And Settling Of Free Metal From Solution Patents (Class 75/371)
  • Patent number: 8101005
    Abstract: A process is described for making metal nanoparticles comprising (a) forming a liquid melt of a first metal having the composition of the desired nanoparticles and a second metal; (b) quenching the melt to form a solid; and (c) removing the second metal from the solid and forming the nanoparticles comprising the first metal.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: January 24, 2012
    Assignee: Cima NanoTech Israel Ltd.
    Inventors: Arkady Garbar, Dmitry Lekhtman, Thomas Zak, Fernando de la Vega
  • Publication number: 20110305826
    Abstract: Process for producing organoamine-stabilized silver nanoparticles with a molar ratio of silver salt to organoamine of about 1:4 to about 1:10 are disclosed. The process includes: forming a solution including an organic solvent and a first amount of organoamine; adding silver salt particles to the solution; adding a second amount of organoamine to the solution; adding a hydrazine to the solution; and reacting the solution to form an organoamine-stabilized silver nanoparticles.
    Type: Application
    Filed: June 9, 2010
    Publication date: December 15, 2011
    Applicant: XEROX CORPORATION
    Inventors: Mahya MOKHTARI, Roger E. Gaynor, Marko D. Saban
  • Patent number: 8062407
    Abstract: A relatively simple and inexpensive method for the synthesis of silver nanoparticles within a short period of time using a household microwave or the like is provided. The energy needed to heat the synthesis reaction is minimized and the organic reducing reagents of the prior art are replaced with natural products such as purified carbohydrates (e.g., glucose, sucrose, fructose, galactose, ribose, lactose) or their readily available and inexpensive forms (e.g., high fructose corn syrup, sucrose syrup). The resulting nanoparticles are purified from the remaining silver ion which is then recaptured for the safe disposal of the waste reaction mixture.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: November 22, 2011
    Assignee: Northwest Missouri State University
    Inventor: M. Rafiq Islam
  • Patent number: 8052773
    Abstract: An object of this invention is to provide a manufacturing method of metal nanowire in which a length and a diameter can be uniformly controlled, metal nanowire having excellent form uniformity, and a transparent electric conductor exhibiting excellent conductivity and transparency by employing metal nanowire having excellent conductivity and transparency. A manufacturing method of metal nanowire which reduces a metal ion in a solution to form metal particles having a wire-form, wherein a nucleus forming process and a particle growth process after said nucleus forming process are provided, and said nucleus forming process reduces a metal ion to form reduced metal, which is directly precipitated on the surface of said particles formed in the said nucleus forming process or on the surface of particles having grown from said nucleus particles during a growth process, whereby metal particles are formed.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: November 8, 2011
    Assignee: Konica Minolta Holdings, Inc.
    Inventor: Hiroshi Takada
  • Patent number: 8048193
    Abstract: It is an object of the present invention to provide a method for producing gold colloid having a targeted particle size, a sharp particle size distribution and a uniform and perfect spherical shape. The present invention relates to a method for producing gold colloid including a nucleation step of forming nuclear colloidal particles by adding a first reducing agent to a first gold salt solution; and a growth step of growing nuclear colloid by adding a second gold salt and a second reducing agent to the solution of the nuclear colloidal particles, characterized in that the growth step is performed at least once; a citrate is used as the first reducing agent and an ascorbate is used as the second reducing agent; and the addition of the ascorbate in the growth step is performed simultaneously with addition of the second gold salt.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: November 1, 2011
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Junichi Taniuchi, Hirofumi Nakagawa, Koji Okamoto
  • Patent number: 8048192
    Abstract: Provided are methods and systems for generating nanoparticles from an inorganic precursor compound using a hydrothermal process within at least one CSTR or PFR maintained at an elevated temperature and an elevated pressure and a treatment vessel in which this reaction solution can be applied to one or more catalyst substrates. In operation, the reaction solution may be maintained within the CSTR at a substantially constant concentration and within a reaction temperature range for a reaction period sufficient to obtain nanoparticles having a desired average particle size of, for example, less than 10 nm formation and/or deposition. Variations of the basic method and system can provide, for example, the generation of complex particle size distribution profiles, the selective deposition of a multi-modal particle size distribution on a single substrate.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: November 1, 2011
    Assignee: General Electric Company
    Inventors: Thomas Pompilio Diaz, Samson Hettiarachchi, Peter Louis Andresen, Young Jin Kim
  • Patent number: 8038762
    Abstract: A process for production of a chain metal powder, which comprises the steps of reducing metal ions contained in an aqueous solution, while applying a magnetic filed to the solution, in the presence of both a reducing agent capable of generating a gas during the reduction of metal ions and a foamable water soluble compound, through the generation of a gas, a bubble layer on the surface of the aqueous solution to form a chain metal powder, separating the bubble layer formed on the surface of the aqueous solution from the solution, and collecting the chain metal powder contained in the bubble layer.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: October 18, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tetsuya Kuwabara, Hideaki Toshioka, Hideki Kashihara, Keiji Koyama, Takashi Sakai
  • Patent number: 8038763
    Abstract: Au—Pt heteroaggregate dendritic nanostructures and AuPt alloy nanoparticles, and their use as anodic catalysts in fuel cells.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: October 18, 2011
    Assignee: University of Maryland
    Inventors: Bryan W. Eichhorn, Shenghu Zhou, Gregory Scott Jackson
  • Patent number: 8034155
    Abstract: Nanosilver porous material particles and method for manufacturing the same are disclosed. The nanosilver porous material particles include nanosilver particles distributed on the surface thereof. First, a nanosilver precursor is dissolved in water and a proper quantity of a fixation agent is added to form a solution. Next, a proper quantity of the porous material particles is added into the solution and that is mixed well to form a suspension. Next, the suspension is allowed to stand for a predetermined period of time, and then the suspension is filtered to separate the porous material particles from the solution. Finally, the resulting porous material particles are baked and dried.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: October 11, 2011
    Assignee: Apex Nanotek Corporation
    Inventors: Chiao-Cheng Chang, Austin Tsao
  • Publication number: 20110197710
    Abstract: A method of making metal nanostructures having a nanometer size in at least one dimension includes preparing an aqueous solution comprising a cation of a first metal and an anion, and mixing commercial elemental powder particles of an elemental second metal having a greater reduction potential than the first metal with the aqueous solution in an amount that reacts and dissolves all of the second metal and precipitates the first metal as metal nanostructures. The temperature and concentration of the aqueous solution and the selection of the anions and the second metal are chosen to produce metal nanostructures of a desired shape, for example ribbons, wires, flowers, rods, spheres, hollow spheres, scrolls, tubes, sheets, hexagonal sheets, rice, cones, dendrites, or particles.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 18, 2011
    Applicants: THE UNIVERSITY OF WESTERN ONTARIO, GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Xueliang Sun, Gaixia Zhang, Mei Cai, Shuhui Sun, Ruying Li
  • Patent number: 7998239
    Abstract: A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: August 16, 2011
    Assignee: Sandia Corporation
    Inventors: Tina M. Nenoff, Dana A. Powers, Zhenyuan Zhang
  • Publication number: 20110195264
    Abstract: A non-catalytic method for making high aspect ratio metal particles comprises: mixing a preheated metallic salt solution with a preheated reducing solution, the reducing solution comprising a carboxylic acid or salt thereof and an acrylic copolymer; and heating the reaction mixture to a first temperature and maintaining the mixture at the first temperature for a first period of time, then heating the reaction mixture to a second temperature that is higher than the first temperature and maintaining the mixture at the second temperature for a second period of time. The metal cations in the metallic salt are reduced by the reducing solution to form a plurality of crystallized metallic particles having a high aspect ratio. Electrically conductive articles incorporating the high aspect ratio metal particles and methods for their manufacture are also provided.
    Type: Application
    Filed: October 13, 2009
    Publication date: August 11, 2011
    Applicant: LAIRD TECHNOLOGIES, INC.
    Inventor: Chitradurga L. Rao Aravinda
  • Publication number: 20110185853
    Abstract: Embodiments of the present invention are directed to novel methods for the solution-based production of silver nanowires by adaptation of the polyol process. Some embodiments of the present invention can be practiced at lower temperature and/or at higher concentration than previously described methods. In some embodiments reactants are added in solid form rather than in solution. In some embodiments, an acid compound is added to the reaction.
    Type: Application
    Filed: March 21, 2011
    Publication date: August 4, 2011
    Applicant: Seashell Technology, LLC
    Inventors: Yuliang Wang, Janet Cravens Dickerson
  • Publication number: 20110185854
    Abstract: Fluorescent metal nanoclusters were prepared.
    Type: Application
    Filed: March 29, 2011
    Publication date: August 4, 2011
    Applicant: The Regents of the University of California
    Inventors: Jennifer S. Martinez, R. Brian Dyer, Dung M. Vu, Yuping Bao, Chang Zhong
  • Patent number: 7988761
    Abstract: The present invention relates to a method for manufacturing metal nanoparticles containing rod-shaped nanoparticles, the method including: producing metal oxide nanoparticle intermediates having at least rod-shaped metal oxide nanoparticles by heating a mixture of a nonpolar solvent, a metal precursor and an amine including secondary amine at 60-300° C.; producing metal nanoparticles by adding a capping molecule and a reducing agent to the mixture and heating the result mixture at 90-150° C.; and recovering the metal nanoparticles. According to the present invention, the shape of metal nanoparticle can be controlled by mixing primary amines or secondary amines as proper ratio without using apparatus additionally, as well as, the size of metal nanoparticle can be controlled to several nm.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: August 2, 2011
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Byung-Ho Jun, Jae-Woo Joung
  • Patent number: 7972410
    Abstract: A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: July 5, 2011
    Assignee: Sandia Corporation
    Inventor: Dale L. Huber
  • Publication number: 20110155968
    Abstract: A metal-containing composition that can provide, by low-temperature heat treatment, a sintered state comparable to that obtained by high-temperature heat treatment, a conductive paste, a metal film are provided. A method for manufacturing a metal-containing composition that can manufacture the metal-containing composition by simple operation steps is also provided. The metal-containing composition contains fine metal particles, and the ratio ?f of a true density ?200 to a true density ?150 (=?200/?150) is 1.10 or less where ?150 is the true density of the metal-containing composition after heating at 150° C. for 60 minutes, and ?200 is the true density after heating at 200° C. for 60 minutes. The ratio of ?150 to ?M (?150/?M) and the ratio of ?200 to ?M (?200/?M) are 0.8 or more, where ?M is the density of the fine metal particles in a bulk form. An organic material having a molecular weight of 200 or less is caused to adhere to the fine metal particles.
    Type: Application
    Filed: August 7, 2008
    Publication date: June 30, 2011
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Kosuke Iha, Yutaka Hisaeda, Toshihiko Ueyama
  • Publication number: 20110110723
    Abstract: The present invention relates to methods of making and using and compositions of metal nanoparticles formed by green chemistry synthetic techniques. For example, the present invention relates to metal nanoparticles formed with solutions of fruit extracts and use of these metal nanoparticles in removing contaminants from soil and groundwater and other contaminated sites.
    Type: Application
    Filed: September 29, 2010
    Publication date: May 12, 2011
    Applicant: VeruTEK Technologies, Inc.
    Inventors: Rajender S. Varma, Babita Baruwati, George E. Hoag, John B. Collins
  • Patent number: 7931941
    Abstract: A process is described for the synthesis of metallic nanoparticles by chemical reduction of metal salts in the presence of organic ligands capable of binding to the metal particle surfaces and stabilizing them against agglomeration. The resultant nanoparticles or dispersions of the particles can be sintered into highly conductive films or traces at temperatures as low as 80° C. in 10 minutes or less.
    Type: Grant
    Filed: October 29, 2005
    Date of Patent: April 26, 2011
    Assignee: PCHEM Associates, Inc.
    Inventors: Michael A. Mastropietro, Gregory A. Jablonski
  • Patent number: 7931730
    Abstract: The present invention provides a method for manufacturing metal nanoparticles, comprising: dissociating at least one metal precursor selected from the group consisting of silver, gold and palladium; reducing the dissociated metal precursor; and isolating the capped metal nanoparticles with an alkyl amine. The present invention provides a method for manufacturing metal nanoparticles which can be performed with simpler equipment compared to the gas phase method, can provide metal nanoparticles in high yield by only using alkyl amine without using any surfactant in high concentration which further allows mass production, and can provide metal nanoparticles having high dispersion stability and uniform size of 1-40 nm.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: April 26, 2011
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Kwi-Jong Lee, Jaewoo Joung
  • Patent number: 7922787
    Abstract: Embodiments of the present invention are directed to novel methods for the solution-based production of silver nanowires by adaptation of the polyol process. Some embodiments of the present invention can be practiced at lower temperature and/or at higher concentration than previously described methods. In some embodiments reactants are added in solid form rather than in solution. In some embodiments, an acid compound is added to the reaction.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: April 12, 2011
    Assignee: Seashell Technology, LLC
    Inventors: Yuliang Wang, Janet Cravens Dickerson
  • Publication number: 20110064825
    Abstract: The present invention is directed to a method for preparing colloidal dispersions of precious metal nanoparticles selected from the group consisting of Pt, Au, Pd, Ag, Rh, Ru and mixtures or alloys thereof, and to a method for isolating such precious metal nanoparticles from these colloidal dispersions. The colloidal dispersions are prepared by reducing suitable precious metal precursor compounds in aqueous alkaline solutions at reaction temperatures between 40 and 70° C. and a pH?12.0 in the presence of polysaccharides with average molecular weights (Mw) in the range of 300,000 to 1,000,000. The precious metal nanoparticles are isolated after decomposing the polysaccharide by heating the colloidal dispersions to temperatures >80° C. The nanoparticles can be used for the manufacture of core/shell-type catalyst materials and for electronic, decorative and medical applications.
    Type: Application
    Filed: January 9, 2009
    Publication date: March 17, 2011
    Applicant: Umicore AG & Co. KG
    Inventors: Dan V. Goia, Benjamin Morrow, Egon Matijevic, Krishna Balantrapu, Brendan P. Farrell
  • Patent number: 7892317
    Abstract: In present invention, colloidal nanosilver has been prepared with high affect on bacteria, viruses, and fungi. The average size of nano particles are less than 10 nm. In the present invention colloidal nanosilver is subject to synthesis by a very simple method and in a short time. Nanosilver colloid prepared by use of different surfactant like LABS, Tween 20, Tween 60, Tween 80, SDS.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: February 22, 2011
    Inventor: Jafar Rahman Nia
  • Publication number: 20110036202
    Abstract: A method for preparing platinum (Pt) based nano-size catalyst which is useful as an electrode catalyst of a direct methanol fuel cell (DMFC). This method includes the implementation of a reduction reaction of a platinum precursor and an optional ad-metal precursor with a reducing agent in a solvent and in the presence of a stabilizer to form a suspension containing colloidal particles of platinum or platinum/ad-metal; mixing the suspension with a co-solvent; subjecting the resultant mixture to a centrifugal treatment to form a platinum or platinum/ad-metal colloidal particle portion and a liquid portion, repeating the co-solvent mixing and centrifugal treatment to the platinum or platinum/ad-metal colloidal particle portion until the resultant liquid portion no longer contains the product of the reduction reaction; and drying the resultant platinum or platinum/ad-metal colloidal particle portion to obtain a platinum based nano-size catalyst.
    Type: Application
    Filed: October 26, 2010
    Publication date: February 17, 2011
    Applicant: Industrial Technology Research Institue
    Inventors: Man-Yin LO, I-Hsuan LIAO
  • Patent number: 7879131
    Abstract: A process for encapsulating metal microparticles in a pH sensitive polymer matrix using a suspension containing the polymer. The process first disperses the metal particles in a polymeric solution consisting of a pH sensitive polymer. The particles are then encapsulated in the form of micro-spheres of about 5-10 microns in diameter comprising the pH sensitive polymer and the metal ions (Ni2+, Cu2+) to be coated. The encapsulated matrix includes first metal particles homogeneously dispersed in a pH sensitive matrix, comprising the second metal ions. A high shear homogenization process ensures homogenization of the aqueous mixture resulting in uniform particle encapsulation. The encapsulated powder may be formed using spray drying. The powder may be then coated in a controlled aqueous media using an electroless deposition process. The polymer is removed when the encapsulated micro-spheres encounter a pH change in the aqueous solution.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: February 1, 2011
    Assignee: Applied Nanotech Holdings, Inc.
    Inventors: Zvi Yaniv, Prabhu Soundarrajan
  • Patent number: 7867316
    Abstract: The present invention relates to a method for manufacturing metal nanoparticles including: preparing a first solution including a metal precursor and a non-polar solvent; preparing a second solution with adding a capping molecule presented by the following Formula 1 into the first solution; and stirring the second solution with applying heat, wherein R1 and R2 are independently —COOH, —NH2 or —CH3 but R1 and R2 cannot be —COOH at the same time, and x and y is independently an integer from 3 to 20 respectively and x+y is 20 to 40.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: January 11, 2011
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Byung-Ho Jun, Dong-Hoon Kim, Kwi-Jong Lee
  • Publication number: 20100278718
    Abstract: A method for making monodisperse silver nanocrystals includes the following step: (1) mixing a silver nitrate with octadecyl amine as a solvent, and achieving a mixture; (2) agitating and reacting the mixture at a reaction temperature for a reaction period; (3) cooling the mixture to a cooling temperature, and achieving a deposit; and (4) washing the deposit with an organic solvent, drying the deposit at a drying temperature, and achieving monodisperse silver nanocrystals. After step (2), the method can further include a step of mixing a sulfur or selenium into the reactant to achieve monodisperse silver sulfide or silver selenide nanocrystals.
    Type: Application
    Filed: December 14, 2007
    Publication date: November 4, 2010
    Applicants: Tsinghua University, HON HAI Precision Industry CO., LTD.
    Inventors: Ya-Dong Li, Ding-Sheng Wang
  • Patent number: 7824467
    Abstract: A method of preparing metal nanoprisms having a unimodal size distribution and a predetermined thickness. The present method also allows control over nanoprism edge length.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: November 2, 2010
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Gabriella Metraux
  • Patent number: 7824466
    Abstract: Processes for the production of metal nanoparticles. In one aspect, the invention is to a process comprising the steps of mixing a heated first solution comprising a base and/or a reducing agent (e.g., a non-polyol reducing agent), a polyol, and a polymer of vinyl pyrrolidone with a second solution comprising a metal precursor that is capable of being reduced to a metal by the polyol. In another aspect, the invention is to a process that includes the steps of heating a powder of a polymer of vinyl pyrrolidone; forming a first solution comprising the powder and a polyol; and mixing the first solution with a second solution comprising a metal precursor capable of being reduced to a metal by the polyol.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: November 2, 2010
    Assignee: Cabot Corporation
    Inventors: Karel Vanheusden, Klaus Kunze, Hyungrak Kim, Aaron D. Stump, Allen B. Schult, Mark J. Hampden-Smith, Chuck Edwards, Anthony R. James, James Caruso, Toivo T. Kodas, Scott T. Haubrich, Mark H. Kowalski, Nathan E. Stott
  • Patent number: 7789935
    Abstract: A method of forming an ink, including photochemically producing stabilized metallic nanoparticles and formulating the nanoparticles into an ink.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: September 7, 2010
    Assignee: Xerox Corporation
    Inventors: Michelle N. Chretien, Naveen Chopra, Matthew Heuft, Peter M. Kazmaier
  • Patent number: 7785392
    Abstract: The present invention relates to a method for manufacturing metal nanoparticles, more particularly to a method for manufacturing metal nanoparticles, which includes: preparing a mixed solution including capping molecules, a metal catalyst, a reducing agent, and an organic solvent; adding a metal precursor to the mixed solution and raising to a predetermined temperature and stirring; and lowering the temperature of the mixed solution and producing nanoparticles. Embodiments of the invention allow the synthesis of nanoparticles, such as of single metals, metal alloys, or metal oxides, to a high concentration in a water base using a metal catalyst.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: August 31, 2010
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: In-Keun Shim, Jae-Woo Joung
  • Publication number: 20100180727
    Abstract: The invention relates to a method for leaching a material containing a valuable metal and precipitating the valuable metal as a fine-grained powder by changing the electrochemical potential of an intermediary metal in the solution. In the leaching stage the intermediary metal or substance of the electrolyte solution is at a high degree of oxidation and in the precipitation stage another electrolyte solution is routed into the solution, in which the intermediary metal or substance is at a low degree of oxidation. After the precipitation stage the solution containing the intermediary is routed to electrolytic regeneration, in which part of the intermediary is oxidised in the anode space back to a high potential value and part is reduced in the cathode space to its low value.
    Type: Application
    Filed: August 9, 2007
    Publication date: July 22, 2010
    Applicant: OUTOTEC OYJ
    Inventors: Seppo Heimala, Mikko Ruonala
  • Patent number: 7749299
    Abstract: A process for the production of metal nanoparticles. The process comprises a rapid mixing of a solution of at least about 0.1 mole of a metal compound that is capable of being reduced to a metal by a polyol with a heated solution of a polyol and a substance that is capable of being adsorbed on the nanoparticles.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: July 6, 2010
    Assignee: Cabot Corporation
    Inventors: Karel Vanheusden, Klaus Kunze, Hyungrak Kiim, Aaron D. Stump, Allen B. Schult, Mark J. Hampden-Smith, Chuck Edwards, Anthony R. James, James Caruso, Toivo T. Kodas, Scott Thomas Haubrich, Mark H. Kowalski
  • Patent number: 7749300
    Abstract: A method of forming bimetallic core-shell metal nanoparticles including a core of a first metal material and a shell of a second metal material, the method including photochemically producing metallic nanoparticle cores of the first metal material, and forming a shell of the second metal material around the cores. The shell can be formed by adding shell-forming precursor materials to a solution or suspension of the cores and photochemically forming the shells around the cores, or by separately photochemically producing metallic nanoparticles of the second metal material and mixing the metallic nanoparticles of the second metal material and the metallic nanoparticle cores to cause the metallic nanoparticles of the second metal material to form a shell around the metallic nanoparticle cores.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: July 6, 2010
    Assignee: Xerox Corporation
    Inventors: Michelle N. Chretien, Yiliang Wu, Naveen Chopra
  • Patent number: 7736414
    Abstract: Rhenium nanoparticle mixtures and methods for making the same are provided. The rhenium nanoparticle mixture can be painted onto a surface to be coated and dried at low temperatures to form a gas-tight elemental rhenium coating. Moreover, the rhenium nanoparticle mixture can be used to join rhenium components and temperatures far lower than traditional welding techniques would require. The low temperature formation of rhenium coatings allows rhenium coatings to be provided on surfaces that would otherwise be uncoatable, whether because of their inability to withstand high temperatures (e.g., carbon/carbon composites, graphite, etc.), or because the high aspect ratio of the surface would prevent other coating methods from being effective (e.g., the inner surfaces of tubes and nozzles).
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: June 15, 2010
    Assignee: Lockheed Martin Corporation
    Inventor: Alfred A. Zinn
  • Patent number: 7717977
    Abstract: The producing unit for continuously producing metal microparticles formed of a multicomponent alloy accompanied by the generation of a byproduct gas through an early reaction of the formation of the metal particles comprises a first mixing unit for continuously supplying and mixing a plurality of solutions for conducting the early reaction, a second mixing unit for continuously supplying another solution to the reaction liquid containing the metal microparticles formed in the early reaction and for mixing the two solutions, to introduce dissimilar metal atoms into the crystal lattices of the metal microparticles, and a gas-liquid separation unit that is installed in a midway of the pipe which is made so as to have enough length to finish the early reaction, and which continuously passes the reaction liquid to the second mixing unit from the first mixing unit, and that continuously removes the byproduct gas generated with the proceeding of the early reaction.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: May 18, 2010
    Assignee: FUJIFILM Corporation
    Inventors: Fumiko Shiraishi, Yasunori Ichikawa, Koukichi Waki, Seiji Sugiyama
  • Patent number: 7691176
    Abstract: A method for manufacturing metal nanorods includes: a step of adding a reducing agent to a metallic salt solution; a step of radiating light into the metallic salt solution containing the reducing agent; and a step of leaving the light-radiated metallic salt solution containing the reducing agent stationary in a dark place so as to grow metal nanorods. Metal nanorods can be also grown by forming a mixed solution by fractionating the above light-radiated metallic salt solution and mixing the fractionated metallic salt solution into a non-radiated metallic salt solution containing the reducing agent, or mixing a non-radiated metallic salt solution and the reducing agent into the above light-radiated metallic salt solution; and leaving the mixed solution stationary in a dark place so as to grow metal nanorods.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: April 6, 2010
    Assignees: Mitsubishi Materials Corporation, Dai Nippon Toryo Co., Ltd.
    Inventors: Yasuro Niidome, Sunao Yamada, Koji Nishioka, Hideya Kawasaki, Hiroki Hirata, Yoshiaki Takata, Jun-etsu Satoh, Daigou Mizoguchi, Masaoki Ishihara, Masanori Nagai, Masato Murouchi
  • Publication number: 20100077889
    Abstract: The invention relates to a mixing reactor for mixing a liquid and pulverous solid, clarification the solution that is formed and discharging the clarified solution from the mixing reactor, in the lower section of which a fluidized bed is formed. The invention also relates to a method for mixing a liquid and pulverous solid into each other in a fluidized bed, for clarification the solution that is formed and for discharging the clarified solution from the mixing reactor.
    Type: Application
    Filed: February 28, 2008
    Publication date: April 1, 2010
    Applicant: OUTOTEC OYJ
    Inventors: Launo Lilja, Bror Nyman
  • Patent number: 7648689
    Abstract: The invention is to provide a process for industrially advantageously producing InP fine particles having a nano-meter size efficiently in a short period of time and an InP fine particle dispersion, and there are provided a process for the production of InP fine particles by reacting an In raw material containing two or more In compounds with a P raw material containing at least one P compound in a solvent wherein the process uses, as said two or more In compounds, at least one first In compound having a group that reacts with a functional group of P compound having a P atom adjacent to an In atom to be eliminated with the functional group in the formation of an In-P bond and at least one second In compound having a lower electron density of In atom in the compound than said first In compound and Lewis base solvent as said solvent, and InP fine particles obtained by the process.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: January 19, 2010
    Assignee: Hoya Corporation
    Inventor: Shuzo Tokumitsu
  • Patent number: 7648557
    Abstract: Disclosed is an improved process for making highly dispersible, spherical silver particles. In particular, the invention is directed to a process for making silver particles, which are very high solids and highly ordered. The silver particles formed are particularly useful in electronic applications.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: January 19, 2010
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Roberto Irizarry-Rivera, Howard David Glicksman, Victor M. Rivera Alvarado
  • Patent number: 7645436
    Abstract: Tractable metal oxide sols are made by combining at least one metal oxide compound, at least one organofunctional silane, at least one boron oxide compound, and a liquid, or metal oxide sols are made by combining at least one metal oxide compound, at least one organofunctional silane, at least one of an acid catalyst and salt/complex catalyst, and a liquid. Also disclosed are nanocomposites containing the metal oxide sols and at least one of metal nanoparticle, metal-chalcogenide nanoparticle, metal oxide nanoparticle, and metal phosphate nanoparticle. Further disclosed are composites containing a polymer material and at least one of the metal oxide sol and the nanocomposite.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: January 12, 2010
    Assignee: APS Laboratory
    Inventor: Hong-Son Ryang
  • Publication number: 20090288517
    Abstract: A method of forming an ink, including photochemically producing stabilized metallic nanoparticles and formulating the nanoparticles into an ink.
    Type: Application
    Filed: May 23, 2008
    Publication date: November 26, 2009
    Applicant: XEROX CORPORATION
    Inventors: Michelle N. CHRETIEN, Naveen CHOPRA, Matthew HEUFT, Peter M. KAZMAIER
  • Publication number: 20090266202
    Abstract: A method for manufacturing a metal nanoparticle is provided. The method includes steps of: a) providing a metal salt solution, b) providing a reducing agent, c) providing a protecting agent, d) providing an alkaline solution, e) mixing the salt solution, the reducing agent, the protecting agent and the alkaline solution to form a slurry within a high-gravity field, and f) separating the metal nanoparticle from the slurry.
    Type: Application
    Filed: January 11, 2007
    Publication date: October 29, 2009
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Yi-Der Tai, Yao-Hsuan Wang, Ming-Hui Chang
  • Patent number: 7608461
    Abstract: A method for producing metal nanoparticles that when associated with an analyte material will generate an amplified SERS spectrum when the analyte material is illuminated by a light source and a spectrum is recorded. The method for preparing the metal nanoparticles comprises the steps of (i) forming a water-in-oil microemulsion comprising a bulk oil phase, a dilute water phase, and one or more surfactants, wherein the water phase comprises a transition metal ion; (ii) adding an aqueous solution comprising a mild reducing agent to the water-in-oil microemulsion; (iii) stirring the water-in-oil microemulsion and aqueous solution to initiate a reduction reaction resulting in the formation of a fine precipitate dispersed in the water-in-oil microemulsion; and (iv) separating the precipitate from the water-in-oil microemulsion.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: October 27, 2009
    Assignee: Sandia Corporation
    Inventors: Blake A. Simmons, Albert Alec Talin
  • Patent number: 7591871
    Abstract: A method for providing a route for the synthesis of a Ge(0) nanometer-sized material from. A Ge(II) precursor is dissolved in a ligand heated to a temperature, generally between approximately 100° C. and 400° C., sufficient to thermally reduce the Ge(II) to Ge(0), where the ligand is a compound that can bond to the surface of the germanium nanomaterials to subsequently prevent agglomeration of the nanomaterials. The ligand encapsulates the surface of the Ge(0) material to prevent agglomeration. The resulting solution is cooled for handling, with the cooling characteristics useful in controlling the size and size distribution of the Ge(0) materials. The characteristics of the Ge(II) precursor determine whether the Ge(0) materials that result will be nanocrystals or nanowires.
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: September 22, 2009
    Assignee: Sandia Corporation
    Inventors: Henry Gerung, Timothy J. Boyle, Scott D. Bunge
  • Patent number: 7591872
    Abstract: A method of producing metal nanoparticles in a high yield rate and uniform shape and size, which is thus suitable for mass production. In addition, metal nanoparticles are provided that have superior dispersion stability when re-dispersed in various organic solvents, which thus suitable for use as a conductive ink having high conductivity. The method of producing nanoparticles includes mixing a metal precursor with a copper compound to a hydrocarbon based solvent, mixing an amine-based compound to the mixed solution of the metal precursor with copper compound and hydrocarbon based solvent, and mixing a compound including one or more atoms having at least one lone pair, selected from a group consisting of nitrogen, oxygen, sulfur and phosphorous to the mixed solution of the amine-based compound, metal precursor with a copper compound and hydrocarbon based solvent.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: September 22, 2009
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Byung-Ho Jun, Kwi-Jong Lee, Hye-Jin Cho, Jae-Woo Joung
  • Patent number: 7585349
    Abstract: Methods for forming nanostructures of various shapes are disclosed. Nanocubes, nanowires, nanopyramids and multiply twinned particles of silver may by formed by combining a solution of silver nitrate in ethylene glycol with a solution of poly(vinyl pyrrolidone) in ethylene glycol. Hollow nanostructures may be formed by reacting a solution of solid nanostructures comprising one of a first metal and a first metal alloy with a metal salt that can be reduced by the first metal or first metal alloy. Nanostructures comprising a core with at least one nanoshell may be formed by plating a nanostructure and reacting the plating with a metal salt.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: September 8, 2009
    Assignee: The University of Washington
    Inventors: Younan Xia, Yugang Sun
  • Patent number: 7575621
    Abstract: A process for the production of metal nanoparticles. Nanoparticles are formed by combining a metal compound with a solution that comprises a polyol and a substance that is capable of being adsorbed on the nanoparticles. The nanoparticles are precipitated by adding a nanoparticle-precipitating liquid in a sufficient amount to precipitate at least a substantial portion of the nanoparticles and of a protic solvent in a sufficient amount to improve the separation of the nanoparticles from the liquid phase.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: August 18, 2009
    Assignee: Cabot Corporation
    Inventors: Karel Vanheusden, Hyungrak Kiim, Aaron D. Stump, Allen B. Schult, Mark J. Hampden-Smith, Chuck Edwards, Anthony R. James, James Caruso, Toivo T. Kodas, Scott Thomas Haubrich, Mark H. Kowalski
  • Patent number: 7547347
    Abstract: A method of synthesizing nanoparticles includes: combining at least one stabilizing agent, at least one precursor and an ionic liquid to form a reaction mixture; heating the reaction mixture to a predetermined temperature to form the nanoparticles and cause the nanoparticles to self-separate from the reaction mixture; and collecting the nanoparticles from the reaction mixture. Ionic liquid from which the nanoparticles are separated may be reused.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: June 16, 2009
    Assignee: University of Rochester
    Inventors: Hong Yang, Yong Wang
  • Patent number: 7544230
    Abstract: The solution I is spouted from a first nozzle into a mixing chamber as a high-pressure jet stream of not less than 1 MPa and as a turbulent flow having a Reynolds number of not less than 10000 during the flow into the mixing chamber, and the solution II having a lower pressure than the solution I is spouted from a second nozzle into the mixing chamber as an orthogonal flow which intersects the solution I almost at right angles. The two solutions are mixed together and caused to react with each other, with the result that a mixed reaction solution Z containing alloy particles Z is formed.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: June 9, 2009
    Assignee: FUJIFILM Corporation
    Inventors: Fumiko Shiraishi, Yasunori Ichikawa, Koukichi Waki, Yasushi Hattori