Heating And Cooling Patents (Class 95/115)
  • Patent number: 5302188
    Abstract: Removal of NO.sub.x and SO.sub.x from flue gas utilizing a transport line adsorber through which sorbent is transported by pressurized flue gas to cause the sorbent to adsorb NO.sub.x and SO.sub.x from the flue gas while the flue gas is transporting the sorbent through the transport line adsorber A plurality of interconnected cyclones is utilized to contact sorbent saturated with NO.sub.x and SO.sub.x removed from the flue gas with a heated gas to heat the sorbent and remove the NO.sub.x from the sorbent and separate the sorbent and the heated gas to produce an off stream of heated gas carrying the removed NO.sub.x away; the heated gas and gravity combine to pass the sorbent through the plurality of cyclones and which cyclones are positioned vertically and successively downwardly with respect to each other. A plurality of interconnected cyclones is also utilized to contact heated sorbent having the NO.sub.x and SO.sub.
    Type: Grant
    Filed: February 16, 1993
    Date of Patent: April 12, 1994
    Assignee: Noxso Corporation
    Inventors: Lewis G. Neal, Warren Ma
  • Patent number: 5298054
    Abstract: A pressure swing and temperature swing adsorption system is disclosed which continuously purges contaminants such as nuclear, biological and chemical warfare agents from intake air and provides cool clean air to the crew compartment of a vehicle by progressively directing contaminated air through a first adsorption bed to clean the air, while simultaneously directing hot exhaust gases at about 600.degree. F. through a second adsorption bed for purging contaminants therefrom, while simultaneously cooling a third adsorption bed for enhancing adsorption of contaminants in the purging bed upon repeating the cycles of operation.
    Type: Grant
    Filed: November 2, 1992
    Date of Patent: March 29, 1994
    Assignee: FMC Corporation
    Inventor: Ram L. Malik
  • Patent number: 5281257
    Abstract: A vapor phase adsorption system employing an adsorbent for removing a volatile organic compound from an air stream to produce a purified air effluent in which the adsorbent first adsorbs the compound and is then regenerated by raising the temperature of the adsorbent to a maximum desorption temperature, which employs an improvement which comprises an unloading compound pre-adsorbed on the adsorbent, wherein the unloading compound is an organic compound having a boiling point greater than that of the volatile organic compound and having an equilibrium loading capacity on the adsorbent at the maximum desorption temperature greater than the equilibrium loading capacity of the volatile organic compound.
    Type: Grant
    Filed: December 11, 1992
    Date of Patent: January 25, 1994
    Assignee: Purus Inc.
    Inventor: James M. Harris
  • Patent number: 5271762
    Abstract: Adsorbers used to dry air frequently contain 4A or 13X molecular sieve zeolites, which are intermittently reactivated by thermal regeneration. When the air pressure in a thermally regenerated adsorber is increased, such as during start-up, after adsorbent reloading, after apparatus repair, maintenance or inspection, or after repressurization following thermal regeneration, nitrogen adsorbs preferentially relative to oxygen in activated 4A and 13X molecular sieve zeolites. This produces an oxygen-enriched, high pressure gas within the adsorber vessel which emerges immediately after the adsorber is brought on line. The oxygen-enriched, high pressure gas can cause fires, explosions, and other deleterious effects in and downstream of such adsorber vessels. This invention provides thermally regenerated air driers and air drying processes using adsorbent compositions that do not adsorb nitrogen preferentially to oxygen.
    Type: Grant
    Filed: September 29, 1992
    Date of Patent: December 21, 1993
    Inventors: Gregory R. Schoofs, Richard J. Schoofs
  • Patent number: 5238469
    Abstract: The invention relates generally to a gas purification system for the purification of noble gasses and nitrogen. An improved method of purification generally includes the following steps: (a) heating an impure gas; (b) contacting the impure gas with an impurity sorbing material to produce a purified gas; (c) cooling the purified gas to a temperature less than about 100.degree. C.; and (d) contacting the purified gas with a hydrogen sorbing gas to remove residual hydrogen. The system includes an improved heat exchange apparatus for cooling the purified gas and a low temperature hydrogen sorption apparatus.
    Type: Grant
    Filed: April 2, 1992
    Date of Patent: August 24, 1993
    Assignee: SAES Pure Gas, Inc.
    Inventors: Jeffrey L. Briesacher, Charles H. Applegarth, D'Arcy H. Lorimer