Sensing Device Patents (Class 901/46)

Cross-Reference Art Collections

Optical (Class 901/47)
  • Patent number: 11951631
    Abstract: An autonomous system used for a production process includes a device configured to manipulate workpieces according to production process tasks. A device controller generates world model of the autonomous system to include data objects representing respective physical objects in the production process, such as workspace, workpieces, and the device. Semantic markers attached to the data objects include information related to a skill to accomplish a task objective. Semantic markers may be activated or deactivated depending on whether the physical object is currently available for a task performance. The device is controlled to perform tasks guided by the semantic markers while relying on an anticipation function with reasoning operations based on types of physical objects, types of skills, and configuration of the data objects.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: April 9, 2024
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Richard Gary McDaniel
  • Patent number: 11927309
    Abstract: Disclosed is an automatic alignment method of a high-pressure gas container in which a high-pressure gas container is loaded on a lift of a cabinet so as to supply a gas from a fabrication (FAB) process facility of a semiconductor to a wafer production line, and then, the high-pressure gas container loaded on the lift is raised, and an end cap of the high-pressure gas container and the center of a connector holder of a gas pipe are automatically aligned.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: March 12, 2024
    Assignee: AMT CO., LTD.
    Inventors: Won Ho Choi, Chan Woo Kim
  • Patent number: 11926058
    Abstract: An information providing device includes a storage section configured to register and store information related to a work robot and information on processing models related to the structures, an operation program configured to execute an operation of a work system in a virtual space by using information on the structures and information on a processing model related to the structures; and a control section configured to acquire selection information in which the information on the two or more structures and the processing model related to the structures stored in the storage section are selected, read the information on the structures and the information on the processing model included in the selection information from the storage section, execute processing of the processing model in a state in which the two or more structures are connected by the operation program in the virtual space, and output an executed processing result.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: March 12, 2024
    Assignee: FUJI CORPORATION
    Inventors: Seigo Kodama, Masatoshi Fujita
  • Patent number: 11865017
    Abstract: An apparatus for assisting a finger motion, including a palm support installed to surround a part of a hand-back and a wrist; an extension assist unit secured at a first side thereof to a middle phalanx region of a finger and connected at a second side thereof to the palm support to assist extension of the finger through an elastic force between both ends; and a flexion assist unit comprising a distal phalange support mounted on an end of the finger, and a first flexion wire and a second flexion wire mounted on a part of the finger and assisting flexion of the finger on the basis of tensile force supplied from an outside.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: January 9, 2024
    Assignee: Korea Advanced Institute of Science And Technology
    Inventors: Hyung-Soon Park, Dong Hyun Kim
  • Patent number: 11858146
    Abstract: A working method of performing work with increase or decrease in weight on an object by a robot system having a robot, a first hand with an assist device, and a second hand without the assist device, includes switching between an assisted work state in which the first hand is coupled to the robot and work is performed with assistance by the assist device and a non-assisted work state in which the second hand is coupled to the robot and work is performed without assistance by the assist device according to a weight of the object.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: January 2, 2024
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Nahomi Adachi, Hiroaki Shimizu, Masaki Miyasaka, Kazufumi Oya
  • Patent number: 11833669
    Abstract: An end effector is disclosed. The end effector includes a first set of one or more suction cups of a first size having a first diameter, and a second set of one or more suction cups of a second size having a second diameter that is smaller than the first diameter. The end effector further includes a first actuation mechanism configured to apply suction to at least a subset of the first set of suction cups independently of actuation of the second set of suction cups and a second actuation mechanism configured to apply suction to at least a subset of the second set of suction cups independently of actuation of the first set of suction cups.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: December 5, 2023
    Assignee: Dexterity, Inc.
    Inventors: Zhouwen Sun, Robert Holmberg, Shitij Kumar, Jeesu Baek, Joseph Li, Kishore Ranganath Ramakrishnan, Andrew Lovett
  • Patent number: 11820015
    Abstract: An overshoot amount detection method includes a synchronization step of synchronizing a signal of an inertial sensor with a signal of an encoder based on a first synchronizing signal output from the inertial sensor during a signal synchronizing operation and a second synchronizing signal output from the encoder during the signal synchronizing operation, a signal generation step of generating a first signal by twice integration of a first detection signal output from the inertial sensor during a working operation and removal of a low-frequency component contained in the first detection signal and generating a second signal for supplement of the low-frequency component of the first signal from a second detection signal output from the encoder during the working operation, and an overshoot amount detection step of detecting an overshoot amount of an arm based on the first signal and the second signal.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: November 21, 2023
    Inventors: Ryutaro Seki, Atsushi Toyofuku, Tomonori Mano
  • Patent number: 11820019
    Abstract: There is provided a robot control apparatus including a determination unit configured to determine whether or not an end condition of a task is satisfied when a robot performs the task, and a switching unit configured to perform switching to a next task corresponding to the end condition in a case where the end condition is satisfied. With this configuration, it is possible to optimally switch tasks of the robot depending on the situation.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: November 21, 2023
    Assignee: SONY CORPORATION
    Inventor: Toshimitsu Tsuboi
  • Patent number: 11813740
    Abstract: A camera and a robot system are provided. The camera includes a camera body attached to a tip of a robot arm and a camera unit housed in the camera body. The camera unit has a plurality camera devices that are different in optical characteristics for imaging a workpiece.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: November 14, 2023
    Assignee: I-PRO CO., LTD.
    Inventors: Tetsuya Mizusawa, Hiroyuki Ishihara, Yoshihiro Inoue, Shinichi Tsukahara, Tatsuo Kamei, Yuki Yoshikuni
  • Patent number: 11783428
    Abstract: Systems and methods provide for an automated system for analyzing damage to process claims and pre-claim consultations associated with an insured item, such as a vehicle. An enhanced claims processing server may analyze damage associated with the insured item using photos/video transmitted to the server from a user device (e.g., a mobile device). The mobile device may receive feedback from the server regarding the acceptability of submitted photos/video, and if the server determines that any of the submitted photos/video is unacceptable, the mobile device may capture additional photos/video until all of the data are deemed acceptable. In addition, the server may interface with third party entities such as repair shops and may generate a payment for compensating a claimant for repair of the insured item.
    Type: Grant
    Filed: June 20, 2022
    Date of Patent: October 10, 2023
    Assignee: Allstate Insurance Company
    Inventors: Suchandra Banerjee, Jennifer A. Brandmaier, Mark E. Faga, Robert H. Johnson, Clint J. Marlow, Curtis Murphy, Kurt M. Stricker, Josh Campbell
  • Patent number: 11763494
    Abstract: A mobile surveillance apparatus includes: a communication interface configured to receive map data of a preset area; and a processor configured to process the map data by reflecting at least one of unevenness and obstruction on a driving surface of a mobile module, and set a path for the mobile module, based on the processed map data.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: September 19, 2023
    Assignee: HANWHA AEROSPACE CO., LTD.
    Inventors: Hee Seo Chae, Jae Chan Park
  • Patent number: 11745347
    Abstract: Candidate grasping models of a deformable object are applied to generate a simulation of a response of the deformable object to the grasping model. From the simulation, grasp performance metrics for stress, deformation controllability, and instability of the response to the grasping model are obtained, and the grasp performance metrics are correlated with robotic grasp features.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: September 5, 2023
    Assignee: NVIDIA CORP.
    Inventors: Isabella Huang, Yashraj Shyam Narang, Clemens Eppner, Balakumar Sundaralingam, Miles Macklin, Tucker Ryer Hermans, Dieter Fox
  • Patent number: 11740633
    Abstract: Techniques are discussed for controlling a vehicle, such as an autonomous vehicle, based on occluded areas in an environment. An occluded area can represent areas where sensors of the vehicle are unable to sense portions of the environment due to obstruction by another object or sensor limitation. An occluded region for an object is determined, along with one or more visible regions proximate the occluded region. Entry and/or exit regions may be determined based on known directions of traffic and/or drivable surface boundaries. Based on a threshold speed, the vehicle can designate portions of the occluded region as pseudo-visible. Additionally, if a dynamic object traverses through the occluded region from the entry region, a portion of the occluded region may be considered pseudo-visible. Pseudo-visibility may also be determined based on movement of an occluded area. The vehicle can be controlled to traverse the environment based on the pseudo-visibility.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: August 29, 2023
    Assignee: Zoox, Inc.
    Inventors: Max Gier, William Anthony Silva
  • Patent number: 11665009
    Abstract: A spoken communication system and method of transferring spoken communication, includes a plurality of communication devices, at least some configured to be positioned within an occupied structure, each of said communication devices including a processor, a microphone an audio output device and a communication circuit and being responsive to spoken communication to communicate that spoken communication to other communication devices and to receive spoken communications received by other of said communication devices and an internet connected server. The server is selectively in digital communication with the communication devices and adapted to receive a spoken audio stream request, said server responsive to receiving an audio stream request by opening communication channels with said communication devices that are connected with said server. The server is adapted to receive spoken communication captured by one of said communication devices that is in communication with said server.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: May 30, 2023
    Assignee: Vocal Power-House Systems, LLC
    Inventors: James P. DeLapa, Samuel-Hunter Berndt
  • Patent number: 11642791
    Abstract: An autonomous mobile robot includes a first arithmetic unit configured to calculate a course direction based on an own position, a moving-object position, and a moving-object velocity vector, the course direction being a direction in which the autonomous mobile robot should travel, a second arithmetic unit configured to input the own position, the moving-object position, the moving-object velocity vector, and the course direction into a trained model and thereby calculate an estimated position, the trained model being a model that has been trained, the estimated position being a position at which the autonomous mobile robot is estimated to arrive a predetermined time later without colliding with the moving object, a generating unit configured to generate a remaining route from the estimated position to a destination, and a movement control unit configured to control a movement to the destination based on the course direction and the remaining route.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: May 9, 2023
    Assignees: NATIONAL UNIVERSITY CORPORATION SHIZUOKA UNIVERSITY, NATIONAL UNIVERSITY CORPORATION IWATE UNIVERSITY, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuichi Kobayashi, Takeshi Sugimoto, Chyon Hae Kim, Kazuhito Tanaka
  • Patent number: 11633847
    Abstract: A system and a method for controlling a system are described. The system includes a plurality of sensors configured to be worn on a user's body. The plurality of sensors are configured to generate a plurality of signals in response to forces applied by corresponding portions of a user's body. The system also includes a processor configured to receive the plurality of signals. The processor is configured to identify commands from the user based at least partly on the plurality of signals and an operational range and/or null space of the plurality of signals for a task being performed by the user. The processor is configured to control an operation of the system based on the identified commands.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: April 25, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Haruhiko Harry Asada, Jacob Guggenheim
  • Patent number: 11614745
    Abstract: A mobile robot includes a body, a propulsion module, an ultrasound sensor module that is configured to detect a boundary of a cleaning area using a sound wave, and a controller configured to control the propulsion module based on the determined boundary. The ultrasound sensor module may include an ultrasonic sensor unit and a boundary detector. The sensor unit may emit the sound wave, receive the reflected sound wave from a target, and output a sound wave signal. And, the boundary detector may analyze the sound wave signal to detect the boundary of the cleaning area.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: March 28, 2023
    Assignee: LG ELECTRONICS INC.
    Inventors: Hyungtae Yun, Byounghee Kim
  • Patent number: 11536619
    Abstract: A sensor includes: an electrostatic-capacity-type sensor electrode layer having a plurality of sensing units; a reference electrode layer opposed to one main face of the sensor electrode layer; and a deformable layer disposed between the reference electrode layer and the sensor electrode layer, the deformable layer being to deform elastically due to application of pressure. The deformable layer is recessed between the sensing units or discontinuous between the sensing units. The reference electrode layer has a shaped portion between the sensing units.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: December 27, 2022
    Assignee: SONY CORPORATION
    Inventors: Tomoko Katsuhara, Hiroto Kawaguchi
  • Patent number: 11532006
    Abstract: The present disclosure relates generally to a system that includes a storage component that stores data and a processor. The processor may install an application using a portion of the storage component, partition the portion of the storage component from a remaining portion of the storage component, and execute the application via the portion of the storage component.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: December 20, 2022
    Assignee: United Services Automobile Association (USAA)
    Inventors: Michael J. Allen, Kathleen L. Swain, Cleburne R. Burgess, Ramsey Devereaux, Spencer Read, David S. Franck, Teddy J. Voutour, Shanna Limas, William Chandler, Michael P. Burns, Daniela Wheeler
  • Patent number: 11488254
    Abstract: An insurance system for home sharing may comprise a mobile device of a homeowner, one or more databases storing insurance factor data, a plurality of sensors configured to monitor one or more home features, and a server comprising one or more processors and memory. The server may be configured to receive, from the mobile device, data indicating that the homeowner is renting out a home, determine a value for frequency of rentals for the home based on the data indicating that the homeowner is renting out the home, and receive, from the plurality of sensors, monitored data for the one or more home features. The server may compute an insurance premium for the homeowner based on the value for frequency of rentals for the home, the monitored data for the one or more home features, and the insurance factor data and transmit the insurance premium to the mobile device.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: November 1, 2022
    Assignee: Allstate Insurance Company
    Inventors: Jennifer L. Snyder, Christy Hradek
  • Patent number: 11471221
    Abstract: A tool tracking method comprises receiving stereo image data of a tool. The tool includes a tracking marker. The method also comprises receiving first kinematic data for the tool and determining a three-dimensional image-derived pose of the tool from the stereo image data of the tool and the tracking marker. The method also comprises determining a first kinematic pose of the tool from the first kinematic data and determining a pose offset between the image-derived pose of the tool and the first kinematic pose of the tool. The method also comprises determining a corrected first kinematic pose of the tool based on the pose offset and the first kinematic data.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: October 18, 2022
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Tao Zhao, William C. Nowlin, Wenyi Zhao
  • Patent number: 11465287
    Abstract: A first robot may include: a communication circuit configured to transmit and receive a signal; a sensor configured to detect a surrounding environment; a driving device configured to implement movement of the first robot; and a processor configured to control the first robot. The processor may determine a second voice recognition range of a second robot on the basis of a confirmation signal transmitted from the second robot. When a user is positioned outside the determined second voice recognition range, the processor may control the driving device so that the first robot follows the user.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: October 11, 2022
    Assignee: LG ELECTRONICS INC.
    Inventors: Hyeji Seo, Jiyoon Park
  • Patent number: 11465285
    Abstract: A robot system includes a robot collaboratively acting with a human, a force sensor provided in the robot and detecting a force, a control unit decelerating or stopping an action of the robot based on output from the force sensor, a first temperature sensor detecting a temperature of the force sensor, and an execution unit performing warm-up operation in the robot until output from the first temperature sensor reaches a first target value.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: October 11, 2022
    Inventor: Isamu Sejimo
  • Patent number: 11440186
    Abstract: An overshoot amount detection method includes a first step of generating a first signal from a first detection signal output from an inertial sensor that detects inertia in a working unit of an arm to be displaced, a second step of generating a second signal using a second detection signal output from an encoder that detects an amount of displacement of the arm, and a third step of detecting an overshoot amount of the arm based on a third signal obtained by synthesis of the first signal and the second signal. The first step includes twice integration of the first detection signal and removing a low-frequency component contained in the first detection signal.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: September 13, 2022
    Inventors: Ryutaro Seki, Kimitake Mizobe
  • Patent number: 11430069
    Abstract: A damage prediction system that uses hazard data and/or aerial images to predict future damage and/or estimate existing damage to a structure is described herein. For example, the damage prediction system may use forecasted hazard data to predict future damage or use actual hazard data to estimate existing damage. The damage prediction system may obtain hazard data in which structures were or will be impacted by a hazard. The damage prediction system can then generate a flight plan that causes an aerial vehicle to fly over the impacted parcels and capture images. The damage prediction system can use artificial intelligence to process the images for the purpose of identifying potential damage. The damage prediction system can also use a hazard model, the hazard data, and structure characteristics to generate a damage score. The damage prediction system can then use the processed images and/or damage score to generate a virtual claim.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: August 30, 2022
    Inventors: David V. Pedersen, Neil Pearson
  • Publication number: 20150148955
    Abstract: Systems and methods for cleaning a structure via a robot are described. The system includes a first robot and a second robot. The first robot includes a body, a tool arm, a sensor coupled, a drive system configured to allow vertical and inverted positioning of the first robot, a transceiver, and a controller. The second robot similarly includes a body, a drive system configured to allow positioning of the second robot, a transceiver, and a controller. The system includes a base station in communication with the first robot via the first robot transceiver and/or in communication with the second robot via the second robot transceiver. The first robot is configured to autonomously perform a maintenance task on the structure. The second robot is configured to autonomously provide a support service to the first robot during the maintenance task. The first robot is configured to communicate with the second robot.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Inventors: Hon Wah Chin, William D. Duncan, Roderick A. Hyde, Jordin T. Kare, Tony S. Pan, David B. Tuckerman, Lowell L. Wood,, Jr.
  • Patent number: 9043146
    Abstract: An automated process uses a local positioning system to acquire location (i.e., position and orientation) data for one or more movable target objects. In cases where the target objects have the capability to move under computer control, this automated process can use the measured location data to control the position and orientation of such target objects. The system leverages the measurement and image capture capability of the local positioning system, and integrates controllable marker lights, image processing, and coordinate transformation computation to provide tracking information for vehicle location control. The resulting system enables position and orientation tracking of objects in a reference coordinate system.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: May 26, 2015
    Assignee: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Daniel James Wright, Gary E. Georgeson, Karl Edward Nelson
  • Patent number: 9043030
    Abstract: A manipulator and a method of generating the shortest path along which the manipulator moves to grip an object without collision with the object models a target object and a gripper into a spherical shape, measures a current position of the gripper and a position of the target object and a target position of the gripper, calculates an arc-shaped path in a two-dimensional plane along which the gripper needs to move by calculating an included angle of a triangle consisting of the position of the object and the current position and target position of the gripper, transforms the arc-shaped path in the two-dimensional plane into an arc-shaped path in a three-dimensional space using a transform matrix consisting of the position of the object and the current position and target position of the gripper, thereby automatically generating the shortest path of the manipulator.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: May 26, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong Do Choi, Kyung Shik Roh, Young Bo Shim
  • Patent number: 9043017
    Abstract: Provided are a home network system and a method for an autonomous mobile robot to travel along a shortest travel route. The home network system capable of home automation includes a plurality of beacons for sensing a user located in a cell coverage area and for transmitting resulting sensing information of the user; an autonomous mobile robot for executing travel to reach the user based on provided travel route information; and a home server for calculating a travel route along which the autonomous mobile robot can easily reach the user based on the sensing information of the user transmitted from the beacons, and for providing the travel route to the autonomous mobile robot. Therefore, the autonomous mobile robot may reach the user by the shortest travel route and thus reducing energy loss.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: May 26, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-Won Jung, Jong-Hee Kim, Seung-Gun Park
  • Patent number: 9043027
    Abstract: A method of controlling an operation of a robotically-controlled surgical instrument can include receiving a first input signal at a controller indicative of a user's readiness to actuate the surgical instrument to perform a surgical procedure, outputting an output signal from the controller to provide feedback to the user in response to the received first input signal, receiving a second input signal at the controller confirming the user's readiness to actuate the surgical instrument, outputting an actuation signal from the controller in response to receiving the second input signal, and actuating the surgical instrument to perform the surgical procedure based on the actuation signal.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: May 26, 2015
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Kevin Durant, Michael Hanuschik, Paul W. Mohr, Jack Hsia
  • Patent number: 9031692
    Abstract: The present disclosure discloses a cloud robot system, including: a cloud computing platform and at least one robot; wherein the cloud computing platform is used for receiving perform information sent by the at least one robot in the system; the perform information includes data, status and requests of the at least one robot; the cloud computing platform is used for processing the data and status, sending process results back to the at least one robot, and sending control instructions to corresponding robot according to the requests; the at least one robot is used for sending the perform information to the cloud computing platform, receiving process results from the cloud computing platform, and performing according to the control instructions sent from the cloud computing platform. By using the present disclosure, computing ability and storage capacity of the robots can be expanded unlimited, while the thinking ability and memory of the robots are improved.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: May 12, 2015
    Assignee: Shenzhen Institutes of Advanced Technology Chinese Academy of Science
    Inventor: Dingju Zhu
  • Publication number: 20150127152
    Abstract: A robot apparatus includes a gripping unit configured to grip a first component, a force sensor configured to detect, as detection values, a force and a moment acting on the gripping unit, a storing unit having stored therein contact states of the first component and a second component and transition information in association with each other, a selecting unit configured to discriminate, on the basis of the detection values, a contact state of the first component and the second component and select, on the basis of a result of the discrimination, the transition state stored in the storing unit, and a control unit configured to control the gripping unit on the basis of the transition information selected by the selecting unit.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 7, 2015
    Inventors: Takashi NAMMOTO, Kazuhiro KOSUGE, Kentaro KAMEI
  • Publication number: 20150127158
    Abstract: A robot includes a robot arm, a force sensor, and a control unit configured to control the operation of the robot art. The control unit initializes the force sensor while the robot arm is moving at uniform speed. It is preferable that the control unit initializes the force sensor while the robot arm is moving at the uniform speed and the amplitude of a detection value of the force sensor is smaller than a threshold.
    Type: Application
    Filed: October 31, 2014
    Publication date: May 7, 2015
    Inventor: Yasuhiro SHIMODAIRA
  • Publication number: 20150127157
    Abstract: A robot system according to an embodiment includes a sensor, an arm, and an instructor. The sensor is configured to detect an interface of a liquid. The arm includes a holding mechanism that holds a container containing the liquid. The instructor instructs the arm to cause the container to enter a sensing region of the sensor while holding the container, so as to cause the sensor to detect the interface.
    Type: Application
    Filed: October 29, 2014
    Publication date: May 7, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventor: Kenji MATSUKUMA
  • Patent number: 9026244
    Abstract: Embodiments of the invention include apparatuses and systems for determining the position of a carrier ring assembly supported by an end effector. In an embodiment, the position of the carrier ring assembly is determined by passing the carrier ring assembly through a plurality of through beam sensors. As the carrier ring passes through the sensors, a plurality of sensor transitions along points on the carrier ring assembly are detected. Each sensor transition indicates that one of the through beam sensors changed from an unblocked state to a blocked state, or changed from an blocked state to an unblocked state. The position of the end effector is recorded at each sensor transition and is associated with the sensor transition that caused the end effector position to be recorded. A position of the carrier ring assembly is then calculated from the plurality of sensor transitions and their associated end effector positions.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: May 5, 2015
    Assignee: Applied Materials, Inc.
    Inventors: John Mazzocco, Daniel Greenberg
  • Patent number: 9026302
    Abstract: A robot configured to navigate a surface, the robot comprising a movement mechanism; a logical map representing data about the surface and associating locations with one or more properties observed during navigation; an initialization module configured to establish an initial pose comprising an initial location and an initial orientation; a region covering module configured to cause the robot to move so as to cover a region; an edge-following module configured to cause the robot to follow unfollowed edges; a control module configured to invoke region covering on a first region defined at least in part based at least part of the initial pose, to invoke region covering on least one additional region, to invoke edge-following, and to invoke region covering cause the mapping module to mark followed edges as followed, and cause a third region covering on regions discovered during edge-following.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: May 5, 2015
    Assignee: iRobot Corporation
    Inventors: Michael S. Stout, Gabriel Francis Brisson, Enrico Di Bernardo, Paolo Pirjanian, Dhiraj Goel, James Philip Case, Michael Dooley
  • Publication number: 20150120046
    Abstract: A system and a method for providing a robot interaction service utilizing a location-based service of a mobile communication terminal. The system for providing a robot interaction service utilizing location information of a mobile communication terminal, includes: a mobile communication terminal for performing a mobile communication service through a wireless communication network, measuring a current location thereof and transmitting the measured location information to a predetermined robot terminal through a communication network; and a robot terminal for receiving the location information from the mobile communication terminal, determining a robot behavior based on the received location information, and controlling the operation thereof according to the determination result.
    Type: Application
    Filed: January 2, 2015
    Publication date: April 30, 2015
    Applicant: KT Corporation
    Inventors: Hyun-ho KIM, Jong-Cheol KIM
  • Publication number: 20150120053
    Abstract: A robot control device controls the operation of a robot including a base; a robot arm that has at least three links, at least three joint portions, and at least three drive sources; an inertia sensor; and at least three angle sensors. The robot control device includes a first coordinate system vibration calculation unit; a second coordinate system vibration calculation unit; a weighting unit; a third coordinate system vibration calculation unit; a correction value calculation unit that obtains correction values for correcting the respective drive commands of the drive sources based on vibration information in a third coordinate system, and the respective detected results of the angle sensors; and a drive source control unit that controls the operations of the drive sources based on the respective drive commands of the drive sources, the correction values, and the respective detected results of the angle sensors.
    Type: Application
    Filed: October 30, 2014
    Publication date: April 30, 2015
    Inventor: Masaki MOTOYOSHI
  • Publication number: 20150114236
    Abstract: A robotic cooking apparatus that can cook dishes using a computer recipe provided by a user and ingredients stored in it. Able to adjust the recipe based on user preference data. Cooking apparatus comprises of ingredient input section, cooking stations, pre-processing and post-processing station. Input section has trays and can be at room temperature or refrigerated for storing perishable ingredients. Robot head assembly is able to transfer ingredients, identify and measure as well as take inventory periodically. Cooking apparatus is connected to a network and can be operated remotely by a fixed or handheld device and monitor its operation remotely.
    Type: Application
    Filed: June 2, 2011
    Publication date: April 30, 2015
    Inventors: Shambhu Nath Roy, Riya Bhattacharya
  • Publication number: 20150114165
    Abstract: The present invention relates to a method and apparatus for limiting the contact force between a moving device and another object, using a parallel mechanism and torque limiters where the threshold force to activate the force limiting mechanism is not related to the configuration of the moving device or the location of the contact force relative to the activation point of the force limiting mechanism, and where the mechanism may be configured for one, two or three degrees of freedom. A counterbalance mechanism is also provided to counteract gravity load when the force limiting mechanism is configured for three degrees of freedom and responsive to contact forces including a vertical element. In particular, the invention relates to a method and apparatus for limiting the contact force between a moving robotic device and a contactable object.
    Type: Application
    Filed: October 25, 2013
    Publication date: April 30, 2015
    Applicants: Universite Laval, GM Global Technology Operations LLC
    Inventors: Nicolas Lauzier, Clement Gosselin, Dalong Gao, Martin Grenier, Robin Stevenson
  • Publication number: 20150120043
    Abstract: Methods and systems for facilitating interactions between a robot and user are provided. The system may include a robot and an electronic device communicatively coupled to the robot.
    Type: Application
    Filed: October 27, 2014
    Publication date: April 30, 2015
    Inventors: Ayanna Howard, LaVonda Brown, Hae Won Park
  • Patent number: 9020679
    Abstract: Systems, methods and devices for the automated delivery of goods form one to another using a robotic tug and accompanying cart. A computer within the tug or cart stores an electronic map of the building floor plan and intended paths for the tug to take when traversing from one location to the next. During the delivery, a variety of different sensors and scanners gather data that is used to avoid obstacles and/or adjust the movement of the tug in order to more closely follow the intended path. The system preferably includes both wired and wireless networks that allow one or more tugs to communicate with a tug base station, a primary network located at the site of the delivery and a remote host center that monitors the status and data collected by the tugs.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: April 28, 2015
    Assignee: Aethon, Inc.
    Inventors: Aldo Zini, Spencer Wayne Allen, Barry Mark Skirble, Henry F. Thorne, Stuart Fairley
  • Patent number: 9020636
    Abstract: The solar energy and solar farms are used to generate energy and reduce dependence on oil (or for environmental purposes). The maintenance and repairs in big farms become very difficult, expensive, and inefficient, using human technicians. Thus, here, we teach using the robots with various functions and components, in various settings, for various purposes, to improve operations in big (or hard-to-access) farms, to automate, save money, reduce human mistakes, increase efficiency, or scale the solutions to very large scales or areas.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: April 28, 2015
    Inventor: Saied Tadayon
  • Publication number: 20150112486
    Abstract: A bend sensor is used to determine force applied to a robotic arm. The force may be an external force applied to the arm, an internal actuation force, or both. In some aspects, a stiffening element is used to restore the arm to a minimum kinematic energy state. In other aspects, the stiffening element is eliminated, and the arm is fully actuated.
    Type: Application
    Filed: December 4, 2014
    Publication date: April 23, 2015
    Inventors: David Q. Larkin, Vincent Duindam
  • Publication number: 20150107915
    Abstract: A low profile stepper robot is described and claimed herein. The robot includes a plurality of foot assemblies. Each foot assembly includes a suction cup, a vacuum generator, and a valve, with the vacuum generator being operationally connected to the suction cup. A conduit connects a source of operational fluid flow to the vacuum generators, and the valves allow or prevent fluid flow to the vacuum generators. Actuators are positioned between the foot assemblies and the robot base. The actuators provide for linear and rotational displacement of the foot assemblies, allowing the robot to walk and turn along an inspection surface.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 23, 2015
    Inventors: S. William Glass, III, Bradley A. Thigpen, Robert A. Furter
  • Publication number: 20150105906
    Abstract: An autonomous mobile device, an autonomous movement system, and an autonomous movement method, each having an obstacle avoidance capability, are provided. The autonomous mobile device includes an avoidance pattern determination unit for determining the travel pattern of the local device according to the state of motion, relative to the autonomous movement device, of a mobile obstacle other than the autonomous movement device; and a travel controller for causing the autonomous movement device to travel according to the travel pattern determined by the avoidance pattern determination unit. One of avoidance patterns is selected in accordance with a relative velocity to a mobile obstacle.
    Type: Application
    Filed: April 26, 2012
    Publication date: April 16, 2015
    Inventors: Taishi Ueda, Ryosuke Nakamura, Azusa Amino
  • Patent number: 9004553
    Abstract: A robot bumper including a bumper body having a forward surface and a top surface angling away from the forward surface. The bumper body conforms to a shape of a received robot chassis. The robot bumper also includes a force absorbing layer disposed on the bumper body, a membrane switch layer comprising a plurality of electrical contacts arranged along the top surface of the bumper body, and a force transmission layer disposed between the force absorbing layer and the membrane switch layer. The force transmission layer includes a plurality of force transmitting elements configured to transmit force to the membrane switch layer.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: April 14, 2015
    Assignee: iRobot Corporation
    Inventors: Stephen A. Hickey, Andrew Pastore, Chikyung Won, Roger Dale Gamble, Andrew Beaulieu
  • Patent number: 9004838
    Abstract: An apparatus for characterizing a wafer comprising an aligner comprising a chuck for receiving and rotating the wafer, a sensor for detecting the position of the wafer as it is rotated, a first actuator for lowering and raising the wafer vertically, and a second actuator for moving the chuck horizontally; and a weighing scale comprising a weight sensor disposed proximate to the aligner, and a cantilevered arm extending laterally from the weight sensor over the chuck of the aligner, the cantilevered arm having a through hole surrounding the chuck. The chuck is vertically movable relative to the weighing scale from a first position in which the wafer is supported by the chuck to a second position in which the wafer is supported by the cantilevered arm of the weighing scale. A method for characterizing a wafer using the instant apparatus is also disclosed.
    Type: Grant
    Filed: March 31, 2012
    Date of Patent: April 14, 2015
    Assignee: Microtronic, Inc.
    Inventors: Reiner G. Fenske, David S. Denu
  • Patent number: 9004559
    Abstract: A compliant underactuated grasper includes a palm base and two fingers. Each of the fingers comprises: a proximal phalanx; a distal phalanx; a compliant flexure joint connecting the distal phalanx to the proximal phalanx; and a pin joint connecting the proximal phalanx to the palm base, the pin joint constraining angular movement of the proximal phalanx relative to the palm base to rotation about a pin pivot axis. The grasper further includes at least one actuator to move the fingers. The grasper has fewer actuators than degrees of freedom.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 14, 2015
    Assignee: iRobot Corporation
    Inventors: Mark Claffee, Nicholas Roy Corson
  • Publication number: 20150100157
    Abstract: A humanoid robot is provided, the robot being capable of holding a dialog with at least one user, the dialog using two modes of voice recognition, one open and the other closed, the closed mode being defined by a concept characterizing a dialog sequence. The dialog may also be influenced by events that are neither speech nor a text. The robot is capable of executing behaviors and generating expressions and emotions. It has the advantage of considerably reducing programming time and latency of execution of dialog sequences, providing a fluency and naturalness close to human dialogs.
    Type: Application
    Filed: April 3, 2013
    Publication date: April 9, 2015
    Inventors: David Houssin, Gwennael Gate