Carbon Dioxide Or Carbon Monoxide Permeates Barrier Patents (Class 95/51)
  • Publication number: 20130146538
    Abstract: The present invention is for high permeance and high selectivity blend polymeric membranes comprising poly(ethylene glycol) (PEG) and a highly permeable polymer selected from the group consisting of polymers of intrinsic microporosity (PIMs), tetrazole-functionalized polymers of intrinsic microporosity (TZPIMs), or mixtures thereof. The present invention also involves the use of such membranes for separations of liquids and gases.
    Type: Application
    Filed: October 18, 2012
    Publication date: June 13, 2013
    Applicant: UOP LLC
    Inventor: UOP LLC
  • Patent number: 8454724
    Abstract: A system and process for the removal of carbon dioxide (CO2) from a feed natural gas having variable flow rates and inlet CO2 levels.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: June 4, 2013
    Assignee: UOP LLC
    Inventors: Bhargav Sharma, William Echt
  • Patent number: 8454732
    Abstract: A membrane composition and process for its formation are disclosed from the removal of carbon dioxide (CO2) from mixed gases, such as flue gases of energy production facilities. The membrane includes a substrate layer comprising inorganic oxides, a barrier layer of in-situ formed Li2ZrO3, a Li2ZrO3 sorbent layer and an inorganic oxide cap layer. The membrane has a feed side for introduction of mixed gases containing nitrogen (N2) and a sweep side for recovery of CO2 wherein the membrane has a relatively high selectivity for CO2 transport at temperatures in the range of 400° to 700° C.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: June 4, 2013
    Assignee: Southwest Research Institute
    Inventors: Francis Yu Chang Huang, Vladimir I. Gorokhovsky, Kent E. Coulter
  • Patent number: 8454727
    Abstract: The present invention provides a process for treating a natural gas stream comprising sending a natural gas stream to at least one membrane unit to produce a permeate stream containing a higher concentration of carbon dioxide and a retentate stream containing a lower concentration of carbon dioxide. Then the retentate stream is sent to an adsorbent bed to remove carbon dioxide and other impurities to produce a natural gas product stream. The regeneration gas stream is sent through the molecular sieve adsorbent bed to desorb the carbon dioxide. In one process flow scheme, the regeneration stream is combined with the permeate stream from the membrane unit. Then the combined stream is sent to an absorbent column to remove carbon dioxide from the permeate stream to produce a second natural gas product stream. In the alternative flow scheme, a second membrane unit is used to improve efficiency.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: June 4, 2013
    Assignee: UOP LLC
    Inventors: Lubo Zhou, Peter K. Coughlin, Pamela J. Dunne
  • Publication number: 20130133515
    Abstract: A method of removing an acidic gas from a gas stream by contacting said gas stream with a polymer, wherein the polymer is a macromolecularly self assembling polymeric material, the method including the steps of contacting the gas mixture with the membrane; and extracting the acidic gas from the gas stream.
    Type: Application
    Filed: February 11, 2011
    Publication date: May 30, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Scott T. Matteucci, Leonardo C. Lopez, Shawn D. Feist, Peter N. Nickias, William J. Harris
  • Patent number: 8449652
    Abstract: Polymerizable ionic liquid monomers and their corresponding polymers (poly(ionic liquid)s) are created and found to exhibit high CO2 sorption. The poly(ionic liquid)s have enhanced and reproducible CO2 sorption capacities and sorption/desorption rates relative to room-temperature ionic liquids. Furthermore, these materials exhibit selectivity relative to other gases such as nitrogen, methane, and oxygen. They are useful as efficient separation agents, such sorbents and membranes. Novel radical and condensation polymerization approaches are used in the preparation of the poly(ionic liquids).
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: May 28, 2013
    Assignee: University of Wyoming
    Inventors: Maciej Radosz, Youqing Shen
  • Patent number: 8449651
    Abstract: Disclosed herein is a method for preparing a crosslinked hollow fiber membrane. The method involves spinning a one phase solution comprising a monoesterified polyimide polymer, acetone as a volatile solvent, a spinning solvent, a spinning non-solvent, and optionally an organic and/or inorganic additive, wherein the volatile solvent is present in an amount of greater than 25 wt. % to about 50 wt. %, based on the total weight of the solution.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: May 28, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventor: Shabbir Husain
  • Patent number: 8435326
    Abstract: A multi-stage membrane process for the removal of carbon dioxide from syngas streams containing at least about 5 volume percent carbon dioxide. The syngas is preferably obtained by the gasification of a biomass feedstock.
    Type: Grant
    Filed: January 17, 2011
    Date of Patent: May 7, 2013
    Assignee: G.D.O.
    Inventors: Steven J. Schmit, Jacqueline Hichingham, Duane A. Goetsch, Lloyd R. White, Ulrich Bonne
  • Patent number: 8435327
    Abstract: A carbon dioxide permeable membrane is described. In some embodiments, the membrane includes a body having a first side and an opposite second side; a plurality of first regions formed from a molten carbonate having a temperature of about 400 degrees Celsius to about 1200 degrees Celsius, the plurality of first regions forming a portion of the body and the plurality of first regions extending from the first side of the body to the second side of the body; a plurality of second regions formed from an oxygen conductive solid oxide, the plurality of second regions combining with the plurality of first regions to form the body and the plurality of second regions extending from the first side of the body to the second side of the body; and the body is configured to allow carbon dioxide to pass from the first side to the second side.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: May 7, 2013
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Klaus S. Lackner, Alan C. West, Jennifer L. Wade
  • Publication number: 20130098242
    Abstract: The invention relates to a specific apparatus, more particularly a chain of gas separation membrane modules, for separation of gas mixtures into two fractions each of elevated purity.
    Type: Application
    Filed: May 26, 2011
    Publication date: April 25, 2013
    Applicant: Evonik Fibres Gmbh
    Inventors: Markus Ungerank, Goetz Baumgarten, Markus Priske, Harald Roegl
  • Patent number: 8425669
    Abstract: An air pollution control apparatus according to an embodiment of the present invention includes: a stack that discharges flue gas discharged from a boiler outside; a blower that is provided downstream of the stack and draws in the flue gas; and a CO2 recovering apparatus that recovers CO2 in the flue gas drawn in by the blower. The stack includes a controlling unit that suppresses release of the flue gas outside from the stack and suppresses inflow of atmosphere to the stack, and the controlling unit is a channel forming unit that forms a serpentine channel through which the flue gas and the atmosphere in the stack flow.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: April 23, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Masaki Iijima
  • Patent number: 8419828
    Abstract: The invention concerns a process for the removal of gaseous acidic contaminants, especially carbon dioxide and/or hydrogen sulphide, in two or more stages from a gaseous hydrocarbonaceous feedstream (1) comprising hydrocarbons and said acidic contaminants, using one or more membranes in each separation stages. The gaseous hydrocarbonaceous feedstream is especially a natural gas stream. The process is especially suitable for feedstreams comprising very high amounts of acidic contaminants, especially carbon dioxide, e.g. more than 25 vol. %, or even more than 45 vol. %. In a first stage (2) a pure or almost pure stream of acidic contaminants is separated from the feedstream, the acidic contaminants (4) stream suitably containing less than 5 vol % of hydrocarbons. The remaining stream (3) comprises the hydrocarbons and still a certain amount of gaseous acidic contaminants.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: April 16, 2013
    Assignee: Shell Oil Company
    Inventors: Zaida Diaz, Henricus Abraham Geers, Ewout Martijn Van Jarwaarde, Arian Nijmeijer, Eric Johannes Puik
  • Patent number: 8419838
    Abstract: A process for preparing a composite membrane comprising a porous support layer and a discriminating layer, comprising the steps of: (a) providing a porous support layer; (b) incorporating an inert liquid into the pores of the support layer; (c) applying a curable composition to the support layer; and (d) curing the composition, thereby forming the discriminating layer on the porous support. The process is particularly useful for preparing gas separation composite membranes.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: April 16, 2013
    Assignee: Fujifilm Manufacturing Europe B.V.
    Inventor: Yujiro Itami
  • Patent number: 8414683
    Abstract: The present invention provides a membrane/amine column system and process for removing acid gases from natural gas on a floating liquefied natural gas vessel. Several process configurations are provided to deal with a reduction in the effectiveness of the amine column by increasing the amount of acid gases being removed by the membrane system prior to the natural gas being sent to the amine column.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: April 9, 2013
    Assignee: UOP LLC
    Inventors: Lubo Zhou, Xiaoming Wen
  • Patent number: 8414686
    Abstract: The present invention is directed to degassing devices for dialysate circuits. One embodiment has a first housing and a second housing positioned within the first housing in an annular relationship. A second embodiment comprises a dialysate regeneration system with urease, a dialyzer, and a housing with an external wall, where the external wall is exposed to atmosphere and comprises a material that passes gas but does not pass liquid and where the housing is positioned between the urease and dialyzer.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: April 9, 2013
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventors: Victor Gura, Carlos Jacobo Ezon, Masoud Beizai
  • Patent number: 8398743
    Abstract: A method for processing flue-gas, in an exemplary embodiment, includes providing an absorber unit having a membrane contactor, channeling a combustion flue gas along a first surface of the membrane contactor, and channeling an ammonia-based liquid reagent along a second opposing surface of the membrane contactor. The method also includes partially separating the ammonia-based liquid from the flue gas such that the ammonia-based liquid and the flue gas contact at gas-liquid interface areas, defined by a plurality of pores of the membrane contactor, to separate CO2 from the flue gas by a chemical absorption of CO2 within the ammonia-based liquid to produce a CO2-rich ammonia-based liquid.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: March 19, 2013
    Assignee: General Electric Company
    Inventors: Jennifer Lynn Molaison, Alan Smithies
  • Patent number: 8394174
    Abstract: The present invention provides for various processes for recovering high purity gaseous hydrogen and high purity gaseous carbon dioxide from the gas stream produced using steam hydrocarbon reforming, especially steam methane reforming, utilizing a H2 pressure swing adsorption unit in combination with either a CO2 pressure swing adsorption unit in combination with a membrane separation unit or a CO2 pressure vacuum swing adsorption unit in combination with a membrane separation unit. The present invention further relates to a process for optimizing the recovery of carbon dioxide from waste gas streams produced during the hydrogen purification step of a steam hydrocarbon reforming/water gas shift reactor/H2 pressure swing adsorption unit utilizing either a CO2 pressure swing adsorption unit in combination with a membrane separation unit or a CO2 pressure vacuum swing adsorption unit in combination with a membrane separation unit.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: March 12, 2013
    Assignees: American Air Liquide, Inc., Air Liquide Industrial U.S. LP
    Inventors: Yudong Chen, Glenn Fair
  • Patent number: 8394183
    Abstract: An asymmetric membrane contains a porous layer and a dense layer adjacent thereto. The porous layer and the dense layer are formed of a polymeric material. The porous layer and/or dense layer contains a filler. The amount of the filler is 11 parts by mass or more per 100 parts by mass of the polymeric material contained in the asymmetric membrane.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: March 12, 2013
    Assignees: Shin-Etsu Polymer Co., Ltd., Denso Corporation, Shin-Etsu Chemical Co., Ltd.
    Inventors: Junya Ishida, Mitsuaki Negishi, Yuzo Morioka, Mika Kawakita, Katsunori Iwase, Manabu Maeda, Masahiko Minemura, Mamoru Hagiwara
  • Patent number: 8394182
    Abstract: A composition of and a method of making high performance crosslinked membranes are described. The membranes have a high resistance to plasticization by use of crosslinking. The preferred polymer material for the membrane is a polyimide polymer comprising covalently bonded ester crosslinks. The resultant membrane exhibits a high permeability of CO2 in combination with a high CO2/CH4selectivity. Another embodiment provides a method of making the membrane from a monesterified polymer followed by final crosslinking after the membrane is formed.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: March 12, 2013
    Assignees: The University of Texas System, Chevron U.S.A. Inc.
    Inventors: William J. Koros, David Wallace, John Wind, Claudia Staudt-Bickel, Stephen J. Miller
  • Publication number: 20130058853
    Abstract: A gas separation process for treating an exhaust gas stream from a combustion processes. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, and flowing a second portion of the exhaust stream and at least a portion of an off-gas stream from the carbon dioxide capture step across the feed side of a membrane, while flowing a sweep gas stream, usually air, across the permeate side, and then passing the resulting permeate sweep stream back to the combustor.
    Type: Application
    Filed: October 31, 2012
    Publication date: March 7, 2013
    Applicant: MEMBRANE TECHNOLOGY AND RRESEARCH, INC
    Inventor: Membrane Technology and Rresearch, Inc
  • Patent number: 8388732
    Abstract: The present invention relates to an integrated membrane/adsorbent process and system for removal of carbon dioxide from natural gas on a ship that houses natural gas purification equipment. Additional membrane units or adsorbent beds are used to reduce the amount of product gas that is lost in gas streams that are used to regenerate the adsorbent beds. These systems produce a product stream that meets the specifications of less than 50 parts per million carbon dioxide in natural gas for liquefaction.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: March 5, 2013
    Assignee: UOP LLC
    Inventors: Shain-Jer Doong, Lubo Zhou, Dennis J. Bellville, Mark E. Schott, Leonid Bresler, John M. Foresman
  • Patent number: 8383026
    Abstract: One or more embodiments relates to the production of a fabricated fiber having an asymmetric polymer network and having an immobilized liquid such as an ionic liquid within the pores of the polymer network. The process produces the fabricated fiber in a dry-wet spinning process using a homogenous dope solution, providing significant advantage over current fabrication methods for liquid-supporting polymers. The fabricated fibers may be effectively utilized for the separation of a chemical species from a mixture based on the selection of the polymer, the liquid, and the solvent utilized in the dope.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: February 26, 2013
    Assignee: U.S Department of Energy
    Inventors: David R. Luebke, Shan Wickramanayake
  • Patent number: 8377170
    Abstract: A CO2-facilitated transport membrane of excellent carbon dioxide permeability and CO2/H2 selectivity, which can be applied to a CO2 permeable membrane reactor, is stably provided. The CO2-facilitated transport membrane is formed such that a gel layer 1 obtained by adding cesium carbonate to a polyvinyl alcohol-polyacrylic acid copolymer gel membrane is supported by a hydrophilic porous membrane 2. More preferably, a gel layer supported by a hydrophilic porous membrane 2 is coated with hydrophilic porous membranes 3 and 4.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: February 19, 2013
    Assignee: Renaissance Energy Research Corporation
    Inventors: Osamu Okada, Masaaki Teramoto, Reza Yegani, Hideto Matsuyama, Keiko Shimada, Kaori Morimoto
  • Patent number: 8366804
    Abstract: The present invention discloses a new type of polyimide membranes including hollow fiber and flat sheet membranes with high permeances for air separations and a method of making these membranes. The new polyimide hollow fiber membranes have O2 permeance higher than 300 GPU and O2/N2 selectivity higher than 3 at 60° C. under 308 kPa for O2/N2 separation. The new polyimide hollow fiber membranes also have CO2 permeance higher than 1000 GPU and single-gas selectivity for CO2/CH4 higher than 20 at 50° C. under 791 kPa for CO2/CH4 separation.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: February 5, 2013
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Raisa Minkov, Syed A. Faheem, Travis C. Bowen, Jeffrey J. Chiou
  • Patent number: 8367567
    Abstract: The Shelf Life Extending Container for fruits and vegetables extends the shelf life of various fresh fruits and vegetables and vase life of fresh cut flowers by changing the atmosphere in which these living products are stored and respires. The Shelf Life Extending Container does this by utilizing a Gas Permeable Non-Woven Fabric Based Film. The high oxygen and carbon dioxide permeability of the Gas Permeable Non-Woven Fabric Based Film establishes an ideal atmosphere for the multiple perishable items stored within the Shelf life Extending Container, and therefore extends their shelf life. The establishment of lower oxygen and carbon dioxide atmospheres within the Shelf Life Extending Container using the Gas Permeable Non-Woven Fabric Based Film, also leads to a reduction in the respiration rate of the perishable items stored.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: February 5, 2013
    Inventors: Shubham Chandra, Benjamin Scott Williams
  • Publication number: 20130000484
    Abstract: A method of separating a first gas component from a feed gas mixture comprising the first gas component and a second gas component using a SAPO-34 molecular sieve membrane. Periodically removing unwanted components that are absorbed on the membrane may be accomplished by passing a regeneration gas stream through the membrane.
    Type: Application
    Filed: March 3, 2011
    Publication date: January 3, 2013
    Inventor: Paul Jason Williams
  • Patent number: 8337586
    Abstract: A method of making a crosslinked polyimide membrane is described. A monoesterified membrane is formed from a monoesterified polyimide polymer. The monoesterified membrane is subjected to transesterification conditions to form a crosslinked membrane. The monoesterified membrane is incorporated with an organic titanate catalyst before or after formation of the monoesterified membrane. A crosslinked polyimide membrane made using the aforementioned method and a method of using the membrane to separate fluids in a fluid mixture, such as methane and carbon dioxide, are also disclosed.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: December 25, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: John D. Wind, Stephen J. Miller, Oluwasijibomi O. Okeowo
  • Patent number: 8337589
    Abstract: A method and apparatus for extracting CO2 from air comprising an anion exchange material formed in a matrix exposed to a flow of the air, and for delivering that extracted CO2 to controlled environments. The present invention contemplates the extraction of CO2 from air using conventional extraction methods or by using one of the extraction methods disclosed; e.g., humidity swing or electro dialysis. The present invention also provides delivery of the CO2 to greenhouses where increased levels of CO2 will improve conditions for growth. Alternatively, the CO2 is fed to an algae culture.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: December 25, 2012
    Assignee: Kilimanjaro Energy, Inc.
    Inventors: Allen B. Wright, Klaus S. Lackner, Ursula Ginster
  • Patent number: 8337588
    Abstract: Supported zeolite Y membranes exhibiting exceptionally high CO2 selectivities when used in CO2/N2 gas separations are produced by a seeding/secondary (hypothermal) growth approach in which a structure directing agent such as tetramethylammonium hydroxide is included in the aqueous crystal-growing composition used for membrane formation.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: December 25, 2012
    Assignee: The Ohio State University Research Foundation
    Inventors: Krenar Shqau, Jeremy C. White, Prabir K. Dutta, Hendrik Verweij
  • Patent number: 8337587
    Abstract: A process for the recovery of carbon dioxide from a gas mixture that includes pretreating a gas mixture comprising carbon dioxide, water vapor, and one or more light gases in a pretreating system to form a cooled gas mixture, fractionating the cooled gas mixture to recover a bottoms fraction comprising carbon dioxide and an overheads fraction comprising carbon dioxide and the light gases, passing the overheads fraction over a membrane selective to carbon dioxide to separate a carbon dioxide permeate from a residue gas comprising the light gases, recycling the carbon dioxide permeate to the pretreating system, and recovering at least a portion of the bottoms fraction as a purified carbon dioxide product stream is described.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: December 25, 2012
    Assignee: Lummus Technology Inc.
    Inventors: Loren E. Gearhart, Sanjiv N. Patel, David Koch
  • Publication number: 20120323059
    Abstract: The present invention discloses a new type of polyimide membrane with high permeances and high selectivities for gas separations and particularly for CO2/CH4 and H2/CH4 separations. The polyimide membranes have CO2 permeability of 50 Barrers or higher and single-gas selectivity for CO2/CH4 of 15 or higher at 50° C. under 791 kPa for CO2/CH4 separation. The polyimide membranes have UV cross-linkable functional groups and can be used for the preparation of UV cross-linked polyimide membranes having CO2 permeability of 20 Barrers or higher and single-gas selectivity for CO2/CH4 of 35 or higher at 50° C. under 791 kPa for CO2/CH4 separation.
    Type: Application
    Filed: October 21, 2011
    Publication date: December 20, 2012
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Travis C. Bowen, Emily G. Harbert, Raisa Minkov, Syed A. Faheem, Zara Osman
  • Patent number: 8328906
    Abstract: The present disclosure relates to a high molecular weight, monoesterified polyimide polymer. Such high molecular weight, monoesterified polyimide polymers are useful in forming crosslinked polymer membranes for the separation of fluid mixtures. According to its broadest aspect, the method of making a crosslinked membrane comprises the following steps: (a) preparing a polyimide polymer comprising carboxylic acid functional groups from a reaction solution comprising monomers and at least one solvent; (b) treating the polyimide polymer with a diol at esterification conditions in the presence of dehydrating conditions to form a monoesterified polyimide polymer; and (c) subjecting the monoesterified fiber to transesterification conditions to form a crosslinked fiber membrane, wherein the dehydrating conditions at least partially remove water produced during step (b). The crosslinked membranes can be used to separate at least one component from a feed stream including more than one component.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: December 11, 2012
    Assignees: Chevron U.S.A. Inc., Georgia Tech Research Corporation
    Inventors: Stephen J. Miller, Imona C. Omole, William J. Kronos
  • Patent number: 8328911
    Abstract: A method for removing and capturing carbon dioxide from a fluid stream includes the steps of exposing the fluid stream to an aqueous scrubbing solution that removes and holds carbon dioxide from the fluid stream, passing the aqueous scrubbing solution through a membrane in order to separate excess water from the scrubbing solution and increase the concentration of carbon dioxide in the scrubbing solution, heating the scrubbing solution having an increased concentration of carbon dioxide so as to release carbon dioxide gas and recycling the scrubbing solution. A carbon dioxide capture apparatus includes a carbon dioxide scrubber, a membrane downstream from the scrubber for separating water and concentrating carbon dioxide in a scrubbing solution and a stripper vessel.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: December 11, 2012
    Assignee: The University of Kentucky Research Foundation
    Inventors: Kunlei Liu, James K. Neathery, Joseph E. Remias, Xiansen Li
  • Patent number: 8323379
    Abstract: A method of improving the blood compatibility of a blood-contacting surface includes immobilizing carbonic anhydrase on the surface, wherein the surface exhibits carbonic anhydrase activity of at least 20% of maximum theoretical activity of the surface based on monolayer surface coverage of carbonic anhydrase.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: December 4, 2012
    Assignee: University of Pittsburgh—of the Commonwealth System of Higher Education
    Inventors: William J. Federspiel, Alan J. Russell, Heung-Il Oh, Joel Kaar
  • Publication number: 20120297976
    Abstract: Provided is a gas separation membrane having superior gas permeability, separation selectivity and mechanical properties. A gas separation membrane to separate at least one acid gas from a mix gas, comprising in this order: a first layer that is porous; a second layer that is a separation-active layer containing a compound having a molecular weight of 150,000 or less and capable oft interacting with the acid gas; and a third layer having high gas permeability.
    Type: Application
    Filed: February 10, 2011
    Publication date: November 29, 2012
    Inventor: Satoshi Sano
  • Publication number: 20120297977
    Abstract: A composite membrane for separating a gas from a mixed gas stream includes a fibrous non-woven substrate including consolidated synthetic thermoplastic fibers, and coextensively disposed on a surface of the fibrous non-woven substrate a continuous polysulfide rubber film adhered thereto. A method of separating a gas component from a mixed gas stream includes 1) contacting a surface of the above-described composite membrane with the mixed gas stream under conditions such that a product gas enriched in the gas component diffuses through the composite membrane; and 2) collecting the product gas.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 29, 2012
    Inventor: Aaron Oken
  • Patent number: 8317900
    Abstract: The invention relates to a method for producing membrane, in particular gas separation membrane, wherein the membrane comprises a selective separating layer. The following steps are carried out: a) a polymer solution is produced from at least one polymer and at least one polyglycol ether, b) the polymer solution is cast into a film, c) in a further step, the selective separating layer is produced from the film, preferably by drying. The invention, among other things, further relates to a membrane, in particular gas separation membrane, comprising a selective separating layer.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: November 27, 2012
    Assignee: Helmholtz-Zentrum Geesthacht Zentrum fur Material-und Kustenforschung GmbH
    Inventors: Klaus-Viktor Peinemann, Grete Johannsen, Wilfredo Yave Rios, Anja Car
  • Patent number: 8317906
    Abstract: A membrane contactor system for use in separating carbon dioxide from a gaseous stream in a continuous flow process comprising a housing defining a gas flow path and comprising a first outlet for the carbon dioxide and a second outlet for the purified gas; an expanded polytetrafluoroethylene microporous membrane positioned in the housing to allow the gaseous stream to flow across a side of the expanded polytetrafluoroethylene microporous membrane, the membrane having a plurality of interconnecting pores configured to allow the carbon dioxide to diffuse therethrough; an oleophobic enhancement coating disposed on the surfaces to form a coated membrane; and an amine based sorbent liquid disposed on a side of the expanded polytetrafluoroethylene microporous membrane opposite the gas, wherein the amine based sorbent liquid is configured to absorb the carbon dioxide from the gaseous stream.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: November 27, 2012
    Assignee: General Electric Company
    Inventor: Vishal Bansal
  • Patent number: 8313558
    Abstract: A process for separating tetrafluoroethylene from a mixture comprising tetrafluoroethylene and carbon dioxide by contacting the mixture with at least one ionic liquid.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: November 20, 2012
    Assignee: E I du Pont de Nemours and Company
    Inventors: Mark Brandon Shiflett, Akimichi Yokozeki
  • Patent number: 8313557
    Abstract: The present invention is generally directed to a system for recovering CO2 from seawater or aqueous bicarbonate solutions using a gas permeable membrane with multiple layers. At elevated pressures, gaseous CO2 and bound CO2 in the ionic form of bicarbonate and carbonate diffuse from the seawater or bicarbonate solution through the multiple layers of the membrane. Also disclosed is the related method of recovering CO2 from seawater or aqueous bicarbonate solutions.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: November 20, 2012
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Heather D. Willauer, Dennis R Hardy, M. Kathleen Lewis, Ejiogu C. Ndubizu, Frederick Williams
  • Publication number: 20120285320
    Abstract: Methods and apparatus relate to recovery of carbon dioxide and/or hydrogen sulfide from a gas mixture. Separating of the carbon dioxide, for example, from the gas mixture utilizes a liquid sorbent for the carbon dioxide. The liquid sorbent contacts the gas mixture for transfer of the carbon dioxide from the gas mixture to the liquid sorbent. Contacting of the sorbent with the gas mixture and/or desorption of the carbon dioxide from the liquid sorbent utilize hollow-fiber contactors that have permeable walls and incorporate particles distinct from a remainder of the walls to influence wetting properties of the contactors.
    Type: Application
    Filed: April 17, 2012
    Publication date: November 15, 2012
    Applicant: ConocoPhillips Company
    Inventors: Randall L. Heald, Clint P. Aichele, Imona C. Omole, George F. Schuette, Sumod Kalakkunnath
  • Patent number: 8303691
    Abstract: A composite membrane comprising a discriminating layer and a porous support layer for the discriminating layer, CHARACTERISED IN THAT the discriminating layer comprises at least 60 wt % of oxyethylene groups and the porous support layer has a CO2 gas flux of 5 to 150×10?5 m3 (STP)/m2·s·kPa at a feed pressure of 2.07 kPa. The membranes are particularly useful for purifying waste gas streams e.g. by removing greenhouse gases.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: November 6, 2012
    Assignee: Fujifilm Manufacturing Europe B.V.
    Inventor: Yujiro Itami
  • Patent number: 8282707
    Abstract: The present invention relates to an integrated membrane/absorbent/adsorbent process and system for removal of mercury and sulfur compounds from natural gas on a ship that houses natural gas purification equipment. First mercury and most of the sulfur compounds are removed by an adsorbent bed and then the natural gas stream passes through a membrane unit to produce a partially purified natural gas residue stream to be dried and then liquefied and a carbon dioxide permeate stream that can be used as a fuel gas.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: October 9, 2012
    Assignee: UOP LLC
    Inventors: Leonid Bresler, John M. Foresman, William I. Echt, Mark E. Schott
  • Publication number: 20120247328
    Abstract: MOF nanocrystals having a narrow size distribution, as well as methods of making and using same are disclosed.
    Type: Application
    Filed: February 17, 2012
    Publication date: October 4, 2012
    Applicant: GEORGIA TECH RESEARCH CORPORATION
    Inventors: Andrew BROWN, Sankar NAIR, David SHOLL, Cantwell CARSON
  • Publication number: 20120247327
    Abstract: Methods and apparatus relate to recovery of carbon dioxide and/or hydrogen sulfide from a gas mixture. Separating of the carbon dioxide, for example, from the gas mixture utilizes a liquid sorbent for the carbon dioxide. The liquid sorbent contacts the gas mixture along asymmetric hollow-fiber membranes that enable transfer of the carbon dioxide from the gas mixture to the liquid sorbent.
    Type: Application
    Filed: September 26, 2011
    Publication date: October 4, 2012
    Applicant: CONOCOPHILLIPS COMPANY
    Inventor: Imona C. Omole
  • Patent number: 8277932
    Abstract: Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO2, H2S, and HCl with one side of a nonporous and at least one of CO2, H2S, and HCl selectively permeable membrane such that at least one of CO2, H2S, and HCl is selectively transported through the membrane.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: October 2, 2012
    Assignee: The Ohio State University Research Foundation
    Inventor: W. S. Winston Ho
  • Patent number: 8273160
    Abstract: A method and apparatus for extracting CO2 from air comprising an anion exchange material formed in a matrix exposed to a flow of the air, and for delivering that extracted CO2 to controlled environments. The present invention contemplates the extraction of CO2 from air using conventional extraction methods or by using one of the extraction methods disclosed; e.g., humidity swing or electro dialysis. The present invention also provides delivery of the CO2 to greenhouses where increased levels of CO2 will improve conditions for growth. Alternatively, the CO2 is fed to an algae culture.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: September 25, 2012
    Assignee: Kilimanjaro Energy, Inc.
    Inventors: Allen B. Wright, Klaus S. Lackner, Ursula Ginster
  • Patent number: 8262779
    Abstract: The present invention discloses microporous aluminophosphate (AlPO4) molecular sieve membranes and methods for making and using the same. The microporous AlPO4 molecular sieve membranes, particularly small pore microporous AlPO-14 and AlPO-18 molecular sieve membranes, are prepared by three different methods, including in-situ crystallization of a layer of AlPO4 molecular sieve crystals on a porous membrane support, coating a layer of polymer-bound AlPO4 molecular sieve crystals on a porous membrane support, and a seeding method by in-situ crystallization of a continuous second layer of AlPO4 molecular sieve crystals on a seed layer of AlPO4 molecular sieve crystals supported on a porous membrane support.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: September 11, 2012
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Stephen T. Wilson, David A. Lesch
  • Patent number: 8252094
    Abstract: A gas exchange membrane is for use in an artificial lung. The membrane consists of a foamed, closed-cell material, in particular of silicone rubber. The membrane is produced by extruding a basic material which contains a foaming agent. The extrudate is then foamed. The result is a gas exchange membrane which has an increased gas exchange performance compared to known material due to the high permeability of the surface.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: August 28, 2012
    Assignee: Raumedic AG
    Inventor: Ralf Ziembinski
  • Patent number: 8246718
    Abstract: A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: August 21, 2012
    Assignee: Membrane Technology and Research, Inc
    Inventors: Johannes G. Wijmans, Richard W. Baker, Timothy C. Merkel