Carbon Dioxide Sorbed Patents (Class 95/139)
  • Patent number: 8557027
    Abstract: This disclosure involves an adsorption-desorption material, e.g., crosslinked epoxy-amine material having an Mw from about 500 to about 1×106, a total pore volume from about 0.2 cc/g to about 2.0 cc/g, and a CO2 adsorption capacity of at least about 0.2 millimoles CO2 per gram of crosslinked material, and/or linear epoxy-amine material having an Mw from about 160 to about 1×106, a total pore volume from about 0.2 cc/g to about 2.0 cc/g, and a CO2 adsorption capacity of at least about 0.2 millimoles CO2 per gram of linear material. This disclosure also involves processes for preparing the crosslinked epoxy-amine materials and linear epoxy-amine materials, as well as selective removal of CO2 and/or other acid gases from a gaseous stream using the epoxy-amine materials.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: October 15, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Dennis G. Peiffer, David C. Calabro, Quanchang Li, Mobae Afeworki, Stephen M. Cundy
  • Patent number: 8551229
    Abstract: Hydrogen sulfide is removed from a hydrogen rich gas stream using adsorbents having a low loss of carbon dioxide adsorption capacity upon sulfur loading including high purity silica gels, titania or highly cross-linked, non-chemically reactive resins. The adsorbents may be used to adsorb both carbon dioxide and hydrogen sulfide, or may be used as a guard bed upstream of a separate carbon dioxide adsorbent.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: October 8, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Jeffrey Raymond Hufton, Timothy Christopher Golden, Robin Joyce Maliszewskyj, Edward Landis Weist, Jr., Robert Quinn, Erin Marie Sorensen
  • Patent number: 8551215
    Abstract: A nitrogen-flush scrubber system for a controlled atmosphere room in which the amount of nitrogen required to flush the regenerated scrubber beds is significantly reduced. The present invention provides a dual-bed scrubber system in which low oxygen air salvaged from the active scrubber bed is used to flush high oxygen air from the regenerated scrubber bed prior to nitrogen flush. The scrubber system may include two scrubber beds that are used alternately to scrub air from the CA room. One scrubber bed is used as an active scrubber bed to remove carbon dioxide from the air. The inactive scrubber bed may be regenerated while it is inactive. When the active scrubber bed becomes sufficiently saturated, the control system may switch the active scrubber bed, using the regenerated bed as the active scrubber bed and allowing the saturated bed to be regenerated.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: October 8, 2013
    Inventor: James C. Schaefer
  • Patent number: 8552246
    Abstract: ETS-10 titanosilicate materials selectively adsorb carbon dioxide from gaseous mixtures containing carbon dioxide and light paraffins such as methane and ethane.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: October 8, 2013
    Assignee: The Governors of the University of Alberta
    Inventors: Steven M. Kuznicki, Alejandro Anson, Christopher C. H. Lin, Patricio S. Herrera
  • Patent number: 8551232
    Abstract: Disclosed is a dry carbon dioxide capture apparatus with improved carbon dioxide capture efficiency through preventing gas backflows into vertical transport lines. The dry CO2 capture apparatus includes a capture reactor having a capture buffer chamber on the bottom side, a capture diffusion plate on top of the capture buffer chamber, and adsorbent particles in a space above the capture diffusion plate; a first separator connected to the capture reactor through a vertical transport line; a regenerator having a regeneration buffer chamber on the bottom side, a regenerating diffusion plate on top of the regeneration buffer chamber, and adsorbent particles in a space above the regenerating diffusion plate; a second separator connected to the regenerator through a gas separation line; and a second particle transfer line connected to the regenerator at one end and connected to the capture reactor at the other end.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: October 8, 2013
    Assignee: Korea Institute of Energy Research
    Inventors: Chang-Keun Yi, Gyong-Tae Jin, Do-Won Sun, Sung-Ho Jo, Jae-Hyeon Park, Dal-Hee Bae, Ho-Jung Ryu, Young-Cheol Park, Seung-Yong Lee, Jong-Ho Moon
  • Publication number: 20130259792
    Abstract: A method is provided for forming a zeolitic imidazolate framework composition using at least one reactant that is relatively insoluble in the reaction medium. Also provided herein is a material made according to the method, designated either as EMM-19 or as EMM-19*, and a method of using same to adsorb and/or separate gases, such as carbon dioxide.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 3, 2013
    Applicant: ExxonMobil Research & Engineering Company
    Inventors: Simon Christopher Weston, Mobae Afeworki, Zheng Ni, John Zengel, David Lawrence Stern
  • Publication number: 20130255597
    Abstract: A system for producing carbon dioxide including a collection subsystem configured to collect a process gas, the process gas including a hydrocarbon, a combustion subsystem configured to combust the hydrocarbon in the process gas and output a gaseous combustion effluent, wherein the gaseous combustion effluent includes carbon dioxide and water, and a separation subsystem configured to separate the carbon dioxide from the gaseous combustion effluent.
    Type: Application
    Filed: February 14, 2013
    Publication date: October 3, 2013
    Applicant: The Boeing Company
    Inventors: John C. Hall, D. Anthony Galasso, Jon A. Magnuson
  • Patent number: 8545781
    Abstract: The carbon dioxide adsorbent composition relates to a material that will adsorb carbon dioxide gas from the atmosphere and that is made by the treatment of oil fly ash with ammonium hydroxide. In order to make the carbon dioxide adsorbent, oil fly ash is first mixed with ammonium hydroxide. This mixture is then refluxed and cooled. Additional ammonium hydroxide is added to the cooled mixture of oil fly ash and ammonium hydroxide to form a secondary mixture. This forms an amine-functionalized fly ash composition, which is then filtered from the secondary mixture to be used as a carbon dioxide adsorbent composition. The carbon dioxide adsorbent composition is then dried and may be used as a carbon dioxide adsorbent for gas streams, such as flues and exhaust systems, containing carbon dioxide.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: October 1, 2013
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Ali Lawan Yaumi, Reyad Awwad Khalaf Shawabkeh, Ibnelwaleed Ali Hussein
  • Publication number: 20130247757
    Abstract: An adsorbent for carbon dioxide may include a structure that includes composite metal oxide including a first metal (M1) and a second metal (M2) linked through oxygen (0). The first metal (M1) may be selected from an alkali metal, an alkaline-earth metal, and a combination thereof. The second metal (M2) may have a trivalent oxidation number or greater. The composite metal oxide may include mesopores inside or in the surface thereof. The adsorbent may be included in a capture module for carbon dioxide. A method of reducing emissions may include adsorbing carbon dioxide using the adsorbent for carbon dioxide.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 26, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyun Chul LEE, Jeong Gil SEO, Soon Chul KWON, Hyuk Jae KWON
  • Patent number: 8540802
    Abstract: The disclosure relates generally to a gas-separation system for separating one or more components from a multi-component gas using Zeolitic imidazolate or imidazolate-derived framework.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: September 24, 2013
    Assignee: The Regents of the University of California
    Inventors: Omar M. Yaghi, Hideki Hayashi, Rahul Banerjee
  • Patent number: 8535417
    Abstract: Carbon dioxide-containing gas such as flue gas and a carbon dioxide-rich stream are compressed and the combined streams are then treated to desorb moisture onto adsorbent beds and then subjected to subambient-temperature processing to produce a carbon dioxide product stream and a vent stream. The vent stream is treated to produce a carbon dioxide-depleted stream which can be used to desorb moisture from the beds, and a carbon dioxide-rich stream which is combined with the carbon dioxide-containing gas.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: September 17, 2013
    Assignee: Praxair Technology, Inc.
    Inventor: Minish Mahendra Shah
  • Patent number: 8518264
    Abstract: A method comprising (i) providing a metal organic framework formed by AlIII ions to which fumarate ions are coordinated to produce a porous framework structure, (ii) bringing a substance into contact with the metal organic framework such that the substance is uptaken by the porous metal organic framework to provide storage of or controlled release of, the substance.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: August 27, 2013
    Assignee: BASF SE
    Inventors: Christoph Kiener, Ulrich Müller, Markus Schubert
  • Publication number: 20130213229
    Abstract: An acid-gas sorbent comprising an amine-composite. The present composite may comprise a first component comprising an amine compound at a concentration of from about 1 wt % to about 75 wt %; a second component comprising a hydrophilic polymer and/or a pre-polymer compound at a concentration of from about 1 wt % to about 30 wt %; and a third component comprising a cross-linking agent, and/or a coupling agent at a concentration of from about 0.01 wt % to about 30 wt %.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 22, 2013
    Applicant: ARCHON TECHNOLOGIES LTD.
    Inventors: AHMED M. SHAHIN, CONRAD AYASSE
  • Publication number: 20130210620
    Abstract: Porous metal organic frameworks formed by AlIII ions to which fumarate ions are coordinated to produce a framework structure; shaped bodies comprising such porous metal organic frameworks, and also the preparation and use thereof for the uptake of a substance for the purposes of its storage, controlled release, separation, chemical reaction or as support.
    Type: Application
    Filed: February 5, 2013
    Publication date: August 15, 2013
    Applicant: BASF SE
    Inventor: BASF SE
  • Patent number: 8506681
    Abstract: An apparatus for cleaning air includes a housing having a chamber. The scrubber includes a carbon dioxide scrubber layer disposed in the chamber which claims carbon dioxide from air passing through the scrubber layer. The scrubber includes a forcing element which draws the air into the scrubber and forces the air through the scrubber layer which is powered without any electricity. A system for supporting a breathable environment for users. The system includes an enclosure. The system includes an air scrubber disposed in the enclosure which cleans carbon dioxide from air in the enclosure that is powered without any electricity. A method for cleaning carbon dioxide from air. The method includes the steps of flowing compressed air through a fluid driven motor to operate the motor without any electricity. There is the step of rotating a fan with the operating motor.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: August 13, 2013
    Assignee: Strata Products Worldwide, LLC
    Inventors: Gregory Paton-Ash, Michael Bishoff, Donald Beitzel, John J. Reinmann, Jr.
  • Patent number: 8506916
    Abstract: The disclosure provides methods and systems for sequestering and/or reducing sulfur oxides, nitrogen oxides and/or carbon dioxide present in industrial effluent fluid streams. A solid particulate material comprising a slag component, a binder component (distinct from the slag component), and optionally water is formed and then contacted with the effluent fluid stream to reduce at least one of the sulfur oxides, nitrogen oxides, and/or carbon dioxide. The contacting of the effluent stream may occur in a packed bed reactor with the solid dry particulate material. Methods of reducing pollutants from exhaust generated by combustion sources, lime and/or cement kilns, iron and/or steel furnaces, and the like are provided.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: August 13, 2013
    Assignee: C-Quest Technologies LLC
    Inventor: Douglas C. Comrie
  • Patent number: 8500886
    Abstract: Exhaust gas after coal or oil burning has moisture, which hinders carbon dioxide adsorption. It is necessary to completely remove this moisture with the minimum use of energy. The exhaust gas from the burning apparatus is first lowered of its temperature by passing through an total heat exchanger rotor, and the resultant gas which has low temperature and humidity is sent to a carbon dioxide adsorption rotor, thereby removing carbon dioxide from the gas, which is then sent through the total heat exchanger rotor with the resultant desorption of moisture adsorbed there and is exhausted to outside atmosphere, while the carbon dioxide adsorption rotor is desorbed of its carbon dioxide using water vapor, with the resultant very humid carbon dioxide to be sent to a processing system such as for underground burial.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: August 6, 2013
    Assignee: Seibu Giken Co, Ltd
    Inventors: Hiroshi Okano, Tsutomu Hirose
  • Patent number: 8500859
    Abstract: New and useful system and method concepts are provided, for removing carbon dioxide from a flow of carbon dioxide laden air. More specifically, a sorbent structure is used in new and useful structures and techniques to bind carbon dioxide in a carbon dioxide laden air stream, and process heat is used to separate carbon dioxide from the sorbent structure and regenerate the sorbent structure.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: August 6, 2013
    Inventor: Peter Eisenberger
  • Patent number: 8500857
    Abstract: New and useful system and method concepts are provided, for removing carbon dioxide from a flow of carbon dioxide laden air. More specifically, a sorbent structure is used in new and useful structures and techniques to bind carbon dioxide in a carbon dioxide laden air stream, and process heat is used to separate carbon dioxide from the sorbent structure and regenerate the sorbent structure.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: August 6, 2013
    Inventor: Peter Eisenberger
  • Patent number: 8500858
    Abstract: New and useful system and method concepts are provided, for removing carbon dioxide from a flow of carbon dioxide laden air. More specifically, a sorbent structure is used in new and useful structures and techniques to bind carbon dioxide in a carbon dioxide laden air stream, and process heat is used to separate carbon dioxide from the sorbent structure and regenerate the sorbent structure.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: August 6, 2013
    Inventor: Peter Eisenberger
  • Patent number: 8500861
    Abstract: New and useful system and method concepts are provided, for removing carbon dioxide from a flow of carbon dioxide laden air. More specifically, a sorbent structure is used in new and useful structures and techniques to bind carbon dioxide in a carbon dioxide laden air stream, and process heat is used to separate carbon dioxide from the sorbent structure and regenerate the sorbent structure.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: August 6, 2013
    Inventor: Peter Eisenberger
  • Patent number: 8500877
    Abstract: Systems are provided for gasification operations. The systems may use carbonous gas as part of plant operations. The systems may include a gasifier and a solid fuel feeder. The solid fuel feeder is capable of feeding solid fuel in a carbonous carrier gas to the gasifier during a startup period and also during a steady state period of the gasifier.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: August 6, 2013
    Assignee: General Electric Company
    Inventors: Anindra Mazumdar, Sunil Ramabhilakh Mishra, Rupinder Singh Benipal
  • Patent number: 8500854
    Abstract: The disclosure provides a CO2 absorption method using an amine-based solid sorbent for the removal of carbon dioxide from a gas stream. The method disclosed mitigates the impact of water loading on regeneration by utilizing a conditioner following the steam regeneration process, providing for a water loading on the amine-based solid sorbent following CO2 absorption substantially equivalent to the moisture loading of the regeneration process. This assists in optimizing the CO2 removal capacity of the amine-based solid sorbent for a given absorption and regeneration reactor size. Management of the water loading in this manner allows regeneration reactor operation with significant mitigation of energy losses incurred by the necessary desorption of adsorbed water.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: August 6, 2013
    Assignee: U.S. Department of Energy
    Inventors: Henry W. Pennline, James S. Hoffman, McMahan L. Gray, Daniel J. Fauth, Kevin P. Resnik
  • Patent number: 8500856
    Abstract: In a method of capturing carbon dioxide in a gas, carbon dioxide in a gas is adsorbed to the hybrid adsorbent prepared by mixing an adsorbent with iron oxide nanoparticles, microwaves are irradiated to the hybrid adsorbent and the carbon dioxide adsorbed to the hybrid adsorbent is desorbed from the hybrid adsorbent, and the carbon dioxide desorbed from the hybrid adsorbent is captured.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: August 6, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Kenji Nakao, Kimihito Suzuki, Kenichiro Fujimoto, Hatsuo Taira
  • Patent number: 8500860
    Abstract: New and useful system and method concepts are provided, for removing carbon dioxide from a flow of carbon dioxide laden air. More specifically, a sorbent structure is used in new and useful structures and techniques to bind carbon dioxide in a carbon dioxide laden air stream, and process heat is used to separate carbon dioxide from the sorbent structure and regenerate the sorbent structure.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: August 6, 2013
    Inventor: Peter Eisenberger
  • Patent number: 8500850
    Abstract: The present invention relates to a process for the separation of gases which comprises putting a mixture of gases in contact with a zeolite of the ESV type to obtain the selective adsorption of at least one of the gases forming the gaseous mixture. The present invention also relates to particular zeolitic compositions suitable as adsorbents.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: August 6, 2013
    Assignee: ENI S.p.A.
    Inventors: Angela Carati, Caterina Rizzo, Marco Tagliabue, Luciano Cosimo Carluccio, Cristina Flego, Liberato Giampaolo Ciccarelli
  • Patent number: 8500855
    Abstract: A method and a system to remove relatively pure carbon dioxide directly from ambient air. The method comprises generating process heat, to co-generate substantially saturated steam; alternately and repeatedly exposing a sorbent to a flow of ambient air, at substantially ambient conditions, to sorb, and therefore remove, carbon dioxide from said ambient air, and exposing the CO2-laden sorbent to a flow of the co-generated steam, at a temperature in the range of not greater than about 130° C, to release the carbon dioxide, thereby regenerating the sorbent, and capturing relatively pure carbon dioxide. To render this process more efficient, admix with the air a minor amount of a pre-treated effluent gas containing a higher concentration of carbon dioxide than in the atmosphere. The captured carbon dioxide can be stored for further use, or sequestered permanently. The purified carbon dioxide is useful for agriculture or chemical processes.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: August 6, 2013
    Inventor: Peter Eisenberger
  • Patent number: 8496734
    Abstract: A sorbent structure comprising a continuous activated carbon body in the form of a flow-through substrate; and an additive provided on the flow-through substrate, wherein the additive is capable of enhancing the sorption of CO2 on the sorbent structure. Methods of making the sorbent structure, its use for CO2 capture, and methods for regenerating the structure for further use.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: July 30, 2013
    Assignee: Corning Incorporated
    Inventors: Kishor Purushottam Gadkaree, Youchun Shi
  • Patent number: 8491705
    Abstract: A method for capturing CO2 from the ambient air by the use of solid tethered amine adsorbents, where the amine adsorbents are tethered to a substrate selected from the group of silica, metal oxides and polymer resins. The tethered amines are joined to the substrate by covalent bonding, achieved either by the ring-opening polymerization of aziridine on porous and non-porous supports, or by the reaction of mono-, di-, or tri-aminosilanes, with silica or a metal oxide having hydroxyl surface groups. The method includes the adsorption of CO2 from ambient air, the regeneration of the adsorbent at elevated temperatures not above 120° C. and the separation of purified CO2, followed by recycling of the regenerated tethered adsorbent for further adsorption of CO2 from the ambient atmosphere.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: July 23, 2013
    Inventors: Sunho Choi, Jeffrey H. Drese, Ronald R. Chance, Peter M. Eisenberger, Christopher W. Jones
  • Patent number: 8486180
    Abstract: A concentrated carbon dioxide stream is produced during a hydrogen pressure swing adsorption unit cycle by fractionating the carbon dioxide removed from the adsorbent in the adsorption beds during the regeneration of the adsorption beds. Thereby providing a cost efficient process for producing merchant carbon dioxide.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: July 16, 2013
    Assignee: American Air Liquide, Inc.
    Inventor: Yudong Chen
  • Patent number: 8480790
    Abstract: Method of producing syngas in an IGCC system, comprising compressing and heating carbon dioxide-rich gas to produce heated compressed carbon dioxide-rich gas, mixing the heated compressed carbon dioxide-rich gas with oxygen and feedstock to form a feedstock mixture, subjecting the feedstock mixture to gasification to produce syngas, cooling the syngas in a radiant syngas cooler, contacting syngas cooled in the radiant syngas cooler with compressed carbon dioxide-rich gas to further cool the syngas, and removing an amount of carbon dioxide-rich gas from the product mixture and compressing the removed carbon dioxide-rich gas prior to mixing with oxygen and feedstock.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: July 9, 2013
    Assignee: General Electric Company
    Inventors: John Duckett Winter, Paul Steven Wallace, George Gulko, Pradeep S. Thacker
  • Publication number: 20130167720
    Abstract: Provided is a gas purification method in which the amount of adsorbent is reduced, an adsorption column can be considerably miniaturized, the amount of regeneration gas can be reduced and the running cost can be reduced in cases where carbon dioxide or water which is an impurity contained in a gas to be purified is adsorptively removed; and in which a gas to be purified which contains carbon dioxide having a partial pressure of 35 Pa or lower as impurities is brought into contact with an adsorbent whose heat-regeneration temperature is set to from 160° C. to 240° C. composed of a faujasite type zeolite whose cation is sodium to adsorptively remove the carbon dioxide. Also provided is a gas purification method in which a gas to be purified is brought into contact with an adsorbent which is subjected to an initial activation at 300° C. or higher and composed of a faujasite type zeolite whose cation is lithium to adsorptively remove the residual carbon dioxide and a heat-regeneration is performed at 240° C.
    Type: Application
    Filed: March 21, 2012
    Publication date: July 4, 2013
    Applicant: TAIYO NIPPON SANSO CORPORATION
    Inventors: Takayoshi Adachi, Sachie Hashimoto
  • Patent number: 8470075
    Abstract: Disclosed are tetratopic carboxylic acid phenyl for use in metal-organic framework compounds. These compounds are useful in catalysis, gas storage, sensing, biological imaging, drug delivery and gas adsorption separation.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: June 25, 2013
    Assignee: Northwestern University
    Inventors: Omar K. Farha, Joseph T. Hupp
  • Patent number: 8470074
    Abstract: Improved CO2 sorbents comprised of a mesoporous silica functionalized with a polyamine are obtained by the in-situ polymerization of azetidine. Also included herein are processes utilizing the improved CO2 sorbents wherein CO2 is chemisorbed onto the polyamine portion of the sorbent and the process is thermally reversible.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: June 25, 2013
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Lisa S. Baugh, David C. Calabro, Quanchang Li, Enock Berluche
  • Publication number: 20130152789
    Abstract: In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to materials that can be used for gas (e.g., CO2) capture, methods of making materials, methods of capturing gas (e.g., CO2), and the like, and the like.
    Type: Application
    Filed: December 10, 2012
    Publication date: June 20, 2013
    Applicant: King Abdullah University of Science and Technology (KAUST)
    Inventor: King Abdullah University of Science and Technolo
  • Publication number: 20130139686
    Abstract: A system and method for systematically generating potential metal-organic framework (MOFs) structures given an input library of building blocks is provided herein. One or more material properties of the potential MOFs are evaluated using computational simulations. A range of material properties (surface area, pore volume, pore size distribution, powder x-ray diffraction pattern, methane adsorption capability, and the like) can be estimated, and in doing so, illuminate unidentified structure-property relationships that may only have been recognized by taking a global view of MOF structures. In addition to identifying structure-property relationships, this systematic approach to identify the MOFs of interest is used to identify one or more MOFs that may be useful for high pressure methane storage.
    Type: Application
    Filed: July 6, 2012
    Publication date: June 6, 2013
    Applicant: Northwestern University
    Inventors: CHRISTOPHER E. WILMER, Michael Leaf, Randall Q. Snurr, Omar K. Farha, Joseph T. Hupp
  • Patent number: 8454726
    Abstract: A solid absorbent for absorption of CO2 from flue gas, comprising: a) particles made of a cross bounded, highly porous polymer substrate, and b) CO2 absorbing functional nucleophilic groups grafted on the particle surface, is described. A method for CO2 sequestration using the absorbent is also described.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: June 4, 2013
    Assignee: Aker Clean Carbon AS
    Inventor: Thomas Ranes Haugan
  • Patent number: 8449652
    Abstract: Polymerizable ionic liquid monomers and their corresponding polymers (poly(ionic liquid)s) are created and found to exhibit high CO2 sorption. The poly(ionic liquid)s have enhanced and reproducible CO2 sorption capacities and sorption/desorption rates relative to room-temperature ionic liquids. Furthermore, these materials exhibit selectivity relative to other gases such as nitrogen, methane, and oxygen. They are useful as efficient separation agents, such sorbents and membranes. Novel radical and condensation polymerization approaches are used in the preparation of the poly(ionic liquids).
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: May 28, 2013
    Assignee: University of Wyoming
    Inventors: Maciej Radosz, Youqing Shen
  • Publication number: 20130108531
    Abstract: The present invention is directed toward a method for purifying a natural gas stream comprising: 1) removing the bulk of CO2 by at least one non-membrane gas separation means; and 2) removing oxygen and other impurities by at least one additional gas separation means, wherein the final natural gas product has low level of CO2 and oxygen.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 2, 2013
    Applicant: Guild Associates, Inc.
    Inventor: Michael J. Mitariten
  • Publication number: 20130102460
    Abstract: Nanocomposite adsorbent materials and methods for their preparation and use are described. As an example, a polyaniline-graphite nanoplatelet nanocomposite may be used to adsorb carbon dioxide.
    Type: Application
    Filed: December 19, 2011
    Publication date: April 25, 2013
    Applicant: INDIAN INSTITUTE OF TECHNOLOGY MADRAS
    Inventors: Sundara Ramaprabhu, Ashish Kumar Mishra
  • Patent number: 8425659
    Abstract: A method of separating a target component from a chemical mixture comprising contacting a chemical mixture with a microporous coordination polymer. The microporous polymer is described by the formula: [M2(C8H2O6)] where M is a transition metal, rare earth metal, or other element from the groups consisting of IIA through VB.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: April 23, 2013
    Assignee: The Regents of The University of Michigan
    Inventors: Adam J. Matzger, Antek G. Wong-Foy, Stephen Caskey
  • Patent number: 8425669
    Abstract: An air pollution control apparatus according to an embodiment of the present invention includes: a stack that discharges flue gas discharged from a boiler outside; a blower that is provided downstream of the stack and draws in the flue gas; and a CO2 recovering apparatus that recovers CO2 in the flue gas drawn in by the blower. The stack includes a controlling unit that suppresses release of the flue gas outside from the stack and suppresses inflow of atmosphere to the stack, and the controlling unit is a channel forming unit that forms a serpentine channel through which the flue gas and the atmosphere in the stack flow.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: April 23, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Masaki Iijima
  • Patent number: 8425662
    Abstract: Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Gas separation assemblies are provided.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: April 23, 2013
    Assignee: Battelle Memorial Institute
    Inventors: B. Peter McGrail, Praveen K. Thallapally, Wu Xu
  • Patent number: 8414853
    Abstract: A solvent based flue gas processing system for removing CO2 from a flue gas stream is described. A catalyst is provided to increase the efficiency of the solvent in capturing CO2 from the flue gas stream or in regenerating the solvent.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: April 9, 2013
    Assignee: ALSTOM Technology Ltd
    Inventors: Zheng Liu, Naresh B. Handagama
  • Patent number: 8414689
    Abstract: A process for the reduction of carbon dioxide (or CO2) from various types of gas emitting sources containing carbon dioxide, including the reduction of carbon dioxide from industrial gas emitting sources via the use of an ion exchange material.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: April 9, 2013
    Assignee: LANXESS Sybron Chemicals Inc.
    Inventor: Anthony P. Tirio
  • Patent number: 8409331
    Abstract: The invention relates to auxiliary systems ensuring functioning of alkaline fuel cell (AFC), in particular to a method and device for sorptive purification of air used in an AFC of carbon dioxide. In accordance with the invention, in the method for purifying air for a fuel cell, the starting air is passed through an adsorber with an adsorbent of carbon dioxide, then the adsorbent is regenerated. After utilization the adsorbent comprising hydrated oxides of transition metals is regenerated at a temperature of 60-120° C. by the air spent in the fuel cell.
    Type: Grant
    Filed: November 4, 2003
    Date of Patent: April 2, 2013
    Assignee: Obschestvo S Ogranichennoi Otvetstvennostiyu “Intensis”
    Inventors: Ziya Ramizovich Karichev, Dmitry Alexandrovich Blatov, Stanislav Iliich Simanenkov, Valentina Nikolaevna Shubina
  • Patent number: 8404025
    Abstract: Systems and methods are disclosed herein which produce renewable energy, and reduce greenhouse gas emissions, by transforming biomethane gas into a mobile and renewable energy source. Biomethane gas, in this process, is generated from the anaerobic degradation process that occurs in landfills or other biomethane sources. The biomethane gas, after it has gone through a specialized cleaning system at the biomethane source sites and subsequently transported to gas consumer's customer site or natural gas pipeline, can be used as a substitute for natural gas for use in power generation units, fuel cells, vehicle fuels, and/or other applications.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: March 26, 2013
    Assignee: Biofuels Energy, LLC
    Inventors: Kenneth J. Frisbie, Frank J. Mazanec
  • Patent number: 8398747
    Abstract: This invention relates in part to a process for producing high purity acetylene by withdrawing a crude acetylene stream from a storage source, and passing said stream through an adsorbent bed that contains layered adsorption media to selectively remove moisture, solvent and carbon dioxide from the stream, thereby producing the high purity acetylene. The adsorption media is regenerated in-situ. The high purity acetylene product is useful as a source material for depositing carbon and carbon-containing films in semiconductor applications.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: March 19, 2013
    Assignee: Praxair Technology, Inc.
    Inventors: Xuemei Song, Lloyd Anthony Brown, Thomas Thompson
  • Publication number: 20130061752
    Abstract: Disclosed are tetratopic carboxylic acid phenyl for use in metal-organic framework compounds. These compounds are useful in catalysis, gas storage, sensing, biological imaging, drug delivery and gas adsorption separation.
    Type: Application
    Filed: September 10, 2012
    Publication date: March 14, 2013
    Applicant: Northwestern University
    Inventors: Omar K. Farha, Joseph T. Hupp
  • Patent number: 8394177
    Abstract: This invention provides methods for separating gas components from a gas stream. The methods are particularly advantageous in that an environmentally friendly biomass absorbent is used to assist in the separation process. The invention is particularly suited to separate water soluble gas components from a gas stream. The water soluble gas components can be used to condition the biomass for additional use, such as a conditioned feed for a biofuel. In general, the conditioned biomass will have increased enzyme digestibility, making the conditioned biomass highly suitable as feedstock for biofuel production.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: March 12, 2013
    Assignee: Michigan Biotechnology Institute
    Inventors: Timothy J. Campbell, Farzaneh Teymouri, David K. Jones