Sensing Device Patents (Class 901/46)

Cross-Reference Art Collections

Optical (Class 901/47)
  • Publication number: 20150100067
    Abstract: The present technology relates generally to systems and methods for computer-guided placement of bone implants. In some embodiments, for example, a method of computer-guided surgical insertion of an implant into a target bone includes imaging the target bone to obtain three-dimensional (3D) image data, and, based on the 3D image data, determining an entry point and trajectory for insertion of the implant. The method also includes mapping the 3D image data, the entry point, and the trajectory into a surgical field, followed by instructing a clinician to insert the implant into the target bone based on the determined entry point and trajectory.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 9, 2015
    Inventors: Peter R. Cavanagh, Ian Donaldson
  • Publication number: 20150100037
    Abstract: A system for providing animal maintenance includes a housing operable to accommodate an animal, an actuating arm coupled to the housing and to an attachment device, the attachment device is operable to perform one or more animal maintenance tasks, and the actuating arm is operable to apply the attachment device to the animal, a position sensor operable to determine the position of the animal relative to the position sensor, a restraint is operable to restrict the movement of the animal within the housing, and a processor communicatively coupled to the position sensor, the actuating arm, and the attachment device, the processor is operable to receive measurements from the position sensor and, in response to the received measurements, direct the actuating arm to apply the attachment device to the animal.
    Type: Application
    Filed: October 8, 2013
    Publication date: April 9, 2015
    Inventor: David R. Allsup
  • Publication number: 20150100158
    Abstract: In a running control method of a running apparatus, person moving direction and speed are estimated based on a person position history for predetermined time. It is decided whether contact with a person is likely to be made based on the estimation and running information about the running apparatus. When it is decided that the contact is likely to be made, a first route where the running apparatus avoids the person is generated for controlling running of the running apparatus therealong. It is decided whether the person has the intention to contact with the running apparatus based on the decision in the contact possibility deciding unit after the running along the first route. When it is decided that the person has the contact intention, a second route where the running apparatus approaches the person is generated for controlling the running of the running apparatus therealong.
    Type: Application
    Filed: December 12, 2014
    Publication date: April 9, 2015
    Inventors: Toru TANIGAWA, Jun OZAWA, Yumi WAKITA, Katsuyoshi YAMAGAMI, Eiichi NAITO
  • Patent number: 8996167
    Abstract: In accordance with various embodiments, a user interface embedded into a robot facilitates robot training via direct and intuitive physical interactions. In some embodiments, the user interface includes a wrist cuff that, when grasped by the user, switches the robot into zero-force gravity-compensated mode.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: March 31, 2015
    Assignee: Rethink Robotics, Inc.
    Inventors: Natan Linder, Rodney Brooks, Michael Sussman, Bruce Blumberg, Noelle Dye, Michael Caine, Elaine Y. Chen
  • Patent number: 8996175
    Abstract: Robots may manipulate objects based on sensor input about the objects and/or the environment in conjunction with data structures representing primitive tasks and, in some embodiments, objects and/or locations associated therewith. The data structures may be created by instantiating respective prototypes during training by a human trainer.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: March 31, 2015
    Assignee: Rethink Robotics, Inc.
    Inventors: Bruce Blumberg, Rodney Brooks, Christopher J. Buehler, Noelle Dye, Gerry Ens, Natan Linder, Michael Siracusa, Michael Sussman, Matthew M. Williamson
  • Patent number: 8996174
    Abstract: In accordance with various embodiments, a user interface embedded into a robot facilitates robot training via direct and intuitive physical interactions.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: March 31, 2015
    Assignee: Rethink Robotics, Inc.
    Inventors: Rodney Brooks, Bruce Blumberg, Noelle Dye, Paula Long
  • Publication number: 20150082582
    Abstract: A robotic zipper system for joining and separating zipper halves of a zipper tape. A chassis retains an actuator that drives a zipper slide geometry along the zipper tape to join or separate the zipper tape. A sensor can determine zipper slide position, and a control module can provide an electrical signal to the motor to move in forward or reverse. The actuator can have a motor that drives a gear system that mechanically engages zipper teeth. Teeth of the gear system can be out of phase to mesh with alternating gaps between the zipper teeth. The actuator can be removable relative to a zipper slide. Zipper slide geometry could be integrated into the chassis, such as in the form of a channel, potentially with a central post. A sensor could be positioned to detect the presence or absence of zipper teeth through an opening in a base plate.
    Type: Application
    Filed: September 22, 2014
    Publication date: March 26, 2015
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventor: Adam Whiton
  • Publication number: 20150081098
    Abstract: A method for manually guided adjustment of the pose of a manipulator arm of an industrial robot includes detecting a guidance force applied to the manipulator arm by an operator of the industrial robot, determining one of at least two degrees-of-freedom of a reference coordinate system as a selected freedom direction, wherein the selected freedom direction corresponds to the degree-of-freedom in which the guidance force has its greatest force vector component, and controlling the drives of the industrial robot using force control in such a manner that a pre-specified reference point associated with the manipulator arm is moved only in the selected freedom direction as a result of movement of the manipulator arm by an operator during a manually-guided adjustment of the pose of the manipulator arm.
    Type: Application
    Filed: September 19, 2014
    Publication date: March 19, 2015
    Inventor: Yevgen Kogan
  • Publication number: 20150081099
    Abstract: A robot arm temporarily stops when a contact detector detects contact. A holding motion selecting unit then selects one of continuously stopped motion, directionally limited motion, and directionally unlimited motion in accordance with information including one or both of a distance between the robot arm and a contacted object and force applied to the robot arm by a person. A motion controller causes the selected motion to achieve holding motion.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 19, 2015
    Inventors: Mayumi KOMATSU, Yasunao OKAZAKI
  • Publication number: 20150068349
    Abstract: A joint driving device includes: a reduction gear output shaft that transmits a torque to a second link; a transmission shaft that transmits reaction of the torque to a first link; a transmission shaft outer cylinder arranged on the outer circumference of the transmission shaft and connected to the transmission shaft; a reduction gear output shaft outer cylinder arranged in the outer circumference of the reduction gear output shaft and connected to the reduction gear output shaft; and a wire body arranged between the first link and the second link and including at least one of a wire and a pipe. The transmission shaft includes the motor frame as at least a part. The wire body is housed in a space between the transmission shaft outer cylinder and the transmission shaft, and a space between the reduction gear output shaft outer cylinder and the reduction gear output shaft.
    Type: Application
    Filed: September 9, 2014
    Publication date: March 12, 2015
    Inventor: Tomokazu HIRABAYASHI
  • Publication number: 20150059175
    Abstract: A system and method for automating an assembly process of threading a tube-nut onto a threaded connector. The system includes a robot having a force sensor and a tube-nut runner tool coupled to the robot and having a tool head with a rotatable socket therein. The method includes engaging the socket to the tube-nut under force control using the force signal from the force sensor. The tool controller causes the socket to rotate the tube-nut where the tool controller controls the torque and/or angle displacement of the tool head to tighten the tube-nut on the threaded connector. The method also includes disengaging the tool head from the tube-nut after the tube-nut is properly tightened onto the threaded connector under force control to ensure that the end member is properly disengaged from the tube-nut.
    Type: Application
    Filed: August 18, 2014
    Publication date: March 5, 2015
    Inventors: Muhammad E. Abdallah, Gary L. Villeneuve, Sreten Zakula, Srinivas Chilpuri, Michael S. Cochran
  • Publication number: 20150052703
    Abstract: A robot cleaner having a monitoring function and minimizing power consumption and/or securing communication efficiency and a method of controlling a robot cleaner are provided. The robot cleaner may include at least one sound obtaining device; at least one image obtaining device; and a controller configured to determine whether a sound obtained through the at least one sound obtaining device is abnormal, sense a direction in which an abnormal sound is generated, and obtain images in the direction in which the abnormal sound is generated. The robot cleaner may automatically recognize a surrounding situation, and when necessary, the robot cleaner may rotate and/or move in a corresponding direction and/or position to obtain images or transmit the obtained images to a remote terminal, thereby minimizing power consumption of the robot cleaner with limited power.
    Type: Application
    Filed: August 22, 2014
    Publication date: February 26, 2015
    Applicant: LG ELECTRONICS INC.
    Inventors: Haesoo LEE, Seunghoe CHOE, Kangyoul LEE, Weonho SAE, Minjung KANG
  • Patent number: 8965576
    Abstract: In accordance with various embodiments, a user-guidable robot appendage provides haptic feedback to the user.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: February 24, 2015
    Assignee: Rethink Robotics, Inc.
    Inventors: Elaine Y. Chen, Rodney Brooks, Christopher J. Buehler, Matthew M. Williamson, Bruce Blumberg, Noelle Dye, Joseph M. Romano, William A. Goodwin
  • Patent number: 8961094
    Abstract: The invention relates to a method and a device for aligning substrates (2) in an XY-plane. A polygonal, flat substrate (2), the substrate plane of which is parallel to the XY-plane or lies in the XY-plane, is aligned with respect to reference coordinates and a reference angular position in the XY-plane. A corner (12) of the substrate (2) is detected using image detecting means (9). In addition, the position coordinates of the substrate (2) are determined. Using evaluating means (10), the angular position of the corner (12) of the substrate (2) in the XY-plane is determined, and the position differences between the reference coordinates and the position coordinates as well as the angle difference between the reference angular position and the angular position of the substrate corner (12) are calculated. The substrate (2) is moved and/or rotated in the XY-plane according to the determined position difference or the angle difference.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: February 24, 2015
    Assignee: Singulus Technologies AG
    Inventors: Edgar RĂ¼th, Wolfgang Becker, Marjan Filipovic, Reiner Rohrmann
  • Publication number: 20150051732
    Abstract: The present invention relates to an assistance device with which a robotic arm (B) is to be provided, said robotic arm being controlled by an operator (H) and having a tool (m) at the end thereof, characterized in that it includes a control handle (1), which is mounted via a ball-and-socket joint (R3) so as to form an extension of the arm (B) while being offset relative to the tool (m), and a force sensor (4) which is coupled to the robot and ensures the continuous detection, from the handle (1), of the intentional forces of the operator for controlling both the direction and the force of the tool (m). The invention also relates to the collaborative robot provided with the device of the invention, and to the use thereof.
    Type: Application
    Filed: March 25, 2013
    Publication date: February 19, 2015
    Applicant: Robotiques 3 Dimensions RB3D
    Inventors: Serge Grygorowicz, Ludovic Surgot
  • Publication number: 20150051736
    Abstract: A bracket of a robot demonstrator for supporting a tablet computer is disclosed. The bracket includes a bar linkage assembly, a first clamping member pivoted with the bar linkage assembly, and a second clamping member positioned opposite to the first clamping member and pivoted with the bar linkage assembly. A distance between the first clamping member and the second clamping member can be adjusted via adjusting a length of the bar linkage assembly for clamping and supporting the tablet computer.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 19, 2015
    Inventors: SHAO-LONG MU, CHUN-TIAN FAN, CHI MING HSU
  • Publication number: 20150047471
    Abstract: A screw fastening device (10) includes a base part (11), an extended part (12) with one end (12a) which is attached to the base part in a pivotable manner, a tool part (13) which is fastened to another end (12) of the extended part and makes a screw which is engaged with its front end rotate, a pushing mechanism (15) which pushes the tool part against the screw (14) through the extended part in an axial direction of the screw, a guide part (16) which is fastened to the base part and has an arc shaped part, a torque generating part (17) which generates a torque which makes the extended part rotate along the arc shaped part in a fastening direction of the screw, and a first detection part (18a) which detects when a reaction force of a predetermined value or more acts against the torque generating part.
    Type: Application
    Filed: August 5, 2014
    Publication date: February 19, 2015
    Applicant: FANUC CORPORATION
    Inventor: Toshimichi Yoshinaga
  • Publication number: 20150051528
    Abstract: A high density actuator, comprising a housing assembly composed of a first housing element containing a motor stator and a second housing element containing a gear reduction mechanism, a rotational core positioned at the center of the housing assembly, the rotational core being composed of a motor rotor and a transmission input operatively connected to the motor rotor, a transmission output positioned between the transmission input and the housing assembly, the transmission output forming an actuator output, a torque transfer output operatively connected to the actuator output and a center shaft connected to the torque transfer output in its center and in rotational contact with the first housing element, the center shaft passing through the transmission output, rotational core and second housing element to ensure proper radial and axial alignment.
    Type: Application
    Filed: March 21, 2013
    Publication date: February 19, 2015
    Applicant: B-TEMIA INC.
    Inventors: Benoît Gilbert, Stéphane Bédard
  • Patent number: 8958911
    Abstract: A mobile robot including a robot body, a drive system supporting the robot body, and a controller in communication with the drive system. The robot also includes an actuator moving a portion of the robot body through a volume of space adjacent the mobile robot and a sensor pod in communication with the controller. The sensor pod includes a collar rotatably supported and having a curved wall formed at least partially as a surface of revolution about a vertical axis. The sensor pod also includes a volumetric point cloud sensor housed by the collar and observing the volume of space adjacent the robot from within the collar along an observation axis extending through the curved wall. A collar actuator rotates the collar and the volumetric point cloud sensor together about the collar axis.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: February 17, 2015
    Assignee: iRobot Corporation
    Inventors: Cheuk Wah Wong, Eben Rauhut, Brian C. Benson, Peter J. Lydon, Michael T. Rosenstein, Michael Halloran, Steven V. Shamlian, Chikyung Won, Mark Chiappetta, Justin H. Kearns, Orjeta Taka, Robert Todd Pack, Timothy S. Farlow, Jasper Fourways Vicenti
  • Patent number: 8950792
    Abstract: A robot bumper assembly includes a bumper body, a first sensor array, and a second sensor array. The first sensor array is disposed along and contoured to the periphery of a forward facing portion of the bumper body and senses contact with an external environment at positions along the contour of the periphery forward facing portion of the bumper body. The second sensor array is disposed along and contoured to the periphery of a top portion of the forward facing portion of the robot body. The top portion is angled, ramping up. The second sensor array senses contact with an external environment at positions along the periphery of the angled top portion of the bumper body.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 10, 2015
    Assignee: iRobot Corporation
    Inventors: Stephen A. Hickey, Andrew Pastore, Chikyung Won, Roger Dale Gamble, Andrew Beaulieu
  • Patent number: 8948916
    Abstract: A sensor relay control device generates feedback data based on sensor data including a plurality of components and being output by an external sensor installed at a portion of a joint of a robot and is connected to a robot control device that executes feedback control of the robot based on the feedback data. The sensor relay control device includes: a generating unit that imports sensor data output by the external sensor and performs coordinate conversion; a synchronizing unit that synchronizes the control data of each axis of the motors with a control cycle of the robot control device; and an outputting unit that outputs the control data of each axis of the motors synchronized with the control cycle of the robot control device to the robot control device as the feedback data.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: February 3, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventor: Takafumi Ishikawa
  • Publication number: 20150020374
    Abstract: An automatic assembling system, comprising: a robot performing an operation of inserting a first member into a second member; a force sensor for detecting an insertion force exerted on the first member by the robot; and a controller for controlling the insertion force with a closed-loop feedback control according to a difference between the insertion force detected by the force sensor and a predetermined insertion force, so that the insertion force is less than the predetermined insertion force to protect the first member and/or the second member from damage due to an overlarge insertion force. The present invention also is directed to a method for automatically assembling a product.
    Type: Application
    Filed: July 18, 2014
    Publication date: January 22, 2015
    Applicant: TYCO ELECTRONICS (SHANGHAI) CO. LTD.
    Inventors: Lvhai Hu, Dandan Zhang, Fengchun Xie, Robert Neil Shaddock
  • Publication number: 20150025681
    Abstract: Some embodiments of the invention include a robotic patient system including a computer system including a processor and a coupled sensor, and a control system configured to receive control data. The robotic patient system also includes a synthetic patient robot including a feature detector and action selector configured to actuate the robot based at least in part on the control data. Some further embodiments of the invention include a computer-implemented method of providing a robotic synthetic patient by providing a synthetic patient robot, configuring a control system to receive control data, extracting and converting a feature from the control data, and converting to an actuator command to move the robotic patient system. Some embodiments include a robot including a computer system including a processor, a non-transitory computer-readable storage medium, and a control system configured to be coupled to a source of control data to control the robot substantially autonomously.
    Type: Application
    Filed: July 21, 2014
    Publication date: January 22, 2015
    Inventor: Laurel Dawn Riek
  • Patent number: 8936290
    Abstract: A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: January 20, 2015
    Assignee: Sandia Corporation
    Inventors: Curt Michael Salisbury, Morgan Quigley
  • Patent number: 8936289
    Abstract: A plurality of interconnected phalanges form robotic fingers configured to grasp an object. The phalanges interact with a resilient compliant element for adjustable resilient cushioning of movement of the phalanges.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: January 20, 2015
    Assignee: Telefactor Robotics LLC
    Inventors: Matthew V. Kozlowski, Stuart D. Harshbarger, Matthew S. Johannes
  • Publication number: 20150019013
    Abstract: A displacement measuring cell may be used to measure linear and/or angular displacement. The displacement measuring cell may include movable and stationary electrodes in a conductive fluid. Electrical property measurements may be used to determine how far the movable electrode has moved relative to the stationary electrode. The displacement measuring cell may include pistons and/or flexible walls. The displacement measuring cell may be used in a touch-sensitive robotic gripper. The touch-sensitive robotic gripper may include a plurality of displacement measuring cells mechanically in series and/or parallel. The touch-sensitive robotic gripper may be include a processor and/or memory configured to identify objects based on displacement measurements and/or other measurements. The processor may determine how to manipulate the object based on its identity.
    Type: Application
    Filed: September 12, 2014
    Publication date: January 15, 2015
    Inventors: Jeffrey A. Rose, James Adam Rose, Stephen D. Rose, Raymond Cooper, Jeffrey John Sweda
  • Publication number: 20150019468
    Abstract: Methods and systems for thermodynamic computing based on the attractor dynamics of volatile dissipative electronics attempting to maximize circuit power consumption. A general model of memristive devices based on collections of metastable switches, adaptive synaptic weights can be formed from a differential pair of memristors and modified according to anti-hebbian and hebbian plasticity. The arrays of synaptic weights can be employed to build a neural node circuit with attractor states that are shown to be logic functions forming a computationally complete set. By configuring the attractor states of the computational building block in different ways, high-level machine learning functions can be demonstrated for real-world applications.
    Type: Application
    Filed: July 3, 2014
    Publication date: January 15, 2015
    Inventors: Alex Nugent, Timothy Molter
  • Patent number: 8935003
    Abstract: In a minimally invasive surgical system, a hand tracking system tracks a location of a sensor element mounted on part of a human hand. A system control parameter is generated based on the location of the part of the human hand. Operation of the minimally invasive surgical system is controlled using the system control parameter. Thus, the minimally invasive surgical system includes a hand tracking system. The hand tracking system tracks a location of part of a human hand. A controller coupled to the hand tracking system converts the location to a system control parameter, and injects into the minimally invasive surgical system a command based on the system control parameter.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: January 13, 2015
    Assignee: Intuitive Surgical Operations
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Paul E. Lilagan, Tao Zhao
  • Patent number: 8935006
    Abstract: A mobile robot guest for interacting with a human resident performs a room-traversing search procedure prior to interacting with the resident, and may verbally query whether the resident being sought is present. Upon finding the resident, the mobile robot may facilitate a teleconferencing session with a remote third party, or interact with the resident in a number of ways. For example, the robot may carry on a dialog with the resident, reinforce compliance with medication or other schedules, etc. In addition, the robot incorporates safety features for preventing collisions with the resident; and the robot may audibly announce and/or visibly indicate its presence in order to avoid becoming a dangerous obstacle. Furthermore, the mobile robot behaves in accordance with an integral privacy policy, such that any sensor recording or transmission must be approved by the resident.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: January 13, 2015
    Assignee: iRobot Corporation
    Inventors: Clara Vu, Matthew Cross, Tim Bickmore, Amanda Gruber, Tony L. Campbell
  • Patent number: 8930023
    Abstract: A robot having a signal sensor configured to measure a signal, a motion sensor configured to measure a relative change in pose, a local correlation component configured to correlate the signal with the position and/or orientation of the robot in a local region including the robot's current position, and a localization component configured to apply a filter to estimate the position and optionally the orientation of the robot based at least on a location reported by the motion sensor, a signal detected by the signal sensor, and the signal predicted by the local correlation component. The local correlation component and/or the localization component may take into account rotational variability of the signal sensor and other parameters related to time and pose dependent variability in how the signal and motion sensor perform. Each estimated pose may be used to formulate new or updated navigational or operational instructions for the robot.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: January 6, 2015
    Assignee: iRobot Corporation
    Inventors: Steffen Gutmann, Ethan Eade, Philip Fong, Mario Munich
  • Publication number: 20150000419
    Abstract: A sensor device includes a sensor element which is formed by laminating a piezoelectric substance and an electrode, a first case and a second case which house the sensor element therein, and a pressing portion which presses the sensor element in the lamination direction of the piezoelectric substance and the electrode via the first and second cases.
    Type: Application
    Filed: September 19, 2014
    Publication date: January 1, 2015
    Inventors: Kazuhiro TSUCHIYA, Toshiyuki KAMIYA
  • Patent number: 8924021
    Abstract: A control system and method generate torque comments for motion of a target system in response to observations of a source system. Constraints and balance control may be provided for more accurate representation of the motion as replicated by the target system.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: December 30, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Behzad Dariush, Bing Jian
  • Patent number: 8924020
    Abstract: An apparatus for controlling a robot capable of controlling the motion of the arm of the robot, and a control method thereof, the apparatus including an image obtaining unit configured to obtain a three-dimensional image of a user, a driving unit configured to drive an arm of the robot that is composed of a plurality of segments, and a control unit configured to generate a user model that corresponds to a motion of the joint of the user based on the three-dimensional image, to generate a target model having a length of the segment that varies based on the user model, and to allow the arm of the robot to be driven based on the target model.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: December 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kyung Rock Kim
  • Patent number: 8919844
    Abstract: A gripper assembly includes an actuator, at least one gripper jaw, a sensor member and at least one position sensing device. The actuator has a first actuator portion, a second actuator portion, and a fixed portion. The first actuator portion and the second actuator portion are moveable in unison between a first position and a second position. The at least one gripper jaw is disposed forward of the fixed portion of the actuator and is moveable with respect to the fixed portion of the actuator in response to movement of the first actuator portion. The sensor member is disposed rearward of the fixed portion of the actuator and is coupled to the second actuator portion for movement therewith. The position sensing device is disposed rearward of the fixed portion of the actuator and is operable to detect proximity of the sensor member.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: December 30, 2014
    Assignee: Norgren Automation Solutions, LLC
    Inventors: Shawn Paul Mascorro, Richard Hamann, Mark A. Holcomb
  • Publication number: 20140379127
    Abstract: A self-propelled cleaner (1), i.e., a self-propelled electronic device, includes a temperature measurement unit (63) that measures an ambient temperature during self-propelled operation, a temperature decision unit (521) that decides whether the measured ambient temperature is equal to or more than a set value, and an abnormal temperature notification unit (522) that externally reports abnormal temperature information indicating that the measured ambient temperature is equal to or more than the set value if the measured ambient temperature is decided to be equal to or more than the set value.
    Type: Application
    Filed: December 25, 2012
    Publication date: December 25, 2014
    Inventors: Masanori Tsuboi, Masashi Matsumoto, Mami Yatake
  • Patent number: 8918212
    Abstract: A bend sensor is used to determine force applied to a robotic arm. The force may be an external force applied to the arm, an internal actuation force, or both. In some aspects, a stiffening element is used to restore the arm to a minimum kinematic energy state. In other aspects, the stiffening element is eliminated, and the arm is fully actuated.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: December 23, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: David Q. Larkin, Vincent Duindam
  • Patent number: 8915527
    Abstract: Before chuck 20 is opened, coil spring 22 is compressed, and coil spring 22 applies downward force to holding nails 24. Accordingly, when the chuck 20 is opened, resultant force that opens the chuck 20 and the restoring force of the coil spring 22 causes the holding nails 24 to automatically move in oblique downward directions. As a result, the holding nails 24 move to positions that are laterally close to the holding target workpiece 26a. At this time, when other workpieces 26b and 26c neighbor the holding target workpiece 26a, the holding nails 24 can move the neighboring workpieces 26b and 26c from the workpiece 26a so as to flick away the neighboring workpieces 26b and 26c.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: December 23, 2014
    Assignee: Fanuc Corporation
    Inventor: Hideyuki Watanabe
  • Publication number: 20140371762
    Abstract: The various embodiments herein relate to robotic surgical systems and devices that use force and/or torque sensors to measure forces applied at various components of the system or device. Certain implementations include robotic surgical devices having one or more force/torque sensors that detect or measure one or more forces applied at or on one or more arms. Other embodiments relate to systems having a robotic surgical device that has one or more sensors and an external controller that has one or more motors such that the sensors transmit information that is used at the controller to actuate the motors to provide haptic feedback to a user.
    Type: Application
    Filed: March 14, 2014
    Publication date: December 18, 2014
    Applicant: Board of Regents of the University of Nebraska
    Inventors: Shane Farritor, Thomas Frederick, Kearney Lackas, Joe Bartels, Jacob Greenburg
  • Publication number: 20140371908
    Abstract: A robot includes an angular velocity sensor that detects the vibration of a robot. A control device allows the robot to perform a trial operation and acquires the measurement result measured by the angular velocity sensor during the trial operation as vibration information and analyzes the acquired vibration information based on maker evaluating information that is stored in a database. In the maker evaluating information, vibration information and the operating speed appropriate to the installation situation of the robot at which the vibration information is measured are associated with each other. Then, the robot is operated at an operating speed selected based on the analysis result of the vibration information.
    Type: Application
    Filed: September 3, 2014
    Publication date: December 18, 2014
    Inventor: Daisuke KIRIHARA
  • Publication number: 20140366646
    Abstract: A force detector includes a first substrate, a second substrate, a circuit board provided between the first substrate and the second substrate, and an element mounted on the circuit board and outputting a signal in response to an external force, wherein a hole is formed in the circuit board at a location where the element is placed, and a first convex part inserted into the hole and protruding toward the element is provided on the first substrate. Further, the element is placed within a periphery of the first convex part as seen from a direction perpendicular to the first substrate.
    Type: Application
    Filed: March 7, 2014
    Publication date: December 18, 2014
    Applicant: Seiko Epson Corporation
    Inventors: Akira Matsuzawa, Hiroki Kawai, Toshiyuki Kamiya
  • Publication number: 20140366292
    Abstract: A robot cleaner and a control method thereof may judge whether or not water is received in the robot cleaner performing wet cleaning. The robot cleaner includes a main body, moving units, a cleaning unit mounted on the main body and contacting a floor surface to perform cleaning, a water supply unit supplying water to the cleaning unit, and a sensing unit provided on at least a portion of the water supply unit to sense whether or not there is water within the water supply unit. The sensing unit includes a housing, a transmission part radiating electromagnetic waves, a reception part receiving the electromagnetic waves radiated by the transmission part, and a stepped part provided on at least a portion of the housing along a moving path of the electromagnetic waves radiated by the transmission part and received by the reception part.
    Type: Application
    Filed: June 16, 2014
    Publication date: December 18, 2014
    Inventors: Jae Young JUNG, Byoung ln LEE, Sang Hwa CHOI, Dong Won KIM, Sang Sik YOON, Sahng Jin LEE
  • Patent number: 8909374
    Abstract: A robot arm includes a grip part which is structured to be separated from an end effector attached to the robot arm. When the grip part is gripped by the user and shifted, the robot arm shifts tracking the grip part. Further, the grip part includes contact sensors, and a tracking control method is switched according to the value of the contact sensors.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: December 9, 2014
    Assignee: Panasonic Corporation
    Inventors: Yudai Fudaba, Masaki Yamamoto, Yuko Tsusaka, Taichi Sato
  • Publication number: 20140358283
    Abstract: An arm drive mechanism which rotates an arm, an angle sensor which detects a rotation angle of the arm drive mechanism and outputs angle information, an angular velocity sensor which is attached to the arm, detects angular velocity acting on the arm and outputs angular velocity information, a control command generating unit which outputs a control command value prescribing a rotational operation of the arm, a gain adjusting unit which incrementally or decrementally changes and thus adjusts a gain of the angular velocity information, and an arm operation control unit which controls an operation of the arm based on the control command value, the angle information and the gain-adjusted angular velocity information, are provided.
    Type: Application
    Filed: August 15, 2014
    Publication date: December 4, 2014
    Inventors: Masaki MOTOYOSHI, Tomokazu HIRABAYASHI
  • Publication number: 20140358282
    Abstract: A robot system includes a robot, an operation control device, an impulse calculation device, and a first detection device. The robot includes an end effector and a force sensor. The force sensor is configured to measure a force applied to the end effector. The operation control device is configured to control the robot to perform predetermined work. The impulse calculation device is configured to calculate an impulse applied to the end effector based on a measurement value measured by the force sensor while the robot is performing the predetermined work. The first detection device is configured to generate detection information when the impulse exceeds a threshold.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 4, 2014
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Tetsuro IZUMI, Ryoichi NAGAI, Yukio HASHIGUCHI
  • Patent number: 8899647
    Abstract: A robot hand moved by a robot to grip an object to be gripped includes a plurality of bar-like placing sections on which the object to be gripped is placed, a plurality of plate-like pressing sections paired with the plurality of placing sections and configured to press side surfaces of the object to be gripped, a space adjusting section configured to move the plurality of pressing sections to bring the pressing sections into contact with a plurality of contact sections, a first strain gauge configured to detect a distance between the placing section and the pressing section and an angle of the pressing section with respect to the placing section, and a second strain gauge configured to detect a distance between the placing section and the pressing section and an angle of the pressing section with respect to the placing section.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: December 2, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Masahiro Shiomi
  • Patent number: 8903550
    Abstract: A robot gripper is provided comprising two robot arms, upper contact parts, and lower contact parts disposed at the ends of each of the two robot arms. The upper and lower contact parts are in contact with a top and a bottom of an article when gripping the article, The upper and lower contact parts are semispherical shaped and have predetermined radii. Sensor units are mounted on the upper contact parts and the lower contact parts. The sensor units measure vertical or horizontal forces applied to the upper contact parts or the lower contact parts when gripping the article. A control unit configured to determine whether the center of gravity of the article is located at a center position between the ends of the arms using vertical and horizontal distances between the ends of the arms and vertical components of the forces measured by the sensor units when gripping the article is provided.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: December 2, 2014
    Assignee: Hyundai Motor Company
    Inventors: Seok Won Lee, Woo Sung Yang
  • Publication number: 20140350725
    Abstract: An intelligent mobile robot having a robot base controller and an onboard navigation system that, in response to receiving a job assignment specifying a job location that is associated with one or more job operations, activates the onboard navigation system to automatically determine a path the mobile robot should use to drive to the job location, automatically determines that using an initially-selected path could cause the mobile robot to run into stationary or non-stationary obstacles, such as people or other mobile robots, in the physical environment, automatically determines a new path to avoid the stationary and non-stationary obstacles, and automatically drives the mobile robot to the job location using the new path, thereby avoiding contact or collisions with those obstacles. After the mobile robot arrives at the job location, it automatically performs said one or more job operations associated with that job location.
    Type: Application
    Filed: January 25, 2013
    Publication date: November 27, 2014
    Applicant: ADEPT TECHNOLOGY, INC.
    Inventors: Matthew LaFary, Matthew Vestal, George V. Paul
  • Publication number: 20140350713
    Abstract: A substrate transfer robot includes a hand and a controller. The hand includes at least one detector configured to detect an arrangement state of a substrate in a substrate storage. The controller is configured to control the at least one detector to detect the arrangement state of the substrate in the substrate storage with the hand inclined in plan view toward a rotation center of the substrate transfer robot relative to a substrate storage center line. The substrate storage center line is in a direction perpendicular to a front surface of the substrate storage.
    Type: Application
    Filed: May 21, 2014
    Publication date: November 27, 2014
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventor: Yoshiki KlMURA
  • Patent number: 8897947
    Abstract: An autonomous mobile device that moves while autonomously avoiding zones into which entry should be avoided even if no obstacle exists therein includes a laser range finder that acquires peripheral obstacle information, a storage unit that stores an environment map that shows an obstacle zone where an obstacle exists, and a no-entry zone map which shows a no-entry zone into which entry is prohibited, a self-location estimation unit that estimates the self-location of a host device by using the obstacle information acquired by the laser range finder and the environment map, and a travel control unit that controls the host device to autonomously travel to the destination by avoiding the obstacle zone and the no-entry zone based on the estimated self-location, the environment map, and the no-entry zone map.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: November 25, 2014
    Assignee: Murata Machinery, Ltd.
    Inventors: Tsuyoshi Nakano, Shoji Tanaka
  • Patent number: 8897906
    Abstract: A vacuum processing apparatus includes a robot connected to a vacuum container to carry a wafer on one of its two arms to or from a processing chamber; a unit to detect an amount of deviation of the wafer from a predetermined wafer mounting position on the arm that may occur when the robot carries the wafer into or out of the processing chamber; and an adjusting device to adjust the operation of the robot based on the detected amount of deviation. The adjusting device adjusts the robot operation based on the result of a teaching operation performed in advance. After being subjected to the initial teaching operation, the robot again undergoes a second teaching operation according to the information on the amount of wafer position deviation that is detected by moving the wafer in a predetermined transfer pattern, before the wafer processing is performed.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: November 25, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Tomohiro Ohashi, Akitaka Makino, Hiroho Kitada, Hideki Kihara