By Stripping With Gas Patents (Class 95/263)
  • Patent number: 11898134
    Abstract: Systems and methods relating to dynamic spargers for generating fine bubbles within reactors such as biological and chemical reactors. A sparger system is positioned within a reactor and comprises a support plate, multiple annular shrouds engaged with the support plate, and spargers positioned within the annular shrouds defining a gap between an interior surface of the annular shroud and an exterior surface of the corresponding sparger. Liquid flows through the defined gap between an interior surface of the annular shroud and an exterior surface of the sparger. Acceleration of the liquid through the gap shears bubbles at the exterior surface of the sparger creating bubbles or fine bubbles.
    Type: Grant
    Filed: October 31, 2022
    Date of Patent: February 13, 2024
    Assignee: LanzaTech, Inc.
    Inventors: Mayur Sathe, Joss Anton Coombes, Robert John Conrado, Gregory Joseph Morin
  • Patent number: 11492271
    Abstract: A system and method for removing ammonia from an ammonia-containing liquid is described. The system comprises a primary heat exchanger 12 for heating the ammonia-containing liquid to operational temperature, an ammonia stripper 14 for stripping ammonia from the ammonia-containing liquid from the primary heat exchanger and discharging it as ammonia-containing gas, and an acid scrubber 16 for reacting the ammonia in the ammonia-containing gas with acid to form an ammonium salt. The acid scrubber comprises a scrubbed air outlet 32 in fluid communication with a hot air inlet 20 of the ammonia stripper, such that scrubbed air which is discharged from the acid scrubber may be recycled for use in the ammonia stripper. Also described is a system and method for removing ammonia from an ammonia-containing liquid, wherein the system comprises a cold-water scrubber for removing ammonia from the ammonia-containing gas discharged from the ammonia stripper.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: November 8, 2022
    Assignee: PROCESS LIMITED
    Inventors: Robert Eden, Mark Moulden
  • Patent number: 10683239
    Abstract: To produce fertilizer, a system and method concentrates manure slurry in a mechanical vapor recompression evaporator (“MVR”) having a heat exchanger. The MVR receives the manure slurry within a first side to evaporate ammonia laden-water vapor from the slurry, leaving a nutrient concentrate. A compressor raises the evaporated ammonia-laden water vapor to a higher energy state. Within a second side of the heat exchanger, the compressed water vapor conveys heat to the slurry. Ammonia-laden water condenses in the second side at a process temperature to be conveyed to an ammonia stripping tower where the ammonia-laden water is dispersed into ammonia-laden water droplets. In the tower, a flow of air is directed across a surface of the ammonia-laden water droplets, the process temperature having been selected to promote the escape of ammonia gas from the ammonia-laden water droplets, the flow of air provided to entrain ammonia gas in the flow.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: June 16, 2020
    Assignee: Dari-Tech, Inc.
    Inventors: David DeWaard, Josh McCort, Michael Klapper
  • Patent number: 9957611
    Abstract: Provided is a removal device for a semiconductor manufacturing apparatus according to an embodiment including a reservoir being connectable to a reaction chamber where a film is formed on a substrate and storing a byproduct derived from an exhaust gas exhausted from the reaction chamber, a vacuum generator driven by a driving gas, and a suction pipe having one connected to the reservoir and the other connected to the vacuum generator and suctioning the byproduct.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: May 1, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hirokazu Hayashi
  • Patent number: 9950940
    Abstract: A method and system used to purify water that removes or reduces volatile organic compounds, calcium carbonate, cyanuric acid, and sodium bicarbonate from water to acceptable levels.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: April 24, 2018
    Inventor: Paul C. Williamson
  • Patent number: 9597613
    Abstract: The invention provides, in one aspect, a system for recirculating ozonated liquid. The system includes a contactor including at least two inlets and at least two outlets. The contactor is in fluid communication with a first liquid source at a first contactor inlet and a second liquid source at a second contactor inlet, and the second contactor inlet receives gas that purges at least a portion of gas from liquid received at the first contactor inlet. The purged gas exits the contactor at a first contactor outlet. The contactor is in fluid communication with the second liquid source at a second contactor outlet, and the contactor drains at least a portion of the liquid in the contactor, the drained liquid exiting the contactor at the second contactor outlet. The contactor includes a third inlet in fluid communication with the first liquid source, the third inlet allowing the first liquid source to release liquid at an ambient pressure.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: March 21, 2017
    Assignee: MKS Instruments, Inc.
    Inventors: Johannes Heinrich Seiwert, Ulrich Alfred Brammer, Martin Blacha, Gerhard Joachim Schnaiter
  • Patent number: 9056262
    Abstract: The invention provides, in one aspect, a system for recirculating ozonated liquid. The system includes a contactor including at least two inlets and at least two outlets. The contactor is in fluid communication with a first liquid source at a first contactor inlet and a second liquid source at a second contactor inlet, and the second contactor inlet receives gas that purges at least a portion of gas from liquid received at the first contactor inlet. The purged gas exits the contactor at a first contactor outlet. The contactor is in fluid communication with the second liquid source at a second contactor outlet, and the contactor drains at least a portion of the liquid in the contactor, the drained liquid exiting the contactor at the second contactor outlet. The contactor includes a third inlet in fluid communication with the first liquid source, the third inlet allowing the first liquid source to release liquid at an ambient pressure.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 16, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Johannes Heinrich Seiwert, Ulrich Alfred Brammer, Martin Blacha, Gerhard Joachim Schnaiter
  • Publication number: 20150122126
    Abstract: A system for deaeration of a liquid comprises a heater for heating the liquid to a well-defined temperature, means for pressurizing the liquid, a first piping for guiding the heated liquid to a separation vessel, a vacuum pump for evacuating deaerated gases from the separation vessel, and a second piping for guiding the deaerated liquid from the separation vessel. The system further comprises an inert-gas supply and a mixer for supplying and mixing in inert gas into the liquid in the first piping. The vacuum pump is controllable to maintain a separation pressure in the separation vessel corresponding to a pressure at or slightly above the saturation pressure.
    Type: Application
    Filed: December 14, 2012
    Publication date: May 7, 2015
    Applicant: Tetra Laval Holdings & Finance S.A.
    Inventor: Christer Lanzingh
  • Publication number: 20140367330
    Abstract: A wastewater treatment process that employs anaerobic granular sludge or biomass to remove chemical oxygen demand (COD) from the wastewater. Certain constituents, such as COD, nitrogen, calcium, other dissolved solids, suspended solids, can impair the effectiveness of the granular biomass. Thus, the process employs treatment units to remove these inhibiting constituents to produce a treated effluent or stream. At least a portion of the treated effluent is recycled and mixed with the influent wastewater to reduce the concentration of these inhibiting constituents.
    Type: Application
    Filed: June 16, 2014
    Publication date: December 18, 2014
    Applicant: VEOLIA WATER SOLUTIONS & TECHNOLOGIES SUPPORT
    Inventors: Wenjun Liu, Graig Rosenberger, Abraham Izaak Versprille
  • Publication number: 20140346108
    Abstract: Sludge from an anaerobic digester is treated to recover one or more of fibers, or solids or liquids with a high nutrient content. The solids or liquids can be used as a fertilizer. The fibers can be used in a plant growing medium. Solids are separated from liquids in the sludge and dried. The solids may be dried to produce a flake or pellet. Ammonia in the liquids is recovered and used to produce a concentrated acidic ammonium salt solution. This solution may be mixed with the solids to produce a nitrogen enhanced solid. The fibers and solids or liquids can also be used in combination to produce an enhanced plant growing medium. A device and process for removing ammonia from a liquid can be used in the system or separately.
    Type: Application
    Filed: December 18, 2012
    Publication date: November 27, 2014
    Applicant: Anaergia Inc.
    Inventors: Juan Carlos Josse, Andrew Benedek, Michael David Thedoulou, Zachary Scott
  • Patent number: 8882885
    Abstract: A system to purge dissolved gases selectively from liquids can include a first contactor having two first contactor inlets and two first contactor outlets. The first contactor can receive liquid from a liquid source at a first inlet of the first contactor and an inert gas source at a second inlet of the first contactor, the inert gas can purge a first portion of gas from the liquid source. The first portion of purged gas exits the first contactor at a first outlet of the first contactor. The second contactor can receive input from the second outlet of the first contactor and the inert gas, the inert gas purges a second portion of the gas from the liquid source. The second portion of purged gas can exit the second contactor at a first outlet of the second contactor.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: November 11, 2014
    Assignee: MKS Instruments, Inc.
    Inventors: Ulrich Brammer, Johannes Seiwert, Christiane Gottschalk
  • Patent number: 8883036
    Abstract: A process for the production of a H2S-enriched H2 gas stream without the need for H2S compression is disclosed. A slip stream of rich amine from a hydroprocessing unit is reduced in pressure and stripped with a hydrogen-containing gas. The H2S content of the resulting gas stream can be readily controlled by adjusting the stripping pressure and/or hydrogen rate. The H2S-enriched H2 gas stream is suitable for the sulfidation of catalytically active metals.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 11, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventor: Bruce Edward Reynolds
  • Patent number: 8840707
    Abstract: A gas condensate production plant comprises a plurality of separation units in which C2 and/or C3 lighter components are stripped from the separator feeds using compressed heated stripping vapor produced from the feed in respective downstream separation units. Contemplated plants substantially reduce heating and cooling duties by using the waste heat from the compressor discharges in the separation process. Furthermore, the multi-stage fractionation according to the inventive subject matter provides improved gas condensate recovery at reduced energy costs.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: September 23, 2014
    Assignee: Fluor Technologies Corporation
    Inventor: John Mak
  • Publication number: 20140260980
    Abstract: A system for removing oxygen from a fuel is provided including a pressurized gas lumen and a liquid transport lumen having a fuel separation device. The liquid transport lumen is positioned partially within the pressurized gas lumen and includes a plurality of openings formed along its length within said pressurized gas lumen. A shearing feature is formed within the liquid transport lumen and is positioned downstream of the openings and upstream of the fuel separation device. The gas enters the liquid transport lumens through the openings to form a plurality of bubbles removing oxygen from the fuel. The shearing feature collapses the bubbles into larger bubbles prior to flow into the fuel separation device.
    Type: Application
    Filed: December 17, 2013
    Publication date: September 18, 2014
    Applicant: Rolls-Royce North American Technologies, Inc.
    Inventor: Randall E. Yount
  • Publication number: 20140238238
    Abstract: The invention relates to a method for blowing off gaseous contaminants from crude water in the production of drinking water, comprising the step of introducing the water to be treated to the top of a shielded aerator and letting it pass through stacks of tubular elements interspersed with perforated sheets, while subjected to counter current suction. In a second aspect a device is provided for blowing off gaseous contaminants from crude water according to said method.
    Type: Application
    Filed: September 21, 2012
    Publication date: August 28, 2014
    Applicant: MICRODROP AQUA APS
    Inventors: Suni a Dalbo, Karsten E. Jensen, Finn Lebech, Idar Beck, Andreas Guldager, Peder Godsk Svejgaard
  • Patent number: 8628604
    Abstract: The invention provides systems and methods for the pre-concentration of a target molecule from feed solution comprising a low concentration of the target molecule.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: January 14, 2014
    Assignee: Algenol Biofuels Inc.
    Inventors: Benjamin Moll, Edwin Malkiel, Rong Dong
  • Publication number: 20130305593
    Abstract: A separation process with a modified enhanced hot separator system is described. The process eliminates undesirable entrainment while allowing for enhanced stripping of the net liquid only. The modified enhanced hot separator system combines a hot separator with a hot stripping column.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 21, 2013
    Applicant: UOP LLC
    Inventors: Donald A. Eizenga, Mark Van Wees, Paul C. Steacy
  • Patent number: 8460439
    Abstract: The present invention relates to a two stage process to control the butanol concentration from fermentation broth.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: June 11, 2013
    Assignee: Butamax Advanced Biofuels LLC
    Inventor: William D. Parten
  • Publication number: 20130139688
    Abstract: A method is provided for distribution of a gas in a liquid, such as water, including introducing the gas into a fluid stream to obtain a fluid stream with dissolved gas, and introducing the fluid stream with the dissolved gas therein into the liquid. The fluid stream with the dissolved gas is maintained below a level of said liquid until it is introduced into said liquid.
    Type: Application
    Filed: June 8, 2012
    Publication date: June 6, 2013
    Inventors: Heribert SCHNEEBERGER, Kenneth GLOMSET
  • Patent number: 8449656
    Abstract: A process and apparatus is provided for reduction of dissolved oxygen content in seawater from about 8 ppm in the feed seawater to about 10 ppb or less. Significant advantages are achieved by: use of a separator in horizontal alignment to provide high gas-liquid contacting area for separation and de-entrainment within the separator, thereby providing higher throughput; and heating seawater to at least 30° C. and up to 60° C., so as to enhance removal of oxygen from seawater; use of once-through fuel gas as stripping gas and its subsequent combustion for heating the seawater provides for high efficiency and reduction of fouling. The combination of these features allows the amount of residual oxygen in deoxygenated seawater to be reduced to below 10 ppb and as low as 2 ppb.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: May 28, 2013
    Assignee: AMT International Inc.
    Inventors: Kuang-Yeu Wu, Adam T. Lee, Lindsey Vuong, Edward K. Liu, Karl T. Chuang
  • Patent number: 8444859
    Abstract: A mechanical vessel may effectively and simultaneously displace a first undesired gas from within water with a second desired gas, and remove at least one alkaline species and oily matter from the water. The vessel raises the pH of the water and reduces the lime requirement for subsequent lime softening. The vessel receives the water containing the first gas and passes the water through a series of gasification chambers. Each gasification chamber may have a mechanism that ingests and mixes a second gas into the water thereby physically displacing at least a portion of the first gas into a vapor space at the top of each gasification chamber from which it is subsequently removed. There is an absence of communication between the vapor spaces of adjacent chambers. An acid is added to remove the alkaline species, where the first gas is an optional by-product that is also removed.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: May 21, 2013
    Assignee: Cameron International Corporation
    Inventors: James C. T. Chen, Shaya Movafaghian
  • Patent number: 8388740
    Abstract: A process is presented for the removal of dissolved oxygen from hydrocarbon streams. The hydrocarbons streams include kerosene and jet fuels. The process includes mixing the hydrocarbons streams with an oxygen free gas to form a gas-liquid mixture. The mixture is allowed to disengage into a gas stream and a liquid stream, thereby removing dissolved oxygen from the hydrocarbon stream.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: March 5, 2013
    Assignee: UOP LLC
    Inventors: Stephen W. Sohn, Steven P. Lankton, Debarshi Majumder, Brian J. Schiavone
  • Patent number: 8382882
    Abstract: An air pollution control apparatus according to an embodiment of the present invention includes: a stack that discharges flue gas discharged from a boiler outside; a blower that is provided downstream of the stack and draws in the flue gas; and a CO2 recovering apparatus that recovers CO2 in the flue gas drawn in by the blower. The stack includes a controlling unit that suppresses release of the flue gas outside from the stack and suppresses inflow of atmosphere to the stack, and the controlling unit is a channel forming unit that forms a serpentine channel through which the flue gas and the atmosphere in the stack flow.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: February 26, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Masaki Iijima
  • Publication number: 20130032030
    Abstract: An apparatus for the removal of gaseous reaction products (2) from an inline plant (1) for the single sided wet chemical treatment of flat objects (3) by means of a transport gas (G) has an entry (8), a treatment basin (4) for the reception of a treatment liquid (F), an inline transport device (5) with a transport plane (6) for the horizontal transport of the flat objects (3) in transport direction (7), an exit (9), as well as a collection chamber (10) for gaseous reaction products (2) which is arranged above the transport plane (6).
    Type: Application
    Filed: July 18, 2012
    Publication date: February 7, 2013
    Applicant: RENA GmbH
    Inventors: Dirk Bareis, Florian Kaltenbach, André Lindert, Pasquale Roccia, Holger Sprenger
  • Publication number: 20120279396
    Abstract: A system to purge dissolved gases selectively from liquids can include a first contactor having two first contactor inlets and two first contactor outlets. The first contactor can receive liquid from a liquid source at a first inlet of the first contactor and an inert gas source at a second inlet of the first contactor, the inert gas can purge a first portion of gas from the liquid source. The first portion of purged gas exits the first contactor at a first outlet of the first contactor. The second contactor can receive input from the second outlet of the first contactor and the inert gas, the inert gas purges a second portion of the gas from the liquid source. The second portion of purged gas can exit the second contactor at a first outlet of the second contactor.
    Type: Application
    Filed: March 15, 2012
    Publication date: November 8, 2012
    Applicant: MKS Instruments, Inc.
    Inventors: Ulrich Brammer, Johannes Seiwert, Christiane Gottschalk
  • Patent number: 8282837
    Abstract: The invention proposes a method of destruction of volatile organic and inorganic compounds in wastewater, this method includes following stages: stripping the aforementioned volatile compounds in a stripping-chemisorption column; preliminary heating the gaseous medium containing these volatile compounds in a first heat regenerator; thermal, flare or thermo-catalytic oxidation of the volatile compounds in circulating gaseous medium; cooling the gaseous medium in a second heat regenerator; chemisorption of acidic gases from the gaseous medium in the stripping-chemisorption column with stripping at the same time additional amount of the volatile compounds from the wastewater. After specific period, direction of the gaseous medium flow is alternated. The proposed method can be executed at elevated temperature. The invention includes as well systems realizing the proposed method.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: October 9, 2012
    Assignee: Elcon Recycling Center (2003) Ltd.
    Inventor: Alexander Levin
  • Patent number: 8277565
    Abstract: Method and apparatus for removing residues of hazardous materials from vapor in a tank (1), wherein such a vapor is heated, passed outside the tank and subsequently cooled and the remaining dry vapor is recirculated, characterized in that a) said vapor is heated to a temperature of at least 5° C. above the melting point and below the self ignition point of the hazardous material, b) the vapor mixture thus formed is passed by means of a pump (3) from the tank through a discharge unit to a recovery unit, c) is cooled to a temperature of at least 5° C. lower and above the melting point of the hazardous material in a recovery unit, d) the liquid components of the vapor are recovered and the dry gas mixture is recirculated to the tank after reheating to the desired temperature, e) said recirculation being repeated as required.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: October 2, 2012
    Assignee: VCS Global Systems B.V.
    Inventor: Perry Van Der Bogt
  • Publication number: 20120192716
    Abstract: A mechanical vessel may effectively and simultaneously displace a first undesired gas from within water with a second desired gas, and remove at least one alkaline species and oily matter from the water. The vessel raises the pH of the water and reduces the lime requirement for subsequent lime softening. The vessel receives the water containing the first gas and passes the water through a series of gasification chambers. Each gasification chamber may have a mechanism that ingests and mixes a second gas into the water thereby physically displacing at least a portion of the first gas into a vapor space at the top of each gasification chamber from which it is subsequently removed. There is an absence of communication between the vapor spaces of adjacent chambers. An acid is added to remove the alkaline species, where the first gas is an optional by-product that is also removed.
    Type: Application
    Filed: April 13, 2012
    Publication date: August 2, 2012
    Applicant: Cameron International Corporation
    Inventors: James C.T. Chen, Shaya Movafaghian
  • Publication number: 20120145594
    Abstract: The present invention is an improved process for stripping HPNA's from hydroprocessed streams in a fractionation column having a split shell configuration. Only one vapor stripping feed is required to the split shell of the fractionation column. The resulting reduction in steam requirement provides a superior fractionation in the column.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 14, 2012
    Applicant: UOP LLC
    Inventors: Richard K. Hoehn, Daniel J. Breitenfeldt
  • Publication number: 20120139135
    Abstract: A volatile organic compound removal device includes a cabinet having first and second slidable drawers movable between inserted and extended positions. A downcomer tube is downwardly and slidably received in an aperture of the first drawer. A sealing flange extends horizontally outward from a downcomer tube perimeter and extends beyond the aperture when the downcomer tube is received in the aperture. The sealing flange faces an upward facing surface of the first drawer and supports the downcomer tube to the first drawer using only a weight of the downcomer tube applied through the sealing flange to the upward facing surface. A removable seal pot pan is supported on an upward facing surface of the second drawer, which is aligned directly below and receives a lower end of the downcomer tube.
    Type: Application
    Filed: December 2, 2010
    Publication date: June 7, 2012
    Applicant: QED ENVIRONMENTAL SYSTEMS, INC.
    Inventor: Bryan D. Spicer
  • Publication number: 20120118154
    Abstract: A process and apparatus is provided for reduction of dissolved oxygen content in seawater from about 8 ppm in the feed seawater to about 10 ppb or less. Significant advantages are achieved by: use of a separator in horizontal alignment to provide high gas-liquid contacting area for separation and de-entrainment within the separator, thereby providing higher throughput; and heating seawater to at least 30° C. and up to 60° C., so as to enhance removal of oxygen from seawater; use of once-through fuel gas as stripping gas and its subsequent combustion for heating the seawater provides for high efficiency and reduction of fouling. The combination of these features allows the amount of residual oxygen in deoxygenated seawater to be reduced to below 10 ppb and as low as 2 ppb.
    Type: Application
    Filed: November 16, 2010
    Publication date: May 17, 2012
    Inventors: Kuang-Yeu Wu, Adam T. Lee, Lindsey Vuong, Edward K. Liu, Karl T. Chuang
  • Patent number: 8177986
    Abstract: The present invention relates to a method for deodorising organic fluids or inorganic fluids, which comprises creating a continuous flow or semi continuous flow of the fluids throw a column having one or more trays, creating a plug flow of the fluids through a labyrinth of passages on each tray by regulating the flow through the passages by use of a regulating valve at an exit in the tray, introducing sparging gas on the bottom level of each tray, contacting the fluids with the sparging gas in the plug flow, removing volatiles from the fluids, and transferring the sparging gas and the volatiles in ducts inside the column or outside the column. The present invention relates also to a plug flow tray, a column, a deodorizing plant, and use thereof.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: May 15, 2012
    Assignee: ALFA Laval Corporate AB
    Inventor: Bjarne Gullov-Rasmussen
  • Publication number: 20120103194
    Abstract: A process is presented for the removal of dissolved oxygen from hydrocarbon streams. The hydrocarbons streams include kerosene and jet fuels. The process includes mixing the hydrocarbons streams with an oxygen free gas to form a gas-liquid mixture. The mixture is allowed to disengage into a gas stream and a liquid stream, thereby removing dissolved oxygen from the hydrocarbon stream.
    Type: Application
    Filed: October 27, 2010
    Publication date: May 3, 2012
    Applicant: UOP LLC
    Inventors: Stephen W. Sohn, Steven P. Lankton, Debarshi Majumder, Brian J. Schiavone
  • Publication number: 20120055338
    Abstract: In one aspect of the invention, systems, methods, and devices are provided for handling liquid. In some embodiments, such systems, methods, and devices are used to combine fluids while removing gaseous bubbles.
    Type: Application
    Filed: November 9, 2011
    Publication date: March 8, 2012
    Applicant: AFFYMETRIX, INC.
    Inventors: Chuan Gao, Tianyue Yu
  • Patent number: 8101089
    Abstract: Water decontamination systems including aerator modules are described herein. Such systems are capable of removing contaminants, including volatile organic compounds, from the water. Certain volatile organic contaminants can be removed at high efficiencies. The systems may be automated to remove the contaminants and produce cleaned water on a continuous basis.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: January 24, 2012
    Assignee: Liquid Separation Technologies and Equipment, LLC
    Inventor: David S. Drewelow
  • Publication number: 20120009114
    Abstract: The present invention provides a gas pressurized separation system to strip a product gas from a liquid stream and yield a high pressure gaseous effluent containing the product gas. The system comprises a gas pressurized stripping apparatus, such as a column, with at least one first inlet allowing flow of one or more liquid streams in a first direction and at least one second inlet allowing flow of one or more high pressure gas streams in a second direction, to strip the product gas into the high pressure gas stream and yield through at least one outlet a high pressure gaseous effluent containing the product gas; and two or more heat supplying apparatuses provided at different locations along the column. Processes for separating a product gas from a gaseous mixture to yield a high pressure gaseous effluent containing the product gas, utilize the gas pressurized separation system described above.
    Type: Application
    Filed: July 9, 2010
    Publication date: January 12, 2012
    Applicant: CARBON CAPTURE SCIENTIFIC, LLC.
    Inventors: Shiaoguo Chen, Zijiang Pan
  • Publication number: 20120006197
    Abstract: The present invention relates to a method for recovery of carbon dioxide from a gas (G3), in particular the present invention relates to a method for recovery of carbon dioxide using a process gas (G1) heated reboiler (A1) for carbon dioxide removal in a stripper (A3).
    Type: Application
    Filed: February 1, 2010
    Publication date: January 12, 2012
    Applicant: UNION ENGINEERING A/S
    Inventor: Rasmus Find
  • Patent number: 8088286
    Abstract: A gravity separator includes a vessel within which a mixture containing water, oil, and gas can separate under gravity to form vertically discrete oil and water layers and a gas phase. An inlet duct communicates with a vessel entrance for the mixture containing water, oil, and gas. The inlet duct of the gravity separator includes a gas injector that injects a gaseous medium in a volume in the range of from 0.01-1.9 Sm3 of the gaseous medium per 1 m3 of the mixture into the mixture containing water, oil, and gas.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: January 3, 2012
    Assignee: Schlumberger Norge AS
    Inventor: Jorn Folkvang
  • Patent number: 8057578
    Abstract: Systems and methods for treating water. Water containing one or more thermally destructible contaminants can be contacted with one or more oxidants to provide an effluent containing essentially contaminant-free water and a recycle containing the one or more oxidants and at least a portion of the one or more thermally destructible contaminants. The one or more thermally destructible contaminants in the recycle can be thermally destroyed using one or more combustion processes.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: November 15, 2011
    Assignee: Kellogg Brown & Root LLC
    Inventor: Ravindra K. Agrawal
  • Patent number: 8048202
    Abstract: Systems and methods for treating water. Water containing one or more thermally destructible contaminants can be contacted with steam to provide an effluent containing essentially contaminant-free water and a recycle containing the steam and at least a portion of the one or more thermally destructible contaminants. The one or more thermally destructible contaminants in the recycle can be thermally destroyed using one or more combustion processes.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: November 1, 2011
    Assignee: Kellogg Brown & Root LLC
    Inventor: Ravindra K. Agrawal
  • Publication number: 20110237855
    Abstract: Systems and methods for removing a volatile catalyst poison from a liquid hydrocarbon are provided. In one embodiment, a process vent (106) can be introduced to a vent recovery system (108) to provide a recycle gas (110). A first portion of the recycle gas (112) and a liquid hydrocarbon (102) can be introduced to a stripper column (104) to provide a stripper vent gas (114) and a degassed liquid hydrocarbon (116) that can be introduced to a polymerization process.
    Type: Application
    Filed: November 24, 2008
    Publication date: September 29, 2011
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: Randall L. Force, James L. Swecker, Kevin D. Roy
  • Patent number: 7988864
    Abstract: A process and a device implementing the process, for separating fluids in emulsion and/or in solution, and/or for low pressure distillation, in particular of water and/or gaseous hydrocarbons dissolved in crude petroleum, and/or for separation of crude petroleum droplets emulsified in water, to obtain water with necessary characteristics for its injection without pollution of underground aquifers, and/or when the mixture is dominant in crude petroleum, acceleration of settling of the water in the lower part of the mixture, and/or for low pressure distillation of crude petroleum. The method creates a localized zone of reduced pressure on part of the free surface of a liquid to be processed, within a closed processing tank, without the overall pressure inside the closed processing tank being affected.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: August 2, 2011
    Assignee: Partex Services Portugal-Servicos Para A Industria Petrolifera, S.A.
    Inventor: Antonio Jose Silva Valente
  • Patent number: 7985280
    Abstract: Methods and apparatus for generating a vapor to be injected into a flue gas stream are described. Apparatus comprises a fluid vaporization and injection assembly further comprising: a stripper for producing first ammonia vapor and a first aqueous ammonia solution from a second aqueous ammonia solution; a reflux tank for producing a second ammonia vapor and the second aqueous ammonia solution from the first ammonia vapor and the first aqueous ammonia solution; and a first outlet for outputting the second ammonia vapor for introduction into the flue gas.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: July 26, 2011
    Assignee: Hitachi Power Systems America, Ltd.
    Inventors: William Gretta, Eric Pear, Dileep Karmarkar
  • Patent number: 7806960
    Abstract: A method and apparatus for treating a fluid is provided and includes a fluid storage tank for partially containing a fluid and a gas, wherein the fluid storage tank includes a fluid inlet pipe and a fluid outlet pipe. The fluid treatment apparatus also includes a first aeration device, wherein the first aeration device is configured to be in flow communication with the fluid inlet pipe and the fluid portion of the tank cavity. The fluid treatment apparatus further includes a pumping device, wherein the pumping device is configured to cause the fluid portion of the tank cavity to flow through the fluid outlet pipe and a second aeration device, wherein the second aeration device is configured to be in flow communication with the fluid outlet pipe and the fluid portion of the tank cavity.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: October 5, 2010
    Inventor: Raymond Leroy Frosti
  • Patent number: 7771515
    Abstract: A method for treating an aqueous effluent comprising at least one dissolved gaseous compound, by partially separating said compound from said effluent, in order to obtain a treated aqueous phase. In the method, an upflow liquid column of the aqueous effluent is established by injecting and distributing into said column, at the bottom, a gas phase less rich in said compound than the aqueous effluent, for example air or oxygen, said gas phase being distributed in the column in the form of bubbles where the volume increases upward. A mixed liquid/gas stream is obtained at the top. The mixed liquid/gas stream is then separated into a liquid stream constituting the treated aqueous phase, and an offgas stream enriched with said gaseous compound, where the mixed liquid/gas stream is later separated under vacuum by establishing a gas headspace between the liquid stream and the gas stream, and by aspirating the latter.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: August 10, 2010
    Assignees: Institut National des Sciences Appliquees, Institut Francais de Recherche Pour 'Exploitation de la Mer Ifremer
    Inventors: Jean-Yves Champagne, Robert Morel, Francois Rene, Gilles Lemarie
  • Patent number: 7771516
    Abstract: The present invention provides a method of removing ozone remaining in water by separating residual ozone which remains in water after ozone is mixed in the water and kills microorganisms in the water including the steps of storing water containing the residual ozone in a pressure tank, supplying the pressure tank with compressed air, generating coarse bubbles larger than the residual ozone existing in water in the form of micro bubbles in pressurized condition, making the residual ozone in the form of micro bubbles adhere to the coarse bubbles, separating the residual ozone from water as the coarse bubbles go up, and discharging the micro bubbles from the pressure tank. Accordingly, the present invention provides a method of removing ozone remaining in water to remove ozone remaining in water inexpensively and efficiently.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: August 10, 2010
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Shuji Ueki, Masahiro Saito
  • Patent number: 7745567
    Abstract: A process for continuously stripping a polymer dispersion comprising a heat exchanger with minimal internal obstructions for the stripper. The process is particularly adapted to dispersions that are heat and shear sensitive. The process is able to extract hydrophobic VOC's more efficiently than a single, jacketed tube design.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: June 29, 2010
    Assignee: Rohm and Haas Company
    Inventors: James Kent Carpenter, Adam Loyack
  • Patent number: 7722775
    Abstract: The invention proposes a method of destruction of volatile organic and inorganic compounds in wastewater, this method includes following stages: stripping the aforementioned volatile compounds in a stripping-chemisorption column; preliminary heating the gaseous medium containing these volatile compounds in a first heat regenerator; thermal, flare or thermo-catalytic oxidation of the volatile compounds in circulating gaseous medium; cooling the gaseous medium in a second heat regenerator; chemisorption of acidic gases from the gaseous medium in the stripping-chemisorption column with stripping at the same time additional amount of the volatile compounds from the wastewater. After specific period, direction of the gaseous medium flow is alternated. The proposed method can be executed at elevated temperature. The invention includes as well systems realizing the proposed method.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: May 25, 2010
    Assignee: Elcon Ecycling Center (2003) Ltd.
    Inventor: Alexander Levin
  • Patent number: 7704299
    Abstract: The present invention provides a method of treating a process fluid that includes assembling a modular system, flowing the process fluid through the modular system, the flowing the process fluid through the modular system including degassing the process fluid, neutralizing the process fluid, reducing an amount of one of the group consisting of entrained gases, oil and solids in the process fluid, monitoring and analyzing the process fluid for at least one of the group consisting of engrained gases, oil, and solids, and flowing the process fluid out of the modular system for disposal.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: April 27, 2010
    Assignee: M-I LLC
    Inventors: Frank Mueller, Michael A. Freeman, Eric Hand
  • Publication number: 20090252836
    Abstract: The prevent invention provides a novel gas treatment method for a fluid, and a method for producing a milk using the same, which is industrially extremely advantageous in terms of cost and efficiency. A gas treatment method for a fluid, comprises, while discharging a fluid from a fluid discharge port 161 of a two-fluid nozzle 160, crushing the discharge flow into fine droplets by a gas stream from a gas injection port 162, and then allowing the droplets to strike against a flow prevention member 190 and thereby agglomerate, so as to perform a gas treatment (gas addition, gas replacement, deaeration, or sterilization (disinfection)). According to the method for producing a milk, nitrogen is used as the gas stream, whereby homogenization and nitrogen replacement of dissolved oxygen can be performed in one and the same process.
    Type: Application
    Filed: April 11, 2007
    Publication date: October 8, 2009
    Applicant: Wingturf Co., Ltd.
    Inventor: Tomohiko Hashiba