Step At Less Than 300 Degrees C Using Nonmetallic Material Which Is Liquid Under Standard Conditions After A Step At 300 Degrees C Or Greater Patents (Class 75/419)
  • Patent number: 11447846
    Abstract: The invention relates to a method for multi-metal products recovery from pyrolytic waste integrated circuit boards. The method mainly comprises the steps of smelting and blending, atomization, acidolysis and filtration, noble metal recycling, copper extraction and back extraction, nickel extraction and back extraction. Compared with the prior art, the method has the advantages that smoke pollution and the smelting slag treatment in the process of preparing a black copper ingot through multi-metal collaborative smelting are reduced, and the problems of low anode efficiency of the black copper electrolysis process are solved. Meanwhile, the high-temperature high-oxygen atomized gas generated in the atomizing process provides a heat source and an oxygen source for subsequent acidolysis, so that the energy consumption is further reduced. The method has the advantages such as short process, remarkable energy conservation and emission reduction.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: September 20, 2022
    Inventors: Dean Pan, Yufeng Wu, Bin Li
  • Patent number: 11299796
    Abstract: An object of the present invention is to recover a minor metal and/or rare-earth metal. The present invention provides a method for recovering a minor metal and/or rare-earth metal from a post-chlorination residue in titanium smelting. The minor metal and/or rare-earth metal is one or more metal selected from the group consisting of Sc, V, Nb, Zr, Y, La, Ce, Pr, and Nd.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: April 12, 2022
    Inventors: Kota Nakashima, Akira Yoshimura, Seiichiro Tani
  • Patent number: 10689730
    Abstract: A method (500) for producing a titanium product is disclosed. The method (500) can include obtaining TiO2-slag (501) and reducing impurities in the TiO2-slag (502) to form purified TiO2 (503). The method (500) can also include reducing the purified TiO2 using a metallic reducing agent (504) to form a hydrogenated titanium product comprising TiH2 (505). The hydrogenated titanium product can be dehydrogenated (506) to form a titanium product (508). The titanium product can also be optionally deoxygenated (507) to reduce oxygen content.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: June 23, 2020
    Assignee: University of Utah Research Foundation
    Inventors: Zhigang Zak Fang, Ying Zhang, Yang Xia, Pei Sun
  • Patent number: 9689055
    Abstract: The invention related to the recycling field of waste printed circuit boards (WPCB), and especially involved a complete non-cyanogens wet process for green recycling of WPCB, which belonged to the field of recycle economy. In the invention, the process included that WPCB were broken by the jaw crusher, and then mixed copper powders and nonmetallic powders were separated by the method of air classification, the mixed copper powders were smelted and casted to get copper anode plates, the copper was purified by electrolytion, the valuable metals (such as copper, gold, silver, platinum and palladium, lead and tin) were recycled from the copper anode slime, and the waste water was recycled. The recovery ratio of all-metal was above 98%. The purity of the cathode copper was up to 4N level. The ratio of de-coppering was above 96%. The recovery ratio of gold was above 98.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: June 27, 2017
    Inventors: Shengen Zhang, Bin Li, Dean Pan, Jianjun Tian, Bo Liu
  • Patent number: 9669464
    Abstract: A method of deoxygenating metal can include forming a mixture of: a metal having oxygen dissolved therein in a solid solution, at least one of metallic magnesium and magnesium hydride, and a magnesium-containing salt. The mixture can be heated at a deoxygenation temperature for a period of time under a hydrogen-containing atmosphere to form a deoxygenated metal. The deoxygenated metal can then be cooled. The deoxygenated metal can optionally be subjected to leaching to remove by-products, followed by washing and drying to produce a final deoxygenated metal.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: June 6, 2017
    Assignee: University of Utah Research Foundation
    Inventors: Ying Zhang, Zhigang Zak Fang, Pei Sun, Yang Xia, Chengshang Zhou
  • Patent number: 9630844
    Abstract: A hydrometallurgical process is provided for the recovery of tellurium as elemental tellurium powder from copper refinery anode slime containing high amount of lead. The process involves the removal of copper and lead from anode slime followed by the recovery of tellurium as elemental powders. An economical and environment friendly process is provided for producing tellurium from a high lead bearing anode slime as it involves only hydrometallurgical techniques and thereby avoids emission of any polluting gases and has an efficiency of 85 to 90%. The developed process of recovering tellurium as elemental powders from copper refinery anode slime is beneficial in the production of pure tellurium instead of tellurium compounds. It helps raise the profit margin of a non-ferrous metal industry dealing with extraction of copper from ores and treatment of anode slime for the recovery of other metal values.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: April 25, 2017
    Assignee: Council of Scientific & Industrial Research
    Inventors: Tondepu Subbaiah, Barada Kanta Mishra, Malay Kumar Ghosh, Kali Sanjay, Indra Narayan Bhattacharya, Chinmaya Kumar Sarangi, Barsha Dash, Abdul Rauf Sheik
  • Patent number: 9260767
    Abstract: The present disclosure relates to processes for recovering rare earth elements from an aluminum-bearing material. The processes can comprise leaching the aluminum-bearing material with an acid so as to obtain a leachate comprising at least one aluminum ion, at least one iron ion, at least one rare earth element, and a solid, and separating the leachate from the solid. The processes can also comprise substantially selectively removing at least one of the at least one aluminum ion and the at least one iron ion from the leachate and optionally obtaining a precipitate. The processes can also comprise substantially selectively removing the at least one rare earth element from the leachate and/or the precipitate.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: February 16, 2016
    Inventors: Richard Boudreault, Denis Primeau, Heinz Krivanec, Carsten Dittrich, Joel Fournier, Raymond Simoneau, Maria Christina Garcia
  • Patent number: 9199856
    Abstract: The invention relates to a method for obtaining magnetite using red mud, which is produced by the method used by Bayer for the manufacture of aluminum. The method according to the invention comprises at least the reduction of hematite and/or goethite to form magnetite using at least one reductant, said reductant containing at least one vegetable oil and/or a fat and/or carbon.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: December 1, 2015
    Inventors: Eberhard Krause, Valentin Rohm
  • Patent number: 9194023
    Abstract: A method to recover gold lost in roaster calcine-leach tailings, due to the formation of cyanide refractory compounds or morphologies during the roasting process. The process can include acid leaching of magnetic concentrate from roaster leach tailings, combining the acid leach slurry to the pre-acidulation tank for pressure oxidation feed, acid pressure oxidation of the pressure oxidation feed, and recovery of gold.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: November 24, 2015
    Assignee: Barrick Gold Corporation
    Inventors: Qiankun Wang, Nathan Stubina, Wayne Douglas, Todd Esplin, Jodi Esplin, Sajan Bhakta
  • Publication number: 20130184499
    Abstract: A reduced metallic catalyst or pre-activated catalyst is formed by contacting a precursor catalyst or a reduced metallic catalyst with a modifier solution in the presence of a source of hydrogen and heat treating the precursor catalyst or the reduced metallic catalyst at super-atmospheric pressure to obtain the reduced metallic catalyst from the precursor catalyst or the pre-activated catalyst from the reduced metallic catalyst. A method of hydrogenating a hydrogenatable precursor includes providing a reduced metallic catalyst or the pre-activated catalyst prepared with modifier buffer and contacting the reduced metallic catalyst or pre-activated catalyst with the hydrogenatable precursor in the presence of hydrogen and, optionally, in the presence of a modifier solution.
    Type: Application
    Filed: January 8, 2013
    Publication date: July 18, 2013
    Applicant: BioAmber International S.a.r.l.
    Inventor: BioAmber International S.a.r.l.
  • Patent number: 8475749
    Abstract: A method recovers noble metals from noble metal-containing compositions and includes steps of (i) providing a noble metal-containing composition containing an adsorption agent that is based on an inorganic material and is functionalized by organic groups and has at least one noble metal adsorbed to it, and (ii) ashing of the noble metal-containing composition provided in step (i) in order to adjust a residual carbon content of at most 10% by weight, relative to the total weight of the noble metal-containing composition after ashing, to obtain an ashed composition.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: July 2, 2013
    Assignee: Heraeus Precious Metals GmbH & Co. KG
    Inventors: Joachim Kralik, Martin Stettner, Stefanie Fuchs Alameda
  • Patent number: 8287618
    Abstract: A process for the selective recovery of Mo, V, Ni, Co and Al from spent hydroprocessing catalysts includes the steps of treating the spent catalysts to recovery metals, support as well as chemicals. The process steps include deoiling, decoking, washing, dissolving, complexing agent treatment, acid treatment and solvent extraction. This process uses limited steps than conventional processes by the use of ultrasonic agitation for metal extraction and the presence of a chelating agent particularly Ethylene Diamine Tetra-Acetic Acid (EDTA). The process also discloses the compete recovery of the extracting agent EDTA with high purity for reuse.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: October 16, 2012
    Assignee: Kuwait Institute for Scientific Research
    Inventor: Meena Marafi
  • Publication number: 20120067169
    Abstract: A method is disclosed for recovering precious metals from source materials containing precious metals which involves leaching the source material in aqueous reducing liquor to provide a treated solid residue and processing the treated residue to recover precious metals.
    Type: Application
    Filed: April 23, 2010
    Publication date: March 22, 2012
    Inventor: Dean R. Butler
  • Patent number: 7976611
    Abstract: Process for recovering metals from metal-containing wastes and materials, characterized in that the metal-containing waste is preferably introduced continuously into a process chamber, treated thermally with continuous intensive mixing, the organic components are continuously removed and subsequently oxidized and the metal-containing components, preferably as metal conglomerates, and the further inorganic metal-free components are discharged essentially continuously from the process chamber and a plant for carrying out the process.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: July 12, 2011
    Assignee: Currenta GmbH & Co. OHG
    Inventors: Joachim Beyer, Walter Leidinger, Wolfgang Calaminus, Egidius Vickus, Wilhelm Kuckelsberg, Mark Mätschke
  • Publication number: 20110113926
    Abstract: A method of reduction treatment of metal oxides characterized by using as a material a powder containing metal oxides and containing alkali metals and halogen elements and further, in accordance with need, carbon, mixing said material with water to produce a slurry, then dehydrating this and charging the dehydrated material, mixed with another material in accordance with need, into a rotary hearth type reduction furnace for reduction.
    Type: Application
    Filed: January 19, 2011
    Publication date: May 19, 2011
    Inventors: Hiroshi Ichikawa, Tetsuharu Ibaraki, Shoji Imura, Hiroshi Oda, Yoichi Abe, Shigeki Takahashi, Nobuyuki Kanemori, Satoshi Suzuki
  • Publication number: 20100242681
    Abstract: Disclosed herein is a method for concentrating gold contained in a leach residue obtained in a copper hydrometallurgical process for recovering copper from a copper sulfide mineral to efficiently separate and recover gold from the leach residue. According to the method, a gold-bearing copper sulfide mineral is subjected to pressure leaching with sulfuric acid at a temperature higher than 102° C. and 112° C. or lower to obtain a leach residue, and the leach residue is subjected to flotation to separate it into a float fraction and a sink fraction. The float fraction obtained by flotation is desulfurized by heating at a temperature of 250 to 800° C. under an inert atmosphere to obtain a desulfurized product. The desulfurized product is subjected to oxidative roasting by heating at a temperature of 600 to 800° C. under an atmosphere of flowing oxygen or air to obtain an oxidatively-roasted product.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 30, 2010
    Inventors: Noriyuki Nagase, Satoshi Asano, Masatoshi Takano, Kenji Takeda, Shinichi Heguri, Atsushi Idegami
  • Patent number: 7678172
    Abstract: A method of treating ore particles to facilitate subsequent processing of the ore particles to recover valuable components from the ore is disclosed. The method includes exposing the ore particles to microwave energy and causing structural alteration of the ore particles. In one embodiment structural alteration is achieve without significantly altering the mineralogy, i.e., composition, of the ore. In another embodiment structural alteration is achieved with minimal change to the sizes of the ore particles. In another embodiment the method includes exposing the ore particles to short duration, high energy pulses of microwave energy.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: March 16, 2010
    Assignee: Technological Resources Pty Ltd
    Inventors: Robin John Batterham, Lucy Esdaile, Raymond Walter Shaw, Christopher Robin Cross
  • Patent number: 7572418
    Abstract: A process for production of titanium concentrate with low contents of radionuclide elements from anatase mechanical concentrates. The process involves calcination in air and reduction with hydrogen or any other reducing gas, both in fluidized bed reactor or rotary kiln, low-intensity magnetic separation of the reduced product, high-intensity magnetic separation of the non-magnetic fraction resulting from the low-intensity magnetic separation, hydrochloric acid leaching of the product of high-intensity magnetic separation, filtering and dewatering of the leached product, high temperature oxidation of the dewatered material, cooling of the oxidized ore, hydrochloric acid leaching of the oxidation product in the presence of sodium fluoride, filtration and drying of the product of the second leaching and high intensity magnetic separation, the non-magnetic fraction of this final magnetic separation becoming the end product.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: August 11, 2009
    Assignee: Companhia Vale do Rio Doce
    Inventors: Ronaldo De Moreira Horta, Lino Rodrigues De Freitas, João Alberto Lessa Tude
  • Publication number: 20090165382
    Abstract: Processes for extracting and recycling alkali metal compounds present in the char produced from the catalytic gasification of carbonaceous materials are provided involving at least contacting the char with and alkali metal hydroxide followed by carbon dioxide. Both the alkali metal hydroxide and carbon dioxide treatments serve to convert at least a portion of the insoluble alkali metal compounds in the char into soluble species which can be recovered and recycled.
    Type: Application
    Filed: December 23, 2008
    Publication date: July 2, 2009
    Applicant: GreatPoint Energy, Inc.
    Inventors: Alkis S. Rappas, Robert A. Spitz
  • Patent number: 6592644
    Abstract: The invention relates to a method for the extraction of metals from copper sulphide and/or copper iron sulphide ores with microbiological- and chemical-type leaching steps for dissolution of the metals, which comprises the following steps: 1) In a conversion step, prior to the leaching steps, the ores are converted to covellite, pyrites and admixed sulphides by the addition of sulphur, and 2) copper and other metals, noble metals and rare earths contained in the reaction product are extracted.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: July 15, 2003
    Inventor: Alexander Beckmann
  • Patent number: 6274104
    Abstract: The invention relates to a method for recovering non-ferrous metals, particularly nickel, cobalt, copper, zinc, manganese and magnesium, from materials containing said metals by converting said non-ferrous metals into sulphates by means of melt and melt coating sulphation, i.e. by a thermal treatment under oxidizing conditions within a temperature range of 400 to 800° C., during which a reaction mixture is formed containing at least one said non-ferrous metal, iron(III)sulphate and alkali metal sulphate, and appropriate reaction conditions are selected to substantially prevent iron(III)sulphate from thermally decomposing to hematite, and finally, said non-ferrous metals are recovered as metallic compounds. In the method of the invention, a process is formed around the melt and melt coating sulphation, which comprises nine steps.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: August 14, 2001
    Inventors: Jussi Rastas, Pekka Saikkonen
  • Patent number: 5993512
    Abstract: A method and system for recycling byproduct streams from metal processing operations introduces a flow of a molten mixture of salts, metal and metal oxides from a melting vessel into a flow of water. The molten salts dissolve into the water. The metal oxides, and any metal entrapped in the molten mixture, instantly fragment into small particles. The slurry of brine and small particles flows into a storage tank and from there the brine can be separated from the small particles by employing a series of known liquid-solid separation techniques which preferably utilize cyclones, centrifuges, thickeners, and filters. In the case of aluminum processes, an antioxidant is preferably provided in the holding tank. To increase the settling rate of the solids, a flocculent can be added in the thickener.
    Type: Grant
    Filed: December 9, 1997
    Date of Patent: November 30, 1999
    Assignee: AllMetTechnologies, Inc.
    Inventors: John K. Pargeter, Mark S. Mazanek, Dale A. Zuck
  • Patent number: 5855645
    Abstract: A method for producing a more concentrated iron product from an industrial waste materials stream comprising iron and non-iron constituents such as EAF and basic oxygen furnace dust generally comprising the steps of compacting or briquetting the waste materials stream, roasting the waste materials stream at temperatures above about C. to convert the iron compounds to direct reduced iron, crushing the roasted waste materials stream, separating the iron compounds contained in the waste materials stream by magnetic separation or flotation, and providing the iron compounds back to the EAF or basic oxygen furnace.
    Type: Grant
    Filed: July 26, 1996
    Date of Patent: January 5, 1999
    Assignee: Metals Recycling Technologies Corp.
    Inventors: Allan S. Myerson, Charles W. Sanzenbacher, Peter Robinson, Charles A. Burrows, Paul R. DiBella
  • Patent number: 5849063
    Abstract: A method for producing direct reduced iron or/and pig iron from an industrial waste materials stream such as EAF and blast furnace dust generally comprising the steps of separating the materials contained in the waste materials stream by magnetic separation or flotation, briquetting the iron-containing materials separated during the separation process with carbon, and providing the briquettes to a reduction furnace or/and to a small scale blast furnace or cupola furnace to produce direct reduced iron or/and pig iron, respectively. The exhaust streams from the process are further treated to recover chemical values and to allow the recycle of the exhaust streams to the main process.
    Type: Grant
    Filed: June 26, 1996
    Date of Patent: December 15, 1998
    Assignee: Metals Recycling Technologies Corp.
    Inventors: Allan S. Myerson, Charles W. Sanzenbacher, Peter J. Robinson, Charles A. Burrows, Paul R. DiBella
  • Patent number: 5846290
    Abstract: A method for the production of Group IA salts during a process for the recycling of industrial waste streams containing Group IA compounds and iron and/or zinc compounds, by heating the waste stream in a reducing atmosphere, treating the exhaust fumes from the heating step with an ammonium chloride leaching solution resulting in a Group IA salt containing precipitate, and recovering the Group IA salts from the precipitate.
    Type: Grant
    Filed: April 18, 1997
    Date of Patent: December 8, 1998
    Assignee: Metals Recycling Technologies Corp.
    Inventors: Allan S. Myerson, Michael W. Cudahy
  • Patent number: 5827347
    Abstract: A process for the recovery of lead from spent battery paste and lead containing materials. The process includes the steps of calcination of a spent paste treated with an alkali carbonate or hydroxide or any mixture thereof, and elemental sulphur at a temperature of up to C., followed by washing with water. The calcined and washed paste is dissolved in an alkali molten electrolyte, and lead is electrowinned from the alkali molten electrolyte. The spent electrolyte is reused in the process.
    Type: Grant
    Filed: July 24, 1996
    Date of Patent: October 27, 1998
    Assignee: Margulead Ltd.
    Inventor: Efim Margulis
  • Patent number: 5803947
    Abstract: Metallic magnesium and pure magnesium oxide are produced by carbothermal reduction of starting materials such as magnesium oxide containing minor amounts of oxides of Fe, Si, Ca and Al, and/or magnesium silicate minerals, such as olivine, at subatmospheric pressure. Metallic magnesium is evaporated from a reduction zone and pure metallic magnesium and pure magnesium oxide are precipitated in a second condensation zone. Si is partly evaporated as SiO which is precipitated in a first condensation zone upstream the second condensation zone, partly converted to SiC and an alloy of Si and Fe in the reaction mixture. The starting materials may also be processed by a method wherein their magnesium component is converted to magnesium oxide in the reaction mixture, while the remaining components are converted to SiC and an alloy of Si and Fe. Au and valuable siderophilic elements may be recovered by leaching the alloy of Si and Fe.
    Type: Grant
    Filed: July 13, 1995
    Date of Patent: September 8, 1998
    Assignee: Mineral Development International A/S
    Inventors: John Engell, Jens S.o slashed.nderberg Frederiksen, Karsten Agersted Nielsen
  • Patent number: 5788739
    Abstract: The present invention relates to a process for the recovery of metallic lead from exhausted lead-acid batteries. According to the invention, the metallic scrap obtained thereof is treated by a smelting operation which is carried out under a layer of a molten flux. The flux comprises alkali hydroxide and optionally also carbonate(s) and sulfate(s) of said alkali. The temperature which is maintained during the smelting is between C. to C. and most preferably in the range of between C. to C. The preferred weight ratio between the metallic scrap and the flux is between 15 to 45. Generally, the alkali flux is selected from sodium hydroxide and potassium hydroxide and mixtures thereof. The process is characterized by a very extent of lead recovery compared with the known processes and absence of exhausted gases.
    Type: Grant
    Filed: February 6, 1996
    Date of Patent: August 4, 1998
    Assignee: Margulead Ltd.
    Inventor: Efim Margulis
  • Patent number: 5766307
    Abstract: Method and apparatus for collecting valuable products, particularly zinc, from a zinc-containing substance such as electric furnace dust. A shaft type smelting reduction furnace has a packed bed of a carbonaceous solid reducing agent and has upper and lower tuyeres, and a zinc-containing substance is injected through tuyeres to reduce and vaporize zinc, which is directly contacted by a liquid coolant thereby forming a slurry, and the zinc product is collected from the slurry.
    Type: Grant
    Filed: September 30, 1996
    Date of Patent: June 16, 1998
    Assignee: Kawasaki Steel Corporation
    Inventors: Shoji Miyagawa, Hiroshi Itaya, Tetsuya Fujii, Yoshiaki Hara
  • Patent number: 5755853
    Abstract: This process comprises; mixing (1) the solid residues with a solid reducing agent; treating (2) the mixture in a furnace at a temperature above C. to obtain (3) a vitrified product rendered poor in metals and an emission of gas enriched in metallic elements in a vapour phase; air quenching (4) the gases rich in metals; filtering (5) the products resulting from the air quenching to obtain secondary ashes rich in metallic salts; at the end of the filtering operation, washing the smoke (6) for discharging it to the atmosphere; and subjecting the secondary ashes rich in metallic salts to a treatment for producing a product rich in valuable metals (7 to 10).
    Type: Grant
    Filed: December 11, 1996
    Date of Patent: May 26, 1998
    Assignee: Electricite de France - Service National
    Inventors: Pierre Pasquini, Roger Meunier, Olivier Leclerc, Fabrice Lebrun
  • Patent number: 5730774
    Abstract: A process for removing impurities from a titaniferous material that has been subjected to thermal reduction and which includes a titaniferous phase of general formula M.sub.3 O.sub.5. The thermally reduced titaniferous material is subjected to a secondary heat treatment to covert the M.sub.3 O.sub.5 phase to a more readily leachable M.sub.2 O.sub.3 phase. This material is then cooled and leached in an aqueous acid solution containing hydrochloric acid or sulfuric acid, and the leachate is separated from the titaniferous material to form a purified titaniferous material.
    Type: Grant
    Filed: April 1, 1996
    Date of Patent: March 24, 1998
    Assignee: Technological Resources PTY Ltd.
    Inventors: Michael John Hollitt, Ross Alexander McClelland
  • Patent number: 5728197
    Abstract: Tungsten carbide cobalt and tungsten-containing materials are recycled using a single high-temperature oxidation with standard dilution chemistry. The scrap material is ground, oxidized, and subjected to an acid digestion, preferably in hydrochloric acid. This causes the cobalt to form cobalt chloride while the tungsten remains insoluble. The pH is then increased to about 7.0 which causes the cobalt chloride to form cobalt hydroxide which precipitates out of solution. The cobalt and tungsten are separated and dissolved in a high-pH ammonia solution which can then be spray dried to form a precursor powder for subsequent carburization to form tungsten carbide-cobalt powders.
    Type: Grant
    Filed: July 17, 1996
    Date of Patent: March 17, 1998
    Assignee: Nanodyne Incorporated
    Inventors: Purnesh Seegopaul, Li Wu
  • Patent number: 5725632
    Abstract: A method for processing hetrogeneous metal-containing deposits recovered from the cleaning of synthesis gas produced during the thermal treatment of wastes containing metals, including volatile metals, in equipment having a heating enclosure and a waste liquid container. The method comprises the steps of directing all of the liquids and residual solutions to the waste liquid container and directing all of the residual gases into the heating enclosure.
    Type: Grant
    Filed: March 24, 1997
    Date of Patent: March 10, 1998
    Assignee: Thermoselect AG
    Inventor: Gunter H. Kiss
  • Patent number: 5679131
    Abstract: A method for producing titanium dioxide from an iron-containing titanium ore concentrate includes heating the ore concentrate in the presence of a reducing agent to provide a sintered reaction product including a titanium salt of the alkali metal and metallic iron. The titanium salt of the alkali metal is decomposed by addition of water to provide titanium dioxide. For ilmenite (FeTiO.sub.3), preferred alkali metal salts include carbonates, and formates of sodium and potassium. The titanium metal salt so formed is sodium or potassium meta titanate (K.sub.2 TiO.sub.3 or Na.sub.2 TiO.sub.3) depending on the alkali metal used. Suitable reducing agents include hydrogen, methane, carbon monoxide, or solid carbon. Metallic iron may be magnetically separated from ground reaction product or from a slurry formed by addition of water to the reaction product, the slurry including the titanium dioxide.
    Type: Grant
    Filed: March 13, 1996
    Date of Patent: October 21, 1997
    Assignee: Photran Corporation
    Inventor: Ivan M. Obushenko
  • Patent number: 5667555
    Abstract: A method for the removal of calcium byproducts created during the production of an iron-based feedstock suitable for use as the feedstock for steel mills, from industrial waste streams containing iron, by treating the waste stream with an ammonium chloride leaching solution, treating the leachant with a soluble ammonium salt in which the negative ion will form an insoluble compound with calcium, and separating the undissolved precipitates comprising iron compounds and calcium compounds from the leachant solution. The undissolved precipitants may be treated further by elevated temperature roasting, resulting in the iron-based feedstocks.
    Type: Grant
    Filed: February 21, 1996
    Date of Patent: September 16, 1997
    Assignee: Metals Recycling Technologies Corp.
    Inventors: Allan S. Myerson, Charles A. Burrows, Charles W. Sanzenbacher, Paul R. DiBella
  • Patent number: 5647876
    Abstract: A method is disclosed for recovering condensed solidified volatile metals from the slag that exits the reactor section of a partial oxidation reactor. In a partial oxidation reactor, condensed solidified volatile metals become adsorbed to the surface of the slag particles and other particulate matter associated with the gasification reaction, such as ash and soot. These particulate materials can be removed and recovered. Finely divided slag particles can be separated and contacted with a mineral acid to dissolve the adsorbed condensed volatile metals. An acid liquor results which contains dissolved volatile metal salts of the acid. The acid liquor containing the dissolved volatile metal acid salts is then electrolyzed to reduce the dissolved volatile metal acid salts to the corresponding elemental metal for recovery.
    Type: Grant
    Filed: September 26, 1995
    Date of Patent: July 15, 1997
    Assignee: Texaco Inc.
    Inventors: John Duckett Winter, John Saunders Stevenson, Jerrold Samuel Kassman, Harry Clarence Wiese, George Neal Richter, Lisa Marie Kocsis, Rinaldo Ibbarola Salvaleon
  • Patent number: 5613998
    Abstract: Tungsten carbide and/or tungsten can be recycled by oxidizing the tungsten composition at a temperature greater than C. to form a water insoluble tungsten trioxide. This is then reduced to form tungsten dioxide. The tungsten dioxide is subjected to a low temperature oxidation which forms monoclinic tungsten trioxide. The monoclinic tungsten trioxide is then dissolved in ammonia to form ammonium tungstate. If present, the binder metal such as cobalt is converted into the soluble ammine complex. This can be spray dried and carburized to form tungsten carbide. If the form composition includes cobalt or other binder metal, the ratio of cobalt to tungsten can be adjusted by adding cobalt salts or ammonium metatungstate to the aqueous solution prior to spray drying to form a precursor composition. This is uniquely suitable for forming a cobalt tungsten carbide composition.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: March 25, 1997
    Assignee: Nanodyne Incorporated
    Inventors: Purnesh Seegopaul, Li Wu
  • Patent number: 5356455
    Abstract: There is proposed a process for recovering lead, comprising the steps of: feeding molten caustic soda, lead-containing feed and an oxygen-containing gas into a reaction some having a temperature of to C. as a result of which there are obtained lead metal withdrawn from the process and a melt containing sodium sulphate, zinc and copper sulphides, and gangue. The melt is discharged from the reaction zone of subjected to a first leaching operation to obtain, as a result, a slurry representing a mixture of solid particles of sodium sulphate, zinc and copper sulphides, gangue and an aqueous solution containing essentially caustic soda. Further on, the slurry is filtered to produce a concentrated aqueous solution containing essentially caustic soda and a solid residue. The concentrated caustic soda solution is subjected to thickening by evaporation and the resulting caustic soda melt is fed into the reaction zone.
    Type: Grant
    Filed: September 3, 1993
    Date of Patent: October 18, 1994
    Assignee: Nikolai Vladimirovich Khodov
    Inventors: Nikolai V. Khodov, Mikhail P. Smirnov, Oleg K. Kuznetsov, Konstantin M. Smirnov
  • Patent number: 5352270
    Abstract: The present invention relates to methods of recycling metal containing electrical components to recover one or more metal values therefrom by comminuting the used metal containing electrical component, preferably in an inert environment, separating water soluble and insoluble materials and recovering metal or metal compounds from at least one of these materials.
    Type: Grant
    Filed: September 11, 1992
    Date of Patent: October 4, 1994
    Assignee: Valence Technology, Inc.
    Inventor: Dale R. Shackle
  • Patent number: 5322548
    Abstract: Ferroniobium, ferrotantalum and ferrovanadium alloys are hydrogenated to facilitate crushing then nitrided, and then acid-leached to produce a soluble iron nitride leachate and a niobium, tantalum or vanadium nitride residue which residue can be denitrided to yield the metal which can be recovered by melting.
    Type: Grant
    Filed: June 27, 1991
    Date of Patent: June 21, 1994
    Assignee: Teledyne Industries, Inc.
    Inventors: Bernard F. Kieffer, John R. Peterson, Timothy R. McQueary, Matthew A. Rossback, Lloyd J. Fenwick
  • Patent number: 5290535
    Abstract: Saltcake generated by the aluminum industry is completely recycled through a process that simultaneously liberates the contained aluminum metal and dissolves the soluble salt fluxes to recover aluminum metal, aluminum oxide and salt fluxes by temperature controlled wet milling, rapid solids-brine separation and solar pond evaporation of the resulting clear brine. The temperature of the feedwater is F. or less to retard the exothermic reaction of aluminum metal with water, thereby minimizing the loss of metal to oxidation and the evolution of undesirable gases. Low temperature is maintained by using process water at or below the desired temperature, by forcibly cooling the mill with ambient air, and by controlling transit time through the mill to avoid excessive grinding of the aluminum metal. Minimizing the production of fine aluminum particles reduces the total surface area of aluminum metal available for exothermic reacton with the water.
    Type: Grant
    Filed: April 9, 1993
    Date of Patent: March 1, 1994
    Assignee: IMSALCO
    Inventors: Dale A. Zuck, Gene J. Kulik, Henry C. Johns
  • Patent number: 5221325
    Abstract: A process for recovering silver oxide and metals from a spent silver oxide button cell. The process relates to a physical process which consists of a heating and a cooling process to separate the shell and the content (silver, silver oxide) of the spent silver oxide cell, so that silver oxide, silver and other metals such as zinc, iron and nickel can be recovered and reused.
    Type: Grant
    Filed: March 3, 1992
    Date of Patent: June 22, 1993
    Assignee: Industrial Technology Research Institute
    Inventors: Tyngbin Onlin, Bih-Shyang Huang, Pak-Hing Lee, Tei-Chih Cheau
  • Patent number: 5120353
    Abstract: The invention relates to a method for recovering various valuable materials in connection with the hydrometallurgical production of zinc. The method is particularly suited for feeding different types of raw materials into the various stages of a process carried out in atmospheric conditions. Valuable materials such as lead, silver and gold are recovered by means of the said method.
    Type: Grant
    Filed: February 13, 1991
    Date of Patent: June 9, 1992
    Assignee: Outokumpu Oy
    Inventors: Sigmund P. Fugleberg, Aimo E. Jarvinen
  • Patent number: 5039336
    Abstract: This is a process for extracting scandium from zircon ore. It utilizes feeding zircon sand to a fluidized bed chlorinator at about C. to produce a vaporous (principally zirconium and silicon chlorides) phase and a solid residue and recovering scandium from the solid residue. Surprisingly, despite the relatively low sublimation temperature of scandium chloride the very low level of scandium present in zircon ore is concentrated in the residue (rather than going with the vapor phase, where it would not be concentrated), making recovery of scandium from the zircon ore economically feasible. Generally, the process can be part of the production of zirconium metal, whereby scandium is a byproduct of zirconium production. Preferably, the recovery is performed by leaching the residue with aqueous acid (e.g. HCl) to produce a scandium-containing aqueous solution, followed by contacting the aqueous solution with a polyalkyl phosphate-containing organic phase, the polyalkyl phosphate (e.g.
    Type: Grant
    Filed: December 30, 1988
    Date of Patent: August 13, 1991
    Assignee: Westinghouse Electric Corp.
    Inventor: Robert J. Feuling
  • Patent number: 4986977
    Abstract: The process is described for treating the sludge formed in a phosphate conversion bath, and in particular, in zinc phosphate conversion baths to convert the sludge into useful chemical materials thereby eliminating the need for disposal to landfill. The process comprises the steps of(A) recovering the solid by-products from the used phosphating solution;(B) treating the solid by-products with an aqueous base at a pH of greater than 10 to form a first aqueous phase and a metal-containing precipitate;(C) recovering the metal-containing precipitate from the first aqueous phase as a first product of the process;(D) acidifying the first aqueous phase obtained in (C) to a from about 7 to about 10 to form a second aqueous phase and an insoluble metal-containing precipitate;(E) recovering the solid metal-containing precipitate from the second aqueous phase as a second product of the process; and(F) recovering the second aqueous phase as a third product of the invention.
    Type: Grant
    Filed: December 12, 1989
    Date of Patent: January 22, 1991
    Assignee: Man-Gill Chemical Company
    Inventor: Donald S. Peters
  • Patent number: 4985216
    Abstract: A process is provided for the reduction roasting of ores using a C.sub.2 to C.sub.8 hydrocarbon. The process is particularly applicable to manganese dioxide containing ores and provides enhanced reduction of the manganese to lower oxidation states at low operating temperatures for manganese dioxide ores and provides increased silver recoveries from refractory manganese-silver ores.
    Type: Grant
    Filed: July 20, 1988
    Date of Patent: January 15, 1991
    Assignee: ASARCO Incorporated
    Inventors: Mamdouh M. El Tawil, Adrian E. Albrethsen