Scanning Potential Microscopy (epo) Patents (Class 850/36)
-
Patent number: 8839461Abstract: A device includes: an electrode; a displacement measurement unit outputting voltage corresponding to electrostatic force between the electrode and a sample; a first power supply applying a first voltage between the electrode and sample; a second power supply adding, to the first voltage, a second voltage having a different frequency than the first voltage, and applying the added voltage; and a signal detection unit outputting a particular frequency component's magnitude contained in the displacement measurement unit's output, in which the signal detection unit extracts, from the output by the displacement measurement unit, and outputs, to a potential calculation unit, magnitude and phase of a frequency component of a frequency identical to the frequency of the first voltage, and magnitude of a frequency component of a frequency identical to a frequency equivalent to a difference between the frequencies of the first and second voltages, to measure the sample's surface potential.Type: GrantFiled: September 12, 2012Date of Patent: September 16, 2014Assignee: National University Corporation Kanazawa UniversityInventors: Takeshi Fukuma, Naritaka Kobayashi
-
Patent number: 8695108Abstract: To measure surface potentials in a liquid, the in-liquid potential measurement device according to the present invention includes: a cantilever having a probe at its free end; a displacement measurement unit that measures a voltage corresponding to a displacement of a tip of the cantilever; an AC source that applies an AC voltage between the probe and the sample; and a signal detection unit. A frequency of the AC voltage is 10 kHz or higher. The signal detection unit detects, from the voltage measured by the displacement measurement unit, an amplitude of a frequency component having the same frequency as that of the AC voltage, an amplitude of a frequency component having double frequency of that of the AC voltage, and a frequency component having the same phase as that of the frequency of the AC voltage.Type: GrantFiled: July 29, 2011Date of Patent: April 8, 2014Assignee: National University Corporation Kanazawa UniversityInventors: Fukuma Takeshi, Kobayashi Naritaka, Asakawa Hitoshi
-
Publication number: 20140068822Abstract: The disclosure is related to an SSRM method for measuring the local resistivity and carrier concentration of a conductive sample. The method includes contacting the conductive sample at one side with an AFM probe and at another side with a contact electrode, modulating, at a modulation frequency, the force applied to maintain physical contact between the AFM probe and the sample while preserving the physical contact between the AFM probe and the sample, thereby modulating at the modulation frequency the spreading resistance of the sample; measuring the current flowing through the sample between the AFM probe and the contact electrode; and deriving from the measured current the modulated spreading resistance. Deriving the modulated spreading resistance includes measuring the spreading current using a current-to-voltage amplifier, converting the voltage signal into a resistance signal, and filtering out from the resistance signal, the resistance amplitude at the modulation frequency.Type: ApplicationFiled: September 6, 2013Publication date: March 6, 2014Applicant: IMECInventors: Pierre Eyben, Wilfried Vandervorst, Ruping Cao, Andreas Schulze
-
Publication number: 20130232648Abstract: To measure surface potentials in a liquid, the in-liquid potential measurement device according to the present invention includes: a cantilever having a probe at its free end; a displacement measurement unit that measures a voltage corresponding to a displacement of a tip of the cantilever; an AC source that applies an AC voltage between the probe and the sample; and a signal detection unit. A frequency of the AC voltage is 10 kHz or higher. The signal detection unit detects, from the voltage measured by the displacement measurement unit, an amplitude of a frequency component having the same frequency as that of the AC voltage, an amplitude of a frequency component having double frequency of that of the AC voltage, and a frequency component having the same phase as that of the frequency of the AC voltage.Type: ApplicationFiled: July 29, 2011Publication date: September 5, 2013Inventors: Takeshi Fukuma, Naritaka Kobayashi, Hitoshi Asakawa
-
Patent number: 8327460Abstract: The present invention allows simple and sensitive detection of microimpurities, microdefects, and corrosion starting points which may be present in a material. A probe microscope has a function to sense ions diffused from a specimen in a liquid. A probe is caused to scan over a predetermined range on a specimen. Then, the probe is fixed to a particular position in a liquid so as to set the distance between the specimen and the probe to a given value at which the microstructure of the specimen surface cannot be observed. Thereafter, one of the current between the probe and a counter electrode and the potential between the probe and a reference electrode is controlled, and the other of the current and potential which varies in accordance with the control is measured. Thus, ions diffused from the specimen are sensed.Type: GrantFiled: April 7, 2010Date of Patent: December 4, 2012Assignee: Hitachi, Ltd.Inventors: Kyoko Honbo, Katsumi Mabuchi, Motoko Harada
-
Patent number: 7958565Abstract: A driving laser unit (11) irradiates a laser beam on a cantilever (5) to cause thermal expansion deformation. A driving-laser control unit (13) performs feedback control for the cantilever (5) by controlling intensity of the laser beam on the basis of displacement of the cantilever (5) detected by a sensor (9). A thermal-response compensating circuit (35) has a constitution equivalent to an inverse transfer function of a heat transfer function of the cantilever (5) and compensates for a delay in a thermal response of the cantilever (5) to the light irradiation. Moreover, the cantilever (5) may be excited by controlling the intensity of the laser beam. By controlling light intensity, a Q value of a lever resonance system is also controlled. It is possible to increase scanning speed of an atomic force microscope.Type: GrantFiled: May 26, 2006Date of Patent: June 7, 2011Assignee: National University Corporation Kanazawa UniversityInventors: Toshio Ando, Takayuki Uchihashi, Noriyuki Kodera, Hayato Yamashita