Abstract: The present invention relates the manufacture of metal powders, non-oxidic ceramic powders and reduced metal oxide powders using an improved flame spray pyrolysis (“FSP”) process. The invention further relates to an apparatus specifically adapted to said process, to powders/naoncomposites obtained by said process and to the use of said powders/nanocompsites.
    Type: Application
    Filed: September 4, 2006
    Publication date: October 30, 2008
    Applicant: ETH Zurich
    Inventors: Wendelin Stark, Robert N. Grass, Evagelos-Kimon Athanassiou
  • Publication number: 20080229880
    Abstract: The present invention relates to a high-purity tantalum flake powder, produced by a hydride-dehydride process including: (a) cold working tantalum metal into a thin sheet; (b) hydriding the thin sheet, forming a brittle tantalum body, e.g., a foil or ribbon with an aspect ratio of greater than 5 to 1; (c) adjusting the tantalum body to a desired particle size; and (d) removing hydrogen from the tantalum body by vacuum sintering, forming a tantalum flake powder. In accordance with an embodiment of the present invention, tantalum flake is produced by sizing ultra-thin tantalum foil via the hydride-dehydride process. Tantalum is an extremely malleable metal and can be cold worked into extremely thin sheets less than 1 micron thick. Once hydrided, this foil is brittle, and can be easily sized by suitable milling processes. The hydrogen is removed by vacuum sintering, resulting in an extremely thin Ta metal flake.
    Type: Application
    Filed: March 13, 2008
    Publication date: September 25, 2008
    Applicant: Reading Alloys, Inc.
    Inventors: Colin G. McCracken, Scott M. Hawkins
  • Publication number: 20080078268
    Abstract: The present invention is directed to a process for the preparation of a metal powder having a purity at least as high as the starting powder and having an oxygen content of 10 ppm or less comprising heating said metal powder containing oxygen in the form of an oxide, with the total oxygen content being from 50 to 3000 ppm, in an inert atmosphere at a pressure of from 1 bar to 10?7 to a temperature at which the oxide of the metal powder becomes thermodynamically unstable and removing the resulting oxygen via volatilization. The metal powder is preferably selected from the group consisting of tantalum, niobium, molybdenum, hafnium, zirconium, titanium, vanadium, rhenium and tungsten. The invention also relates to the powders produced by the process and the use of such powders in a cold spray process.
    Type: Application
    Filed: October 3, 2006
    Publication date: April 3, 2008
    Inventors: Leonid N. Shekhter, Rong-Chein Richard Wu, Steven A. Miller, Leah F. Haywiser
  • Publication number: 20080025902
    Abstract: A simple, inexpensive method of producing in bulk a doped metal nitride powder that exhibits a high luminescent efficiency, by first forming a metal-dopant alloy and then reacting the alloy with high purity ammonia under controlled conditions in a reactor. The resulting doped metal nitride powders will exhibit a luminescent efficiency that greatly exceeds that seen in pure undoped GaN powders, doped GaN thin films, and ZnS powders.
    Type: Application
    Filed: April 27, 2005
    Publication date: January 31, 2008
    Inventors: Fernando A. Ponce, Rafael Garcia, Alan C. Thomas, Abigail Bell
  • Publication number: 20070251351
    Abstract: A melt of nickel nitrate hydrate is introduced as droplets or liquid flow into a heated reaction vessel and thermally decomposed in a gas phase at a temperature of 1200° C. or more and at an oxygen partial pressure equal to or below the equilibrium oxygen pressure of nickel-nickel oxide at that temperature to manufacture a highly crystalline fine nickel powder with an extremely narrow particle size distribution. The oxygen partial pressure during the thermal decomposition is preferably 10?2 Pa or less, and a metal other than nickel, a semimetal and/or a compound of these may be added to the nickel nitrate hydrate melt to manufacture a highly crystalline nickel alloy powder or highly crystalline nickel composite powder. The resultant powder is suited in particular to thick film pastes such as conductor pastes for manufacturing ceramic multilayer electronic components.
    Type: Application
    Filed: April 3, 2007
    Publication date: November 1, 2007
    Inventors: Yuji Akimoto, Kazuro Nagashima, Hidenori Ieda, Tetsuya Kimura
  • Patent number: 7258721
    Abstract: Carbon-containing nickel-particle powder is provided. The carbon-containing nickel-particle powder has improved shrinkage property when fired due to the presence of carbon. Also, the carbon-containing nickel-particle powder has a very restricted degree of forming agglomerates.
    Type: Grant
    Filed: November 26, 2004
    Date of Patent: August 21, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-young Choi, Soon-ho Kim, Tae-Kyoung Kim, Hak-joon Lee, Seon-mi Yoon
  • Patent number: 7192467
    Abstract: Novel forms of molybdenum metal, and apparatus and methods for production thereof. Novel forms of molybdenum metal are preferably characterized by a surface area of substantially about 2.1 m2/g to substantially about 4.1 m2/g. Novel forms of molybdenum metal are also preferably characterized by a relatively uniform size.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: March 20, 2007
    Assignee: Climax Engineered Materials, LLC
    Inventors: Mohamed Khan, Joel Taube, Loyal M. Johnson, Jr.
  • Patent number: 7189279
    Abstract: There are provided internally cross-linked, stable polymeric materials, in the form of substantially spherical particles, each particle consisting essentially of a single macromolecule. They have the unusual property of being soluble or dispersible in a liquid medium without significantly increasing the viscosity of the medium, rendering them potentially useful in imaging applications such as ink jet printers. They can be prepared by dissolving polymeric material in a solvent system to form a solution of the polymeric material at a concentration therein of less than the critical concentration for the polymer, causing the polymeric material to contract into an approximately spheroidal conformation in solution, cross-linking the polymeric material in solution in said spheroidal conformation so assumed, and recovering stable, cross-linked approximately spheroidal polymeric particles from the solution.
    Type: Grant
    Filed: May 28, 2001
    Date of Patent: March 13, 2007
    Assignee: G-Nano, LLP
    Inventor: James E. Guillet
  • Patent number: 7172642
    Abstract: Magnetic metal particles containing iron as a main component, comprising cobalt in an amount of usually 20 to 50 atm %, calculated as Co, based on whole Fe, aluminum in an amount of usually 3 to 15 atm %, calculated as Al, based on whole Fe and a rare earth element in an amount of usually 3 to 20 atm %, calculated as rare earth element, based on whole Fe, and having an average major axis diameter of usually 0.02 to 0.065 ?m, preferably from 0.02 to less than 0.05 ?m, a coercive force of usually 159.2 to 222.9 kA/m (2,000 to 2,800 Oe), a soluble Na content of usually not more than 30 ppm, a soluble Ca content of usually not more than 100 ppm, and an oxidation stability ??s of usually not more than 10%.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: February 6, 2007
    Assignee: Toda Kogyo Corporation
    Inventors: Akinori Yamamoto, Yasutaka Ota, Haruki Kurokawa, Masaaki Maekawa
  • Patent number: 6969417
    Abstract: The present invention provides a method for combining sodium and aluminum into a single, substantially homogeneous alloy without the need to use potentially dangerous, toxic mercury compounds. The present invention also provides a catalytic alloy that is capable of dissociating water into hydrogen and oxygen, thereby allowing the hydrogen to be utilized as fuel.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: November 29, 2005
    Assignee: Hydrogen Energy America, LLC
    Inventors: Edward W. Baldwin, Russell P. White, Jr.
  • Patent number: 6875253
    Abstract: A novel method for preparing fine particles comprising a transition metal and a noble metal which are monodispersed and have almost no particle diameter distribution, and are transferable to a CuAu-I type L10 ordered phase, with safety and at a low cost, wherein a salt or a complex of at least one transition metal selected from Fe and Co and a salt or a complex of at least one transition metal selected from Pt and Pd (exclusive of the combination of Co—Pd) is dissolved in an organic solvent miscible with water or an alcohol in the presence of an organic protecting agent, and the resultant solution is heated under reflux in the presence of an alcohol in an inert atmosphere, to thereby prepare a binary alloy comprising a transition metal and a noble metal, or a salt or a complex of at least one element selected from the group consisting of Cu, Bi, Sb, Sn, Pb and Ag is further dissolved in the above solvent and the resultant solution is heated under reflux in the presence of an alcohol in an inert atmosphere, to
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: April 5, 2005
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Hideo Daimon, Yukiko Kurobe, Naoki Toshima
  • Patent number: 6855185
    Abstract: A method of manufacturing niobium and/or tantalum powder consisting of: a first-stage reduction process of reducing niobium and/or tantalum oxides with alkali metals and/or alkaline-earth metals to obtain low-grade oxide powder represented by (NbTa) Ox, where x=0.06 to 0.35, a process of removing the oxide of alkali metals and/or alkaline-earth metals generated in the first-stage reduction process, and a second-stage reduction process of reducing the low-grade oxide powder obtained in the first-stage reduction process, with a melt solution of alkali metals and alkaline-earth metals to obtain niobium and/or tantalum powder.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: February 15, 2005
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Toshiyuki Osako, Tetsufumi Komukai
  • Patent number: 6849104
    Abstract: High purity refractory metals, valve metals, refractory metal oxides, valve metal oxides, or alloys thereof suitable for a variety of electrical, optical and mill product/fabricated parts usages are produced from their respective oxides by metalothermic reduction of a solid or liquid form of such oxide using a reducing agent that establishes (after ignition) a highly exothermic reaction, the reaction preferably taking place in a continuously or step-wise moving oxide such as gravity fall with metal retrievable at the bottom and an oxide of the reducing agent being removable as a gas or in other convenient form and unreacted reducing agent derivatives being removable by leaching or like process.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: February 1, 2005
    Assignee: H. C. Starck Inc.
    Inventors: Leonid N. Shekhter, Terrance B. Tripp, Leonid L. Lanin, Anastasia M. Conlon, Howard V. Goldberg
  • Publication number: 20040211293
    Abstract: A martensitic steel metallic article (20) made of metallic constituent elements is fabricated from a mixture of nonmetallic precursor compounds of the metallic constituent elements. The mixture of nonmetallic precursor compounds is chemically reduced to produce a metallic martensitic steel, without melting the metallic martensitic steel. The metallic martensitic steel is consolidated to produce a consolidated metallic article (20), without melting the metallic martensitic steel and without melting the consolidated metallic article (20).
    Type: Application
    Filed: April 25, 2003
    Publication date: October 28, 2004
    Inventors: Clifford Earl Shamblen, Andrew Philip Woodfield, Eric Allen Ott, Michael Francis Xavier Gigliotti
  • Patent number: 6780255
    Abstract: A magnetic powder of an Sm—Fe—N alloy, which has a mean particle diameter of 0.5 to 10 &mgr;m, and either an average acicularity of 75% or above or an average sphericity of 78% or above. The powder exhibits an extremely high residual magnetization and an extremely high coercive force, since particles characterized by the above acicularity or sphericity have particle diameters approximately equal to that of the single domain particle and nearly spherical particle shapes. The powder can be produced by preparing an Sm—Fe oxide by firing a coprecipitate corresponding to the oxide, mixing the obtained oxide with metallic calcium and subjecting the mixture to reduction/diffusion and nitriding successively.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: August 24, 2004
    Assignee: Nichia Chemical Industries, Ltd.
    Inventors: Yohsiyuki Kawano, Michiya Kume, Keiji Ichinomiya
  • Patent number: 6749663
    Abstract: A process is described for the preparation of tungsten and/or molybdenum metal powder or carbide by reducing and optionally carburizing treatment of tungsten and/or molybdenum oxide powder in the presence of alkali metal compounds, wherein at least two alkali metal compounds are used in a ratio so that mixed alkali tungstate or molybdate potentially formed in an intermediate step ((Li, Na, K)2 WOZ, (Li, Na, K)2MoOZ) has a melting point of less than 550° C., wherein z is from 3 to 4.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: June 15, 2004
    Assignee: H.C. Starck GmbH
    Inventors: Jörg Bredthauer, Benno Gries, Bernhard Szesny
  • Publication number: 20040093986
    Abstract: A process for preparing a pure PGM (platinum group metal) from a material containing a plurality of PGM compounds, wherein the PGM is selected from the group consisting of Pt, Pd, Os, Ir, Ru, Rh and Re, and the process includes initially forming the PGM in activated form by reduction of PGM ions in aqueous solution at pH 6-8 by a reducing agent, preferably, hydrogen.
    Type: Application
    Filed: November 7, 2003
    Publication date: May 20, 2004
    Inventors: Kamran M. Khozan, Dmitri S. Terekhov, Victor E. Nanthakumar, Sergiy Kovtun
  • Patent number: 6702870
    Abstract: The invention concerns a process permitting the preparation of a new powder, which as such or further processed is useful within a wide variety of different fields and which has magnetic and electric properties. The powder includes at least 0.5% by weight of iron containing silicate and at least 10% by weight of metallic iron and/or alloyed iron and is prepared by a process comprising the steps of mixing an iron containing powder and a silicon containing powder; and reducing the obtained mixture at a temperature above about 450° C.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: March 9, 2004
    Assignee: Höganäs AB
    Inventors: Lars Hultman, Nils Jonsson, Britt Benemark, Peter Grahn
  • Patent number: 6679937
    Abstract: Copper metal powders, methods for producing copper metal powders and products incorporating the powders. The copper metal powders have a small particle size, narrow size distribution and a spherical morphology. The method includes forming the metal particles in a continuous manner.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: January 20, 2004
    Assignee: Cabot Corporation
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, James Caruso, Daniel J. Skamser, Quint H. Powell, Clive D. Chandler
  • Publication number: 20030196514
    Abstract: A process for producing titanium sponge includes carrying out a reduction reaction by supplying titanium tetrachloride to a reaction vessel which stores a reduction bath liquid containing an upper layer of a reactant bath liquid layer containing fused magnesium as a main component and a lower layer of a product bath liquid layer containing fused magnesium chloride as a main component, wherein the level of the interface between the reactant bath liquid layer and the product bath liquid layer and the level of the reduction bath liquid surface are controlled in response to an accumulated supply of titanium tetrachloride.
    Type: Application
    Filed: April 3, 2003
    Publication date: October 23, 2003
    Applicants: TOHO TITANIUM CO., LTD., NIPPON STEEL CORPORATION
    Inventors: Nobuaki Ito, Masanori Yamaguchi, Kenichi Kato, Shigeo Ampo
  • Publication number: 20030196516
    Abstract: Provided is an ultrafine nickel powder suitable for a laminated ceramic capacitor electrode material. According to the ultrafine nickel powder, cracks and/or delamination are not liable to generate in the process for producing a ceramic capacitor, and its internal electrode can be made into a thinner layer, and the electric risistivity of the capacitor-can be made low. The ultrafine nickel powder has an average particle size of 0.1-1.0 &mgr;m, having the sulfur content of 0.02-1.0% by weight, and particles thereof being spherical, thereby exhibiting excellent properties. They can be produced by vapor phase hydrogen-reducing process using nickel chloride vapor.
    Type: Application
    Filed: May 21, 2003
    Publication date: October 23, 2003
    Applicant: KAWATETSU MINING CO., LTD.
    Inventors: Hideshi Katayama, Kan Saito, Shuetsu Ogasawara, Takao Hamada
  • Publication number: 20030196515
    Abstract: A process for producing metallic titanium includes forming metallic titanium fine particles by supplying liquid or mist titanium tetrachloride from above the surface of a reaction bath liquid containing fused magnesium and fused magnesium chloride in a reaction vessel to effect a reaction, wherein a circulating flow perpendicular to the bath surface of the reaction bath liquid is generated or extended just under the bath surface by imparting a stirring force to the reaction bath liquid so as to generate or increase an upward flow rate of the reaction bath liquid in at least part of the region at a depth of more than 100 mm below the bath surface.
    Type: Application
    Filed: April 4, 2003
    Publication date: October 23, 2003
    Applicant: TOHO TITANIUM CO., LTD.
    Inventors: Nobuaki Ito, Masanori Yamaguchi, Kenichi Kato, Shigeo Ampo
  • Patent number: 6626976
    Abstract: Novel forms of molybdenum metal, and apparatus and methods for production thereof. Novel forms of molybdenum metal are preferably characterized by a surface area of substantially 2.5 m2/g. Novel forms of molybdenum metal are also preferably characterized by a relatively uniform size. Preferred embodiments of the invention may comprise heating a precursor material to a first temperature in the presence of a reducing gas, and increasing the first temperature at least once to reduce the precursor material and form the molybdenum metal product.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: September 30, 2003
    Assignee: Cyprus Amax Minerals Company
    Inventors: Mohamed H. Khan, Joel A. Taube
  • Publication number: 20030131687
    Abstract: A method for preparing a highly crystallized metal powder, comprising: supplying at least one heat-decomposable metal compound powder into a reaction vessel using a carrier gas; and forming a metal powder by heating the metal compound powder in a state in which the metal compound powder is dispersed in a gas phase at a concentration of no more than 10 g/liter, at a temperature that is over the decomposition temperature of the metal compound powder and at least (Tm−200)° C. when the melting point of the metal contained in the metal compound powder is Tm° C. The method provides a high-purity, high-density, highly dispersible, fine, highly crystallized metal powder consisting of spherical particles of uniform size, which is suited to use in thick film pastes, and particularly conductor pastes and the like used in the preparation of multilayer ceramic electronic parts.
    Type: Application
    Filed: January 14, 2003
    Publication date: July 17, 2003
    Applicant: Shoei Chemical Inc.
    Inventors: Yuji Akimoto, Kazuro Nagashima, Hiroshi Yoshida, Hirotaka Takushima, Masayuki Maekawa
  • Patent number: 6586046
    Abstract: Apparatus and method for producing metallic flake having an environmental coating for use in oxidative and corrosive atmospheres. Fluidized bed techniques are utilized to perform a controlled oxidation of metallic particles that include aluminum. The fluidized techniques permit the formation of a thin, outer shell of alumina over the outer surface of the flake. Because the oxidation is controlled so that the selective oxidation produces a thin outer shell, the particle has good reflectance and the metallic core of the particle is unaffected by the oxidizing treatment. Although the techniques of the present invention are effective for producing a reflective surface on aluminum-containing iron alloys while the core particles can be either magnetically soft or hard, the techniques can be used to produce a reflective surface that is corrosion and oxidation resistant on any aluminum containing alloy. Apparatus that facilitates the controlled oxidation is also set forth.
    Type: Grant
    Filed: January 26, 2000
    Date of Patent: July 1, 2003
    Assignee: General Electric Company
    Inventors: John F. Ackerman, Andrew J. Skoog, Matthew B. Buczek, Jane A. Murphy
  • Publication number: 20030110890
    Abstract: A process for the production of high surface area tantalum and/or niobium powders via the reduction of the corresponding tantalum and/or niobium oxides is disclosed, wherein the reduction is carried out by reacting the tantalum and/or niobium oxides with at least one metal halide selected from the group consisting of halides of Mg, Ca, Sr, Ba and Ce, and an alkali metal at elevated temperature so as to form the tantalum and/or niobium powders. The process of the present invention has the advantages of: simple operation, the tantalum and/or niobium powders obtained have high surface area, high purity, good flowability, therefore are particularly suitable for manufacturing electrolytic capacitors.
    Type: Application
    Filed: September 30, 2002
    Publication date: June 19, 2003
    Inventors: Jilin He, Luntao Pan, Ningfeng Yuan, Xiaoli Wen, Xingbang Li
  • Patent number: 6521016
    Abstract: The present invention relates to a method of producing nanophase Cu—Al2O3 composite powder by means of 1) the producing precursor powders by centrifugal spray drying process using the water base solution, in which Cu-nitrate (Cu(NO3)23H2O) and Al-Nitrate (Al(NO3)39H2O) are solved to the point of final target composition (Cu-1 wt %/Al2O3),2) the heat treatment process (desaltation process) at the 850° C. for 30 min in air atmosphere to remove the volatile components such as the moisture and NO3 group in precursor powder and simultaneously to synthesize the nano CuO—Al2O3 composite powders by the oxidation of corresponded metal components and 3) the reduction heat treatment of CuO at 200° C. for 30 min in reducing atmosphere to produce the final nanophase Cu—Al2O3 composite powders with the size below 20 nm.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: February 18, 2003
    Assignee: Korea Institute of Machinery and Materials
    Inventors: Byoung Kee Kim, Dong Won Lee
  • Publication number: 20020189402
    Abstract: A nickel powder dispersion prepared by adding an organic solvent to an aqueous nickel powder dispersion consisting of a ultrafine nickel powder having a mean particle diameter of no more than one micrometer and an aqueous solvent, in such a state that the organic solvent has replaced at least part of the aqueous solvent. The dispersion may further contain a surface active agent. The nickel powder dispersion possesses very good nickel powder dispersibility. When used in forming an electrically conductive paste, it shows excellent dispersibility in the paste dispersant. Multilayer ceramic capacitors fabricated using the paste are protected against shortcircuiting or delamination which can otherwise result from electrode surface irregularities.
    Type: Application
    Filed: September 28, 2001
    Publication date: December 19, 2002
    Inventors: Takayuki Ito, Hideo Takatori
  • Patent number: 6478845
    Abstract: A boron addition for making potassium-doped tungsten powder is described herein. Boron is added to a potassium-doped starting material, preferably in the form of boric acid, and then the mixture is reduced to form a potassium-doped tungsten powder. The boron addition results in increased potassium incorporation in the potassium-doped tungsten powder and also effects an increase in potassium retention in sintered compacts of the potassium-doped tungsten powder.
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: November 12, 2002
    Assignee: Osram Sylvania Inc.
    Inventors: Hans-Joachim Lunk, Michael Salmen, Anna S. Nached, Maria B. Winnicka, Henry J. Stevens
  • Publication number: 20020152844
    Abstract: A method of producing a non-metal element or a metal or an alloy thereof from a halide or mixtures thereof. The halide or mixtures thereof are contacted with a stream of liquid alkali metal or alkaline earth metal or mixtures thereof in sufficient quantity to convert the halide to the non-metal or the metal or alloy and to maintain the temperature of the reactants at a temperature lower than the lesser of the boiling point of the alkali or alkaline earth metal at atmospheric pressure or the sintering temperature of the produced non-metal or metal or alloy. A continuous method is disclosed, particularly applicable to titanium.
    Type: Application
    Filed: April 20, 2002
    Publication date: October 24, 2002
    Applicant: Kroftt-Brakston International, Inc.
    Inventors: Donn Reynolds Armstrong, Stanley S. Borys, Richard Paul Anderson
  • Publication number: 20020148327
    Abstract: A method of producing a non-metal element or a metal or an alloy thereof from a halide or mixtures thereof. The halide or mixtures thereof are contacted with a stream of liquid alkali metal or alkaline earth metal or mixtures thereof in sufficient quantity to convert the halide to the non-metal or the metal or alloy and to maintain the temperature of the reactants at a temperature lower than the lesser of the boiling point of the alkali or alkaline earth metal at atmospheric pressure or the sintering temperature of the produced non-metal or metal or alloy. A continuous method is disclosed, particularly applicable to titanium.
    Type: Application
    Filed: April 19, 2002
    Publication date: October 17, 2002
    Applicant: Kroftt-Brakston International, Inc.
    Inventors: Donn Reynolds Armstrong, Stanley S. Borys, Richard Paul Anderson
  • Patent number: 6432161
    Abstract: An object of the present invention is to provide nitrogen-containing metallic powder at high productivity, which powder contains a metal such as niobium or tantalum containing nitrogen uniformly, and enables production of an anode electrode that has high specific capacitance and low leakage current and that exhibits excellent reliability for a prolonged period of time. There is provided nitrogen-containing metallic powder which is a solid solution containing 50-20,000 ppm nitrogen, in which the metal that constitutes the metallic powder is niobium or tantalum. The nitrogen-containing metallic powder is produced through the process in which while a metallic compound is reduced with a reducing agent, a nitrogen-containing gas is introduced into a reaction system to thereby form metal, and nitrogen is simultaneously incorporated into metal.
    Type: Grant
    Filed: July 26, 2000
    Date of Patent: August 13, 2002
    Assignee: Cabot SuperMetals K.K.
    Inventors: Yukio Oda, Tomoo Izumi, Yoshikazu Noguchi
  • Publication number: 20020078794
    Abstract: A process is described for the preparation of tungsten and/or molybdenum metal powder or carbide by reducing and optionally carburizing treatment of tungsten and/or molybdenum oxide powder in the presence of alkali metal compounds, wherein at least two alkali metal compounds are used in a ratio so that mixed alkali tungstate or molybdate potentially formed in an intermediate step ((Li, Na, K)2 WOZ, (Li, Na, K)2MoOZ) has a melting point of less than 550° C., wherein z is from 3 to 4.
    Type: Application
    Filed: August 30, 2001
    Publication date: June 27, 2002
    Inventors: Jorg Bredthauer, Benno Gries, Bernhard Szesny
  • Publication number: 20020043132
    Abstract: A high-surface-area heterogenite (HCoO2) material is described for use in making submicron cobalt metal powders. The HCoO2 material has a surface area of at least about 90 m2/g and is preferably produced by dehydrating a cobalt hydroxide precipitate at 110° C.
    Type: Application
    Filed: September 27, 2001
    Publication date: April 18, 2002
    Inventors: Raj P. Singh, Robert G. Mendenhall
  • Patent number: 6372015
    Abstract: A process for production of metallic powder comprising contacting a metallic chloride gas with a reductive gas in a temperature range for a reducing reaction to form a metallic powder and subsequently contacting the metallic powder with an inert gas such as nitrogen gas to cool the powder, wherein the rate of cooling is 30° C. or more for temperatures from the temperature range for the reducing reaction to a temperature of 800°C. or less. The metallic powder is rapidly cooled, which results in suppression of agglomeration of particles in the metallic powder and the growth of secondary particles. Growth of particles of a metallic powder formed in a reduction process into secondary particles through agglomeration after the reduction process is suppressed, and a ultrafine metallic powder having a particle diameter of, for example, 1&mgr;m or less, can be reliably produced.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: April 16, 2002
    Assignee: Toho Titanium Co., Ltd.
    Inventors: Tsuyoshi Asai, Hideo Takatori, Wataru Kagohashi
  • Patent number: 6323055
    Abstract: Described is a method for producing high purity tantalum, the high purity tantalum so produced and sputtering targets of high purity tantalum. The method involves purifying starting materials followed by subsequent refining into high purity tantalum.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: November 27, 2001
    Assignee: The Alta Group, Inc.
    Inventors: Harry Rosenberg, Bahri Ozturk, Guangxin Wang, Wesley LaRue
  • Patent number: 6290746
    Abstract: The purpose of the present invention is to improve releasability from the jig of a method of producing a minute metal ball by heating and melting and then cooling a metal piece of specific dimensions and further, to present a metal ball with very good dimensional accuracy and sphericity, even though diameter is minute. By means of the above-mentioned method, very good releasability between the metal ball and jig after melting and cooling is obtained and long-term use of the tool becomes possible by placing a metal piece on a jig with a layer of fine powder of BN, AlN or C having low wettability with the metal piece in between, or by making a layer of fine powder adhere to the surface of the metal piece and then placing this metal piece on the jig or shaking and arranging individual metal pieces in holes in the same.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: September 18, 2001
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventor: Masaharu Yamamoto
  • Patent number: 6168644
    Abstract: Titanium hydride powder with a maximum particle diameter of substantially 150 &mgr;m or less, the powder with particle diameters of 10 &mgr;m or less being 8% or less by weight, which is produced via step for embrittling a titanium and titanium alloy by hydrogenation, and titanium powder with a maximum particle diameter of which is 150 &mgr;m or less, the powder with particle diameters of 10 &mgr;m or less being 5% or less by weight. In the powder the oxygen content and the chlorine content are reduced, and the flowability and compactibility are excellent. This powder is particularly suitable for a raw material to produce a sintered titanium or titanium alloy product by the powder metallurgy.
    Type: Grant
    Filed: April 2, 1998
    Date of Patent: January 2, 2001
    Assignee: Toho Titanium Co., Ltd.
    Inventors: Eiichi Fukasawa, Satoshi Sugawara
  • Patent number: 6165247
    Abstract: Platinum powders and methods for producing platinum powders. The powders preferably have a small particle size, narrow size distribution and a spherical morphology. The method includes forming the particles by a spray pyrolysis technique. The invention also includes novel devices and products formed from the platinum powders.
    Type: Grant
    Filed: February 24, 1998
    Date of Patent: December 26, 2000
    Assignee: Superior MicroPowders, LLC
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, James Caruso, Daniel J. Skamser, Quint H. Powell, Clive D. Chandler
  • Patent number: 6106614
    Abstract: An apparatus and a method for producing single crystal semiconductor particulate in near spherical shape and the particulate product so formed is accomplished by producing uniform, monosized, near spherical droplets; identifying the position of an undercooled droplet in a nucleation zone; and seeding the identified droplet in the nucleation zone to initiate single crystal growth in the droplet.
    Type: Grant
    Filed: October 15, 1998
    Date of Patent: August 22, 2000
    Assignee: Starmet Corp
    Inventors: Matthew D. Stephens, Steven A. Miller, Jessica Belcher
  • Patent number: 6036742
    Abstract: Finely divided phosphorus-containing iron is prepared by reacting iron pentacarbonyl with a volatile phosphorus compound, in particular PH.sub.3, in the gas phase. The resulting phosphorus-containing iron powders and iron whiskers have a particularly low content of extraneous elements.
    Type: Grant
    Filed: February 12, 1998
    Date of Patent: March 14, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Bernd Leutner, Gabriele Friedrich, Reinhold Schlegel