Carbon Dioxide Or Carbon Monoxide Permeates Barrier Patents (Class 95/51)
  • Patent number: 6503295
    Abstract: Mixed matrix membranes capable of separating carbon dioxide from mixtures including carbon dioxide and methane, and processes for purifying methane using the membranes, are disclosed. The membranes are polymer membranes with a selective layer thickness of between about 1000 Angstroms to about 0.005 inch, that include discrete carbon-based molecular sieve particles with sizes of between about 0.5 microns to about 5.0 microns. The preferred ratio of particles to polymer is about 20% to about 50% by volume. A preferred method for preparing the mixed matrix membrane is by dispersing the particles in a solvent, adding a small quantity of the desired polymer or “sizing agent” to “size” or “prime” the particles, adding a polymer, casting a film of the polymer solution, and evaporating the solvent to form a mixed matrix membrane film.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: January 7, 2003
    Assignees: Chevron U.S.A. Inc., The University of Texas System
    Inventors: William J. Koros, De Q. Vu, Rajiv Mahajan, Stephen J. Miller
  • Patent number: 6497752
    Abstract: Process for producing integrally asymmetrical hydrophobic polyolefinic membranes with a separation layer, in particular for gas exchange, via thermally induced liquid-liquid phase separation. A solution of at least one polyolefin in a solvent system containing a compound A and a compound B is extruded to form a shaped object. Compound A is a strong solvent and compound B a weak non-solvent for the polymer. After leaving the die, the shaped object is cooled using a solid or liquid cooling medium, which does not dissolve the polymer and does not react chemically with it, until the phase separation and solidification of the high-polymer-content phase take place.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: December 24, 2002
    Assignee: Membrana GmbH
    Inventors: Erich Kessler, Thomas Batzilla, Friedbert Wechs, Frank Wiese
  • Patent number: 6497747
    Abstract: A process for preparing polyimide gas separation membranes is disclosed. The process involves preparing polyamic acid salt membrane precursors that are converted into polyimide membranes by mild thermal or chemical treatments. The gas separation processes that utilize these polyimide membranes are further disclosed.
    Type: Grant
    Filed: September 24, 1999
    Date of Patent: December 24, 2002
    Assignee: Praxair Technology, Inc.
    Inventors: Yong Ding, Benjamin Bikson, Joyce Katz Nelson
  • Publication number: 20020189445
    Abstract: Carbon dioxide (CO2) is separated from natural gas in a downhole environment. An asymmetric hollow-carbon fiber membrane is positioned in a production string within a wellhole through which a CO2-containing natural gas is being conducted. The carbon fiber comprises a partial carbonization product of a hollow filament including an aromatic imide polymer material. The carbon membrane is at least 90 weight percent carbon, and has a dense fiber layer located in the outside surface portion of the membrane and a porous base fiber layer contiguous with the dense layer and located in the inside portion of the membrane. The natural gas is passed through the membrane at a pressure of at least about 200 psia.
    Type: Application
    Filed: April 25, 2001
    Publication date: December 19, 2002
    Inventors: Stephen J. Miller, William John Koros, De Quang Vu
  • Patent number: 6478851
    Abstract: The invention relates to a process for separating off ethylene from a gas mixture comprising more than 8% by volume of carbon dioxide or oxygen, by gas permeation.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: November 12, 2002
    Assignee: Axiva GmbH
    Inventors: Hermann Berwe, RĂ¼diger Knauf, Herbert Neumann, Matthias Stumpf, Manfred Wolter
  • Publication number: 20020162451
    Abstract: A hollow fiber membrane gas separation apparatus of a compact design suitable for separation and purification of gases is disclosed. The apparatus comprises an outer housing that consists of a detachable bowl and a head closure, and a removable hollow fiber membrane cartridge positioned therein. The cartridge contains a concentric tubular inner core member and is surrounded by a shell and at least one end closure. The cartridge is attached by its first axial end in a sealed and removable manner to a gas flow conduit positioned coaxially in the housing closure wherein said conduit being in fluid communication with a gas inlet or product gas outlet port formed in the housing head closure and by its second axial end to a waste gas exit port in the bowl.
    Type: Application
    Filed: May 2, 2001
    Publication date: November 7, 2002
    Inventors: Benjamin Bikson, Scott Andrew Bartholomew, Salvatore Giglia, Bradley Quinn Johnson
  • Patent number: 6454836
    Abstract: A downhole preferential hydrocarbon gas recovery system and method employ preferentially selective materials to separate the hydrocarbon gas from contaminants. According to one aspect of the invention, the preferentially selective materials are arranged in tubes with the hydrocarbon gas flowing through the tubes and the contaminants permeating out through the preferentially selective material.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: September 24, 2002
    Assignee: Chevron U.S.A. Inc.
    Inventors: Mark H. Koelmel, Stephen Miller, Curtis L. Munson, David R. Underdown, Rick A. Wright, Jean P. Camy, Steve E. Ross, Peter C. Schmidt
  • Publication number: 20020124722
    Abstract: A process for separating carbon dioxide from a multicomponent gas mixture containing carbon dioxide and a hydrocarbon, such as natural gas or associated gas, using gas-separation membranes selective for carbon dioxide over the hydrocarbon. The membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons.
    Type: Application
    Filed: February 5, 2002
    Publication date: September 12, 2002
    Inventors: Richard W. Baker, Ingo Pinnau, Zhenjie He, Karl D. Amo, Andre R. Da Costa, Ramin Daniels
  • Patent number: 6440196
    Abstract: A method for purifying a minority constituent and concentrating it in a majority constituent of a gas mixture that also contains one or more other minority constituent(s) employs (i) a selective permeation step, (ii) next, a purification step, and (iii) finally a concentration step. In the selective permeation step, an initial gas mixture is passed through a membrane to yield a gas mixture that is enriched in the first minority constituent. In the purifying step, the first minority constituent is absorbed by a solid adsorbent which has a strong affinity for the first minority constituent, then following an elution step, a gas mixture that contains essentially only the majority constituent and the first minority constituent is formed.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: August 27, 2002
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Remo Chiappini, Jean-Pierre Fontaine, Michel Hamonet, Michel Thouard
  • Patent number: 6419725
    Abstract: The process is characterised by sulfonating a partially brominated poly(phenylene oxide). The gas separation material so formed may be made into a membrane and is useful in separating component gases from a gas mixture.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: July 16, 2002
    Assignee: Lattice Intellectual Property Ltd.
    Inventors: Brendan William Laverty, Geta Chowdhury, Ranka Vujosevic, Shengzhi Deng, Boping Yao, Takeshi Matsuura
  • Patent number: 6416568
    Abstract: The present invention is a process to recover a high purity, high pressure hydrogen gas stream from synthesis gas. The synthesis gas is contacted with a membrane that separates the synthesis gas into a hydrogen-enriched permeate and a hydrogen-depleted non-permeate. The permeate is conveyed to a carbon dioxide absorber. The carbon dioxide absorber removes carbon dioxide using a solvent. The carbon dioxide-rich solvent from the absorber is heated and sent to a gas-liquid contactor, where the solvent is regenerated by nitrogen stripping. A small recycle stream of a regenerating gas, i.e., hydrogen, is subsequently contacted with the solvent, stripping entrained and dissolved nitrogen from the solvent. This stripping gas, the regenerating gas, or preferably both, are then mixed with the non-permeate for combustion in a combustion turbine.
    Type: Grant
    Filed: May 12, 2000
    Date of Patent: July 9, 2002
    Assignee: Texaco, Inc.
    Inventors: Paul S. Wallace, Janice L. Kasbaum, Kay A. Johnson
  • Patent number: 6406517
    Abstract: The separation factor with respect to a gas binary of a selectively gas permeable membrane of a fluoropolymer can be increased by fabricating the membrane from a composition of a blend of the fluoropolymer with a nonfugitive, nonpolymeric fluorinated adjuvant. The composition can be made by dissolving the adjuvant and the polymer in a suitably compatible solvent then forming the membrane from the solution for example by casting, dipping, or spraying the solution on a substrate and devolatilizing the solvent. The extent of the selectivity increase varies widely with the combination of fluoropolymer and adjuvant and largely increases in direct relation with the proportion of adjuvant in the membrane composition.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: June 18, 2002
    Assignee: CMS Technology Holdings, Inc.
    Inventors: Daniel Lee Avery, Purushottam V. Shanbhag
  • Patent number: 6395067
    Abstract: Porous titanium silicate molecular sieves are produced in the form of a membrane capable of separating fluid molecular mixtures.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: May 28, 2002
    Assignee: Engelhard Corporation
    Inventors: Steven M. Kuznicki, Valerie A. Bell, Richard M. Jacubinas
  • Publication number: 20020056369
    Abstract: Mixed matrix membranes capable of separating carbon dioxide from mixtures including carbon dioxide and methane, and processes for purifying methane using the membranes, are disclosed. The membranes are preferably polymer membranes with a selective layer thickness of between about 1000 Angstroms to about 0.005 inch, that include discrete carbon-based molecular sieve particles with sizes of between about 0.5 microns to about 5.0 microns. The particles are formed by pyrolyzing a precursor polymer in the form of a powder or film. The pyrolyzed polymer is then ideally milled to desired small size particles. The preferred ratio of particles to polymer is about 0.25 to about 1.0 by volume.
    Type: Application
    Filed: April 12, 2001
    Publication date: May 16, 2002
    Inventors: William J. Koros, De Q. Vu, Rajiv Mahajan, Stephen J. Miller
  • Publication number: 20020053284
    Abstract: Mixed matrix membranes capable of separating carbon dioxide from mixtures including carbon dioxide and methane, and processes for purifying methane using the membranes, are disclosed. The membranes are preferably polymer membranes with a selective layer thickness of between about 1000 Angstroms to about 0.005 inch, that include discrete carbon-based molecular sieve particles with sizes of between about 0.5 microns to about 5.0 microns. The particles are formed by pyrolyzing a precursor polymer in the form of a powder or film. The pyrolyzed polymer is then ideally milled to desired small size particles. The preferred ratio of particles to polymer is about 0.25 to about 1.0 by volume.
    Type: Application
    Filed: April 12, 2001
    Publication date: May 9, 2002
    Inventors: William J. Koros, De Q. Vu, Rajiv Mahajan, Stephen J. Miller
  • Patent number: 6383258
    Abstract: A gas separation membrane is formed from a copolyimide produced by copolymerization of monomers which include o-tolidine sulfone, at least one other hydrophilic diamine and 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride. One or more additional aromatic dianhydrides can optionally be included. The novel membrane exhibits an excellent combination of high selectivity of gases to be separated from a gas mixture, high permeability and strong solvent resistance to hydrocarbon chemicals. The membrane is therefore useful in separating gases from gas mixtures in which vapor or liquid hydrocarbon contaminants are present, for example in the separation of carbon dioxide from methane and/or nitrogen in the purification of natural gas.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: May 7, 2002
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventor: John W. Simmons
  • Patent number: 6368382
    Abstract: The invention relates to a method of making an epoxysilicone coated membrane by coating a porous asymmetric membrane layer with a UV-curable controlled release epoxysilicone coating. A mixture of the epoxysilicone resin and an onium photocatalyst are applied to the porous asymmetric membrane layer in a dilute non-polar solution and cured by UV or electron beam radiation to produce a dry epoxysilicone coated membrane. The porous asymmetric membrane layer is comprised of an asymmetric cellulosic membrane or an asymmetric polymer membrane with a low selectivity. The epoxysilicone coating was found to provide the asymmetric membrane layer with improved selectivity which extends to separation temperatures below 70° C. and provides stable flux rates. Membranes produced in this manner are useful for the separation of gases such as carbon dioxide from natural gas.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: April 9, 2002
    Assignee: UOP LLC
    Inventor: Jeffrey J. Chiou
  • Patent number: 6361582
    Abstract: A process for separating a gas from a gas mixture containing the gas and a C3+ hydrocarbon vapor, using gas-separation membranes selective for the gas over the C3+ hydrocarbon vapor. The membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: March 26, 2002
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Ingo Pinnau, Zhenjie He, Andre R. Da Costa, Karl D. Amo, Ramin Daniels
  • Patent number: 6361583
    Abstract: A process for separating a gas from a gas mixture containing an organic compound gas or vapor, using gas-separation membranes selective for the gas over the organic compound. The membranes use a selective layer made from a polymer having repeating units of a fluorinated cyclic structure of an at least 5-member ring, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: March 26, 2002
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Ingo Pinnau, Zhenjie He, Andre R. Da Costa, Karl D. Amo, Ramin Daniels
  • Publication number: 20020033096
    Abstract: The invention includes a process for separating CO2 from natural gas including: contacting a mixture of CO2 and natural gas with a first side of a carbon membrane in a manner to cause a portion of the mixture to pass through the carbon membrane to a permeate side. The resulting mixture on the permeate side becomes enriched in CO2 over that of the mixture on the first side. The carbon membrane includes an asymmetric hollow filamentary carbon membrane, including a partial carbonization product of an asymmetric hollow filament including an aromatic imide polymer material. The carbon membranes is at least 95 weight percent carbon, and has a dense layer located in the outside surface portion of the hollow filamentary membrane and a porous base layer continued from the dense layer and located in the inside portion of the hollow filamentary membrane. The contacting in step occurs at a pressure of at least about 200 psia.
    Type: Application
    Filed: October 3, 2001
    Publication date: March 21, 2002
    Inventors: William John Koros, De Quang Vu
  • Patent number: 6355092
    Abstract: The invention relates to an apparatus for performing membrane gas/liquid absorption at elevated pressure, comprising a pressure vessel in which a membrane unit is provided for separate feed-through of the gas phase and the liquid phase, in such a way that exchange of components to be absorbed can take place between the gas phase and the liquid phase, the flow direction of the gas phase through the absorber being essentially perpendicular to the flow direction of the liquid phase through the absorber. The invention further relates to a method for performing gas/liquid membrane absorption employing this absorber, in particular for the absorption of CO2, H2S, mercury (vapor) and/or water (vapor) from a gas phase at elevated pressure. The invention finally relates to a method for refining natural gas using the absorber and method according to the invention.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: March 12, 2002
    Assignee: Nederlandse Organisatie voor Toegepast-Natuurwetenschappelijk Ondersoek TMO
    Inventors: Albert Edward Jansen, Paul Hubert Maria Feron, Jan Hendrik Hanemaaijer, Piet Huisjes
  • Patent number: 6299669
    Abstract: The invention includes a process for separating CO2 from natural gas including: contacting a mixture of CO2 and natural gas with a first side of a carbon membrane in a manner to cause a portion of the mixture to pass through the carbon membrane to a permeate side. The resulting mixture on the permeate side becomes enriched in CO2 over that of the mixture on the first side. The carbon membrane includes an asymmetric hollow filamentary carbon membrane, including a partial carbonization product of an asymmetric hollow filament including an aromatic imide polymer material. The carbon membrane is at least 95 weight percent carbon, and has a dense layer located in the outside surface portion of the hollow filamentary membrane and a porous base layer continued from the dense layer and located in the inside portion of the hollow filamentary membrane. The contacting step occurs at a pressure of at least about 200 psia.
    Type: Grant
    Filed: November 10, 1999
    Date of Patent: October 9, 2001
    Assignee: The University of Texas System
    Inventors: William John Koros, De Quang Vu
  • Patent number: 6296686
    Abstract: Syngas, a mixture of hydrogen and carbon monoxide, is an intermediate in the conversion of methane to liquid fuels. For certain applications, it is desirable to maintain an H2/CO molar ratio of about 3. This molar ratio is achieved by steam reforming of methane in accordance with: CH4+H2O→3H2+CO. To provide the heat required to drive the endothermic steam reforming reaction, a low grade fuel is combusted in a reactor and the heat of combustion conducted to the endothermic reaction. By using an oxygen selective ion transport membrane element to transport the oxygen required for combustion, the formation of undesirable NOx compounds is minimized.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: October 2, 2001
    Assignee: Praxair Technology, Inc.
    Inventors: Ravi Prasad, Christian Friedrich Gottzmann
  • Patent number: 6248153
    Abstract: A diffusional gas transfer system and method having a membrane disposed between a first gas domain and a second gas domain. The first gas domain includes a first mechanism for directing a first environmental gas flow transversely over and in contact with a first surface of the membrane. The second gas domain includes a second mechanism for directing a second environmental gas flow transversely over and in contact with a second surface of the membrane. The membrane is a diffusional gas transfer medium having a multiplicity of tortuous pathways extending from the first surface of the membrane to the second surface of the membrane. The void volume fraction of the membrane is at least 0.2. The membrane is capable of substantially blocking the transfer of particles from the first gas domain to the second gas domain, while permitting the diffusion of gases between the first and second gas domains, and the first gas domain is maintained at a pressure higher than the second gas domain.
    Type: Grant
    Filed: June 9, 1999
    Date of Patent: June 19, 2001
    Assignee: 3M Innovative Properties Company
    Inventors: David Lloyd Braun, Ricardo Lira
  • Patent number: 6228145
    Abstract: A method for removing and preventing discharge into the atmosphere of carbon dioxide from combustion gases and natural gas from installations for production of oil and/or gas, wherein the combustion gas is passed to an absorber containing a solvent, where carbon dioxide is absorbed in the solvent, and the thereby purified combustion gas, largely free of carbon dioxide, is released into the atmosphere, where the CO2 rich solvent is passed to a desorber where CO2 is removed from the solvent, and the thereby largely CO2-free solvent is recycled to the absorber, and the separated CO2 gas is passed to a compression stage for compression and utilization and/or disposal in a suitable manner, where membrane gas/liquid contactors are employed in both the absorber and the desorber, and that an external stripping steam is supplied to the desorber.
    Type: Grant
    Filed: August 20, 1999
    Date of Patent: May 8, 2001
    Assignee: Kvaerner ASA
    Inventors: Olav Falk-Pedersen, Henrik Dannström
  • Patent number: 6168649
    Abstract: A gas-separation membrane enables the economical separation of noble gases, especially xenon, from oxygen, nitrogen, carbon dioxide or mixtures of the latter gases. The membrane of the present invention includes a thin discriminating layer selected from the group consisting of polycarbonate, polyester, and polyestercarbonate. In the preferred embodiment, the thin discriminating layer includes material selected from the bisphenolic group consisting of 2,2-bis(3,5-dibromo-4-hydroxyphenyl)propane, 2,2-bis(3,5-dichloro-4-hydroxyphenyl)propane, and 9,9-bis(3,5-dibromo-4-hydroxyphenyl)fluorene. The invention also includes the method of using the membrane, made as described above, either in a single-stage process or in a multiple-stage process, to provide the desired product gas. Several membrane units, made according to the present invention, may be manifolded together so as to operate in a parallel fashion, to provide an increased volume of product gas at the same desired purity.
    Type: Grant
    Filed: December 9, 1998
    Date of Patent: January 2, 2001
    Assignee: MG Generon, Inc.
    Inventors: John A. Jensvold, Thomas O. Jeanes
  • Patent number: 6165253
    Abstract: A vaporizable solute transfer system for transferring a vaporizable solute from a gas feed mixture to an absorbent liquid comprises an absorption module, a porous membrane which divides the absorption module into a gas-feed chamber and an absorbent chamber, a regeneration module, and a nonporous material which divides the regeneration module into an absorbent chamber and a vacuum atmosphere chamber. The absorption module has gas feed mixture inlet and outlet ports which communicate with the gas feed chamber, and absorbent liquid inlet and outlet ports which communicate with the absorbent chamber. The regeneration module has a liquid absorbent inlet and outlet port which communicate with the liquid absorbent chamber, and a vacuum outlet port which communicates with the vacuum chamber.
    Type: Grant
    Filed: May 23, 1994
    Date of Patent: December 26, 2000
    Assignee: New Jersey Institute of Technology
    Inventors: Kamelesh K. Sirkar, Sudipto Majumdar, Tarun Poddar
  • Patent number: 6156096
    Abstract: A method of separating at least one gaseous component from a feed comprising a mixture of gases using a liquid membrane barrier and a sweep fluid is disclosed that includes selecting a sweep gas or a sweep liquid membrane and providing a treatment zone in a treatment chamber having a plurality of hydrophobic microporous hollow fibers, the treatment chamber having opposed end walls with ports including feed and membrane inlets and a sweep outlet at one end and a sweep inlet and a feed and membrane outlets at the opposed end and a plurality of hydrophobic elongated microporous hollow fibers extending between the feed and sweep inlet ports and feed and sweep outlet ports respectively and arranged for counter-current flow of feed gas and sweep fluids therethrough.
    Type: Grant
    Filed: March 26, 1997
    Date of Patent: December 5, 2000
    Assignee: Applied Membrane Technology, Inc.
    Inventor: Kamalesh K. Sirkar
  • Patent number: 6156097
    Abstract: A process for removing carbon dioxide from a fluorocarbon carbon dioxide mixture in which the fluorocarbon carbon dioxide mixture is contacted with a semipermeable polyimide membrane to form at least one exit stream having an increased concentration of carbon dioxide and at least one exit stream having a reduced concentration of carbon dioxide.
    Type: Grant
    Filed: May 1, 1998
    Date of Patent: December 5, 2000
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: William G. O'Brien, Charles J. Noelke, Raymond C. Harker, David John Van Bramer
  • Patent number: 6152986
    Abstract: A method of enriching chlorine gas is described, which method comprises: (a) providing a supported ceramic membrane having a feed side and a permeate side; (b) bringing a feed gas comprising chlorine gas and contaminant gas into contact with the feed side of the ceramic membrane; (c) removing a gaseous permeate depleted in chlorine from the permeate side of the ceramic membrane; and (d) recovering a gas enriched in chlorine from the feed side of the ceramic membrane. The supported ceramic membrane has pore diameters in the range of from 3 angstroms to 12 angstroms. Preferably, the supported ceramic membrane is a substantially cylindrical supported ceramic membrane having a substantially cylindrical internal coaxial passage.
    Type: Grant
    Filed: July 7, 1999
    Date of Patent: November 28, 2000
    Assignee: PPG Industries Ohio, Inc.
    Inventor: Peter C. Foller
  • Patent number: 6128919
    Abstract: A process for separating natural gas and carbon dioxide from a raw feed stream, such as in carbon dioxide for EOR processes. Separation is by membrane separation at low pressures. By utilizing low pressure separation, highly selective membranes can be used and recycling becomes practical.
    Type: Grant
    Filed: September 22, 1998
    Date of Patent: October 10, 2000
    Assignee: Messer Griesheim Industries, Inc.
    Inventors: Paul A. Daus, Charles R. Pauley, deceased
  • Patent number: 6123749
    Abstract: A process for separating carbon dioxide from an unsaturated fluorinated compound carbon dioxide mixture comprising contacting the unsaturated fluorinated compound carbon dioxide mixture with a semipermeable membrane to form at least one exit stream having an increased concentration of carbon dioxide and at least one other exit stream having a reduced concentration of carbon dioxide.
    Type: Grant
    Filed: May 1, 1998
    Date of Patent: September 26, 2000
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: William G. O'Brien, Charles J. Noelke, Raymond C. Harker, David John Van Bramer
  • Patent number: 6120689
    Abstract: A method for producing high purity product water using a three pass reverse osmosis system.
    Type: Grant
    Filed: April 8, 1998
    Date of Patent: September 19, 2000
    Assignee: Zenon Environmental, Inc.
    Inventors: Anthony A. Tonelli, Ake Deutschmann, Susan L Wesno
  • Patent number: 6106591
    Abstract: A process for inhibiting the formation of carbon and/or coke from a carbon-containing reactive gas stream on the permeate side of an oxygen ion transport membrane, or for increasing the oxygen partial pressure thereon, by separating a feed gas stream to form an oxygen-depleted gas stream on the retentate side and a gas stream containing oxygen reaction products on the permeate side. The permeate side is purged with the carbon-containing reactive gas stream, and at least a portion of the exhaust gas stream formed from the reaction of the reactive gas stream with the separated oxygen is recirculated to purge the permeate side.
    Type: Grant
    Filed: November 5, 1998
    Date of Patent: August 22, 2000
    Assignee: Praxair Technology, Inc.
    Inventors: Nitin Ramesh Keskar, Ravi Prasad, Christian Friedrich Gottzmann
  • Patent number: 6096114
    Abstract: A process for recovering SF.sub.6 from a gas is provided. The process includes the step of contacting a gas stream comprising SF.sub.6 and at least one of N.sub.2, O.sub.2, CO.sub.2, and H.sub.2 O with a membrane in at least one membrane separation unit at conditions effective to obtain a retentate stream rich in SF.sub.6 and a permeate stream rich in at least one of N.sub.2, O.sub.2, CO.sub.2, and H.sub.2 O. A process for forming solidified Mg metal is also provided. The process includes recovering and/or recycling of SF.sub.6 and/or CO.sub.2.
    Type: Grant
    Filed: October 30, 1998
    Date of Patent: August 1, 2000
    Assignees: American Air Liquide, Inc., Air Liquide Canada, Inc.
    Inventors: Yao-En Li, Magdy Meimari
  • Patent number: 6085549
    Abstract: A process for producing carbon dioxide from a gas stream containing same pretreats the incoming raw gas to remove contaminants and particularly to protect degradation of the membranes utilized for separation. The temperatures of the various gas streams are carefully controlled to reduce water from the stream. By-product and other gas streams of the process are recycled in order to increase efficiency by utilizing the heating or cooling properties of the streams. In addition, streams containing minor portions of carbon dioxide are returned to the system for recovery.
    Type: Grant
    Filed: April 8, 1998
    Date of Patent: July 11, 2000
    Assignee: Messer Griesheim Industries, Inc.
    Inventors: Paul A. Daus, Charles R. Pauley, John W. Koenst, Fred Coan
  • Patent number: 6086768
    Abstract: Emulsions containing dense gas, liquid and a surfactant which may have been used for extraction of a solute from a substance or for other purposes are demulsified by passage through a membrane contactor. An emulsion flow path in the contactor is separated from a dense gas and surfactant flow path by membrane having pores which enable passage of the dense gas and surfactant constituents of the emulsion through the membrane while inhibiting passage of the liquid and any solute which may be therein. The membrane may be a plurality of hollow fibers. A portion of the recovered dense gas may be vaporized, temperature adjusted and be repressurized and be redirected into the dense gas and surfactant flow path to increase processing rate. Recovered dense gas and surfactant may be returned to the emulsion source for reuse therein.
    Type: Grant
    Filed: September 8, 1998
    Date of Patent: July 11, 2000
    Assignee: Porocrit L.L.C.
    Inventor: Marc Sims
  • Patent number: 6071326
    Abstract: The production of naphtha gas from landfill gas is preferably accomplished through a gas purification step, a catalytic conversion of methane gas to hydrogen gas, and a blending step in which various process streams are blended to produce the naphtha gas stream. The landfill gas stream is first treated through a gas purification/separation procedure to produce a substantially pure methane stream. The purified methane stream is then split into at least two portions. The first portion is fed into a hydrogen reformer and a shift reactor, where the methane gas is converted into a hydrogen-bearing stream which includes hydrogen and carbon dioxide. The second portion of the stream is preferably fed into a mixer. In the mixer, the pure methane stream, the hydrogen-bearing stream and a portion of the purified landfill gas stream are preferably blended together to form a naphtha gas stream.
    Type: Grant
    Filed: July 16, 1998
    Date of Patent: June 6, 2000
    Assignee: Ecogas Corporation
    Inventor: Thomas Lee Hall
  • Patent number: 6024774
    Abstract: The chemical reaction apparatus of the present invention can increase the producing rate of the main product gas by effectively removing carbon dioxide from the reaction site, the carbon dioxide generated together with the main product as the raw material gas is made to react at a high temperature of 400.degree. C. The reaction apparatus comprises a reactor for generating a main product gas and a byproduct gas which is carbon dioxide, by making a raw material gas to react, and lithium zirconate granular material placed in the reactor, to react with the byproduct carbon dioxide gas, thereby preparing a carbonate salt.
    Type: Grant
    Filed: September 25, 1997
    Date of Patent: February 15, 2000
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuaki Nakagawa, Hideyuki Ohzu, Toshiyuki Ohashi, Yoshihiro Akasaka, Norihiro Tomimatsu
  • Patent number: 6007603
    Abstract: A system for controlling the atmosphere in the container comprising a membrane separation apparatus to separate nitrogen and a second separation apparatus, adapted to separate carbon dioxide and water vapor from a gas mixture in the container. The separated nitrogen is returned to the container, as is at least a portion of the carbon dioxide and water vapor, so as to produce and/or maintain a pre-determined atmosphere composition within the container thereby to prevent spoilage of perishable products within the container.
    Type: Grant
    Filed: June 26, 1998
    Date of Patent: December 28, 1999
    Assignee: The BOC Group plc
    Inventor: Michael E. Garrett
  • Patent number: 5997745
    Abstract: A method for producing high purity product water using a three pass reverse osmosis system.
    Type: Grant
    Filed: April 8, 1998
    Date of Patent: December 7, 1999
    Assignee: Zenon Environmental Inc.
    Inventors: Anthony A. Tonelli, Ake Deutschmann, Susan L Wesno
  • Patent number: 5976220
    Abstract: A diffusional gas transfer system and method having a membrane disposed between a first gas domain and a second gas domain. The first gas domain includes a first mechanism for directing a first environmental gas flow transversely over and in contact with a first surface of the membrane. The second gas domain includes a second mechanism for directing a second environmental gas flow transversely over and in contact with a second surface of the membrane. The membrane is a diffusional gas transfer medium having a multiplicity of tortuous pathways extending from the first surface of the membrane to the second surface of the membrane. The void volume fraction of the membrane is at least 0.2. The membrane is capable of substantially blocking the transfer of particles from the first gas domain to the second gas domain, while permitting the diffusion of gases between the first and second gas domains.
    Type: Grant
    Filed: December 9, 1996
    Date of Patent: November 2, 1999
    Assignee: 3M Innovative Properties Company
    Inventors: David L. Braun, Ricardo Lira
  • Patent number: 5976222
    Abstract: A process for the separation and recovery of fluorochemicals from a gas stream containing a diluent gas and fluorochemicals by contact of the gas stream with a membrane system in combination with an adsorption system, the adsorption system used either before or after the membrane system.
    Type: Grant
    Filed: March 23, 1998
    Date of Patent: November 2, 1999
    Assignee: Air Products and Chemicals, Inc.
    Inventors: James Hsu-Kuang Yang, Iosif Chernyakov, Thomas Hsiao-Ling Hsiung, Alexander Schwarz
  • Patent number: 5944874
    Abstract: A process for separating a feed gas stream containing elemental oxygen and nitrogen to produce a purified nitrogen gas stream by removing oxygen from the feed gas stream using an ion transport membrane to produce a retentate gas stream and a permeate gas stream, wherein the feed gas stream or the retentate gas stream is purified to remove impurities either before or after the separation step to produce the purified nitrogen gas stream.
    Type: Grant
    Filed: June 23, 1997
    Date of Patent: August 31, 1999
    Assignee: Praxair Technology, Inc.
    Inventors: Ravi Prasad, Christian Friedrich Gottzmann, Homer Fay
  • Patent number: 5928410
    Abstract: A supported gas separation membrane for separating a particular component from a mixture of gases, a process for its manufacture and the use of the membrane in the separation of gases are provided in which the supported gas separation membrane comprises (a) a porous polymeric support layer and (b) an asymmetric gas separation membrane layer formed from a polyimide having repeating units of the general formula: ##STR1## wherein R is: ##STR2## and x is an integer.
    Type: Grant
    Filed: December 9, 1997
    Date of Patent: July 27, 1999
    Assignee: Texaco Inc.
    Inventors: Yajnanarayana H. R. Jois, John Reale, Jr.
  • Patent number: 5922104
    Abstract: This invention provides a polyamide separation membrane, prepared from high molecular weight polyamide having a repeating unit represented by the formula (I) and a process for separating gaseous mixtures using them. ##STR1## wherein, R is an aliphatic or aromatic organic group derived from dicarboxylic acid or halide. The polyamide separation membrane according to the present invention has a large free volume and good permeation properties such as permeability and permeation selectivity.
    Type: Grant
    Filed: November 10, 1997
    Date of Patent: July 13, 1999
    Assignee: Korea Institute of Science and Technology
    Inventors: Hyun Chae Park, Jae Sik Na, Yong Soo Kang, Chul Joo Lee
  • Patent number: 5919285
    Abstract: Processes and systems to recover at least one perfluorocompound gas from a gas mixture are provided. In one embodiment the inventive process comprises the steps of a) providing a gas mixture comprising at least one perfluorocompound gas and at least one carrier gas, the gas mixture being at a predetermined pressure; b) providing at least one glassy polymer membrane having a feed side and a permeate side; c) contacting the feed side of the at least one membrane with the gas mixture; d) withdrawing from the feed side of the membrane as a non-permeate stream at a pressure which is substantially equal to the predetermined pressure a concentrated gas mixture comprising essentially the at least one perfluorocompound gas; and e) withdrawing from the permeate side of the membrane as a permeate stream a depleted gas mixture comprising essentially the at least one carrier gas.
    Type: Grant
    Filed: April 3, 1998
    Date of Patent: July 6, 1999
    Assignees: American Air Liquide, Inc., l'Air Liquide, Societe Anonyme Pour l'Etude et, l'Exploitation Des Procedes Georges Claude
    Inventors: Yao-En Li, Joseph E. Paganessi, David Vassallo, Gregory K. Fleming
  • Patent number: 5876486
    Abstract: The invention relates to a method and to an apparatus for continuously removing metabolically produced carbon dioxide from respired air, such as the air found in life support systems or cabin circulating systems, using two sets of hollow fibers disposed in a flowing, carbon dioxide-selective liquid membrane. The carbon dioxide-containing respired air flows through the first set of hollow fibers and the second set of hollow fibers serves to carry away the permeate stream.
    Type: Grant
    Filed: September 9, 1996
    Date of Patent: March 2, 1999
    Assignee: Dornier GmbH
    Inventors: Juergen Steinwandel, Walter Jehle, Burkhard Wagner, Theodor Staneff
  • Patent number: 5873928
    Abstract: A membrane process and apparatus are described for the production of a desired very high purity permeate gas by use of a multiple stage membrane process wherein in a primary stage a process feed gas mixture is provided to a primary membrane separator unit comprising a membrane having a relatively high intrinsic permeability to provide an intermediate permeate gas and a retentate gas, and providing the intermediate permeate gas in a secondary stage to a secondary membrane separator unit comprising a membrane having a relatively low intrinsic permeability, to produce therefrom a very high purity permeate gas product.
    Type: Grant
    Filed: December 23, 1996
    Date of Patent: February 23, 1999
    Assignee: Enerfex, Inc.
    Inventor: Richard A. Callahan
  • Patent number: 5855647
    Abstract: A process for recovering SF.sub.6 from a gas is provided. The process includes the step of contacting a gas stream comprising SF.sub.6 and at least one of N.sub.2, O.sub.2, CO.sub.2, and H.sub.2 O with a membrane in at least one membrane separation unit at conditions effective to obtain a retentate stream rich in SF.sub.6 and a permeate stream rich in at least one of N.sub.2, O.sub.2, CO.sub.2, and H.sub.2 O.
    Type: Grant
    Filed: May 15, 1997
    Date of Patent: January 5, 1999
    Assignee: American Air Liquide, Inc.
    Inventors: Yao-En Li, Magdy Meimari