Plural Layers (e.g., Laminated Barrier, Etc.) Patents (Class 96/11)
  • Patent number: 7763097
    Abstract: A device for removal of at least a portion of carbon dioxide from an aqueous fluid includes at least one membrane through which carbon dioxide can pass to be removed from the fluid and immobilized carbonic anhydrase on or in the vicinity of a first surface of the membrane to be contacted with the fluid such that the immobilized carbonic anhydrase comes into contact with the fluid. The first surface exhibits carbonic anhydrase activity of at least 20% of maximum theoretical activity of the first surface of the membrane based on monolayer surface coverage of carbonic anhydrase in the case that the carbonic anhydrase is immobilize on the first surface.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: July 27, 2010
    Assignee: University of Pittsburgh—of the Commonwealth System of Higher Education
    Inventors: William J. Federspiel, Alan J. Russell, Heung-Il Oh, Joel L. Kaar
  • Patent number: 7758678
    Abstract: A housing of an air cleaner has an air inlet port and an air outlet port, and incorporates an air filter. In the housing, a fuel adsorption filter is arranged downstream of the air filter in such manner as to intersect an air passage. An open portion and a sheet-like adsorption portion are vertically defined in an outer frame of the fuel adsorption filter. The adsorption portion has a fuel adsorbing function. A weir is provided in a boundary between the open portion and the adsorption portion. The weir limits air flow from the upstream side of the adsorption portion to the upstream side of the open portion. A flow straightening plate having a flow straightening function is provided in the open portion.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: July 20, 2010
    Assignees: Toyota Boshoku Kabushiki Kaisha, Toyota Jidosha Kabushiki Kaisha
    Inventors: Tomohiro Yoshida, Tatsuya Oyama, Haruhiko Saito, Tohru Ohba, Shinichi Kamiya, Masaki Aihara, Yoichi Ishihara
  • Patent number: 7758679
    Abstract: A treating unit that comprises an absorber unit for contacting a regenerated solvent with a gas stream loaded with contaminants to yield a treated gas stream and a loaded solvent stream; a regenerator unit for stripping the loaded solvent stream to yield a loaded gas stream and the regenerated solvent; and a device for smoothing contaminant peak concentrations in the loaded solvent stream and for receiving the loaded solvent stream. The device comprises a first hold-up tank having a first inlet and a first outlet, a second hold-up tank having a second inlet and a second outlet, and an inlet distributor that is operatively connected to the first inlet and to the second inlet and that provides for directing flow of the loaded solvent stream to either the first hold-up tank or the second hold-up tank.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: July 20, 2010
    Assignee: Shell Oil Company
    Inventors: Anders Carlsson, Gijsbert Jan Van Heeringen, Thijme Last
  • Patent number: 7753991
    Abstract: A water transport assembly, is provided including a housing having a first chamber therein, which is accessible through an opening in the housing. The housing additionally includes a sample inlet port and a sample outlet port, both of which are in fluid communication with the first chamber. A flat ion exchange membrane is attached to the housing in a plane over the opening in the housing, to seal the opening in a vapor tight seal. Water will pass through the membrane based upon the vapor pressure on each side of the membrane, to either dry or humidify sample passing through the first chamber. When the flat ion exchange membrane is a flat, thin ion exchange membrane it is preferable that the thin ion exchange membrane have a thickness of between about 0.1 and about 3.0 mils.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: July 13, 2010
    Assignee: Kertzman Systems, Inc.
    Inventor: Jack Kertzman
  • Patent number: 7749312
    Abstract: An air conditioning system comprising a gas-impermeable wall defining a space for air conditioning, and a selective separating member disposed in the wall as a part of the wall, having a function of allowing preferential permeation of oxygen and carbon dioxide and at the same time, blocking the permeation of hydrocarbon, nitrogen oxide, sulfur oxide and a fine solid component, in which the selective separating member comprises an organic polymer and satisfies the relationship of P1/P2>10 wherein P1 is the permeation coefficient of oxygen and carbon dioxide and P2 is the permeation coefficient of hydrocarbon, nitrogen oxide, sulfur oxide and a fine solid component.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: July 6, 2010
    Assignee: Denso Corporation
    Inventors: Kenji Takigawa, Tetsuo Toyama, Hitoshi Hayashi
  • Patent number: 7749305
    Abstract: A hydrogen purification system and method that utilizes a hydrogen separator with a novel composite structure. The hydrogen separator has a first porous layer of a hydrogen permeable material. The first porous layer is comprised of premanufactured nano-particles of hydrogen permeable material that have been bonded together. A solid layer of the same hydrogen permeable material is then disposed onto the first porous layer. A pressure differential is created across the structure of the composite hydrogen separator. The porous layer of hydrogen permeable material supports the solid layer and enables the solid layer to withstand large pressure differentials. Furthermore, the porous layer of the hydrogen permeable material bonds to the solid layer, thereby greatly increasing the effective surface area of the solid layer that is exposed to hydrogen gas. Accordingly, a large flow rate of hydrogen gas can be obtained in a small amount of space.
    Type: Grant
    Filed: September 3, 2006
    Date of Patent: July 6, 2010
    Inventors: Peter R. Bossard, Jacques Mettes
  • Patent number: 7744990
    Abstract: In a through hole closing process, a metal plate is attached to one surface of a conductive base member having a plurality of through holes by the use of a magnet, in a copper plating process, a copper plating layer is formed on the conductive base member and the metal plate exposed within the through holes, from the side of the conductive base member where the metal plate is not attached, thereby to fill up the through holes, in a film forming process, a Pd alloy film is formed by plating on the surface of the conductive base member after removal of the metal plate, and in a removal process, the copper plating layer is removed by selective etching, thereby to produce a hydrogen production filter that is used in a reformer of a fuel cell so as to be capable of stably producing high purity hydrogen gas.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: June 29, 2010
    Assignee: Dai Nippon Insatsu Kabushiki Kaisha
    Inventors: Hiroshi Yagi, Takanori Maeda, Yoshinori Oota, Yasuhiro Uchida
  • Patent number: 7744675
    Abstract: A gas separation membrane and a method of manufacturing such gas separation membrane that comprises a porous substrate treated with a layer of metal-coated inorganic oxide particles and with the layer of such metal-coated inorganic oxide particles being coated with an overlayer of a gas-selective material.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 29, 2010
    Assignee: Shell Oil Company
    Inventors: John Charles Saukaitis, Alan Anthony Del Paggio
  • Publication number: 20100132546
    Abstract: Composite structures are described that have a porous anodic oxide layer such as, for example, a porous anodic aluminum oxide layer. In one aspect, the present invention includes a composite gas separation module having a porous metal substrate; a porous anodic aluminum oxide layer, wherein the porous anodic aluminum oxide layer overlies the porous metal substrate; and a dense gas-selective membrane, wherein the dense gas-selective membrane overlies the porous anodic aluminum oxide layer. A composite filter is described having a porous non-aluminum metal substrate; and a porous anodic aluminum oxide layer, wherein the porous anodic aluminum oxide layer defines pores extending through the porous anodic aluminum oxide layer. Methods for fabricating composite gas separation modules and composite filters and methods for selectively separating hydrogen gas from a hydrogen gas-containing gaseous stream are also described.
    Type: Application
    Filed: April 4, 2008
    Publication date: June 3, 2010
    Inventors: Yi Hua Ma, Ivan P. Mardilovich
  • Publication number: 20100116138
    Abstract: Multi-phase filter media, as well as related articles, components, filter elements, and methods, are disclosed.
    Type: Application
    Filed: June 19, 2009
    Publication date: May 13, 2010
    Applicant: Hollingsworth & Vose Company
    Inventors: Douglas M. Guimond, Mark Snyder
  • Publication number: 20100116130
    Abstract: A method of making a supported gas separation molecular sieve membrane. In this method a porous support, which is preferably pretreated, is contacted with a molecular sieve synthesis mixture under hydrothermal synthesis conditions. The contacting step is conducted for a shortened crystallization time period. The resulting coated porous support is calcined to yield the supported gas separation molecular sieve membrane having particularly good gas separation characteristics.
    Type: Application
    Filed: May 15, 2009
    Publication date: May 13, 2010
    Inventors: Moises Abraham Carreon, Zaida Diaz, John Lucien Falconer, Hans Heinrich Funke, Shiguang Li, Brendan Dermot Murray, Richard Daniel Noble, Paul Jason Williams
  • Patent number: 7713332
    Abstract: A carbon dioxide separation system for a fuel cell system having a small volume and weight of a separation device and of a membrane, at simultaneous increase of the separated volume of carbon dioxide, comprises a separation device for containing a fluid phase, a carbon dioxide phase, and a two phase fluid including fluid and carbon dioxide. The separation device comprises a two phase fluid inlet, a fluid outlet, a carbon dioxide outlet, a carbon dioxide separation membrane, and a flow restrictor creating a backpressure which presses separated carbon dioxide through the carbon dioxide separation membrane. The flow restrictor comprises at least one narrow aperture, and is mounted downstream of the separation device. The carbon dioxide separation membrane is positioned in the separation device in such a manner that at least a part of the total membrane area is arranged above a two phase fluid level and is in touch with carbon dioxide contained in the separation device above the two phase fluid level.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: May 11, 2010
    Assignees: Samsung SDI Co., Ltd., Samsung SDI Germany GmbH
    Inventor: Matthias Bronold
  • Publication number: 20100107881
    Abstract: Various high performance, high efficiency filter media are provided that are cost effective and easy to manufacture. In particular, various filter media are provided having at least one layer with a waved configuration that results in an increased surface area, thereby enhancing various properties of the filter media. The filter media can be used to form a variety of filter elements for use in various applications.
    Type: Application
    Filed: July 24, 2009
    Publication date: May 6, 2010
    Applicant: Hollingsworth & Vose Company
    Inventors: David T. Healey, Richard Gahan
  • Patent number: 7708812
    Abstract: A hydrogen gas separator fixing structure includes a gas separator having a support and a membrane provided on at least one surface of the support, which membrane contains a first metal capable of separating hydrogen gas from a hydrogen-containing gas, a metal flange connected to at least one open end of the gas separator, a bonding layer containing a second metal, provided at the portion at which the gas separator and the metal flange are connected to each other and on the surface of the gas separation membrane side of the portion, a packing provided on the bonding layer, and a ring-shaped metal member capable of fixing the packing by pressing, provided so that at least part thereof is in contact with the bonding layer, wherein the bonding layer is provided by a heat treatment conducted at a temperature lower than the melting point of the second metal.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: May 4, 2010
    Assignee: NGK Insulators, Ltd.
    Inventors: Masayuki Shinkai, Osamu Sakai
  • Patent number: 7708810
    Abstract: A gas permeable, carbon based, nanocomposite membrane comprises a nanoporous carbon matrix comprising a pyrolyzed polymer, and a plurality of nanoparticles of carbon or an inorganic compound disposed in the matrix. The matrix is prepared by pyrolyzing a polymer, and nanoparticles of the particulate material are disposed in the polymer prior to pyrolysis. The particles may be disposed in a precursor of the polymer, which precursor is subsequently polymerized, or in the polymer itself.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: May 4, 2010
    Assignee: The Penn State Research Foundation
    Inventors: Henry C. Foley, Ramakrishnan Rajagopalan, Anna R. Merritt
  • Publication number: 20100101419
    Abstract: [Object] To provide a hydrogen separation apparatus provided with an independent hydrogen permeable membrane and capable of suppressing or preventing deformation of the hydrogen permeable membrane, and a production process therefor. [Solving Means] A hydrogen separation apparatus includes a porous support member, an independent hydrogen permeable membrane disposed adjacent to the porous support member, and a joining member for joining the porous support member and the hydrogen permeable membrane.
    Type: Application
    Filed: June 5, 2008
    Publication date: April 29, 2010
    Inventors: Maki Hoshino, Takao Izumi
  • Patent number: 7703472
    Abstract: A gas flow isolation device includes a gas flow isolation valve movable from an opened condition to a closed condition. The module isolation valve in one embodiment includes a rupture disk in flow communication with a flow of gas when the module isolation valve is in an opened condition. The rupture disk ruptures when a predetermined pressure differential occurs across it causing the isolation valve to close. In one embodiment the valve is mechanically linked to the rupture disk to maintain the valve in an opened condition when the rupture disk is intact, and which permits the valve to move into a closed condition when the rupture disk ruptures. In another embodiment a crushable member maintains the valve in an open condition, and the flow of gas passed the valve upon rupturing of the rupture disk compresses the crushable member to close the isolation valve.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: April 27, 2010
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael Francis Carolan, John Albert Cooke, Michael David Buzinski
  • Patent number: 7699911
    Abstract: Ozone resistant O2/N2 gas separation membranes comprise a polymer membrane and an ozone reacting component, such as an antioxidant. The antioxidant may be included in the support layer of a composite membrane or included in the entire structure of an asymmetric membrane. The antioxidants in the separation membrane reduce oxidation and deterioration of the actual separation layer of the membrane.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: April 20, 2010
    Assignee: Honeywell International Inc.
    Inventors: Shaojun J. Zhou, Stephen F. Yates
  • Publication number: 20100092353
    Abstract: A hydrogen separation membrane comprising a palladium alloy that includes at least palladium, an added metal A, and an added metal B, the added metal A and the added metal B being two different metals other than palladium, each of the added metal A and the added metal B forming a complete solid solution with palladium, and the added metal A and the added metal B having a triple point in an equilibrium diagram and not forming an intermetallic compound. The hydrogen separation membrane exhibits excellent hydrogen permeability and durability.
    Type: Application
    Filed: November 20, 2009
    Publication date: April 15, 2010
    Applicant: NGK Insulators, Ltd.
    Inventor: Kenichi NODA
  • Patent number: 7695550
    Abstract: An apparatus that comprises a membrane having a plurality of fluid-support-structures and openings located between the fluid-support-structures. The fluid-support-structures have at least one dimension that that is about 1 millimeter or less. The apparatus also comprises a wicking material positioned adjacent to a surface of the membrane. When a fluid locatable on a surface of the fluid-support-structures penetrates the fluid-support-structures, at least a portion of the fluid passes through the openings and into the wicking material.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: April 13, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Thomas Nikita Krupenkin, Victor Alexander Lifton, Joseph Ashley Taylor, Brijesh Vyas
  • Publication number: 20100083839
    Abstract: A hydrogen permeable module includes a hydrogen permeable membrane that permeates hydrogen, an outer peripheral part of the hydrogen permeable membrane being restricted, an inside of the outer peripheral part of the hydrogen permeable membrane being not restricted. The hydrogen permeable module permeates the hydrogen by constantly keeping a pressure of a primary side to a pressure that is equal to or more than a pressure of a secondary side. The inside of the outer peripheral part of the hydrogen permeable membrane is not restricted so as to be capable of expanding to the secondary side.
    Type: Application
    Filed: March 23, 2009
    Publication date: April 8, 2010
    Applicants: The Japan Steel Works, Ltd., National University Corporation Kitami Institute of Technology
    Inventors: Tsuyoshi SASAKI, Tomohiro UENO, Toshiki KABUTOMORI, Kiyoshi AOKI, Kazuhiro ISHIKAWA
  • Publication number: 20100071550
    Abstract: An air filter for purging unwanted substances from air, the air filter comprising: an acid-purging stage, wherein the acid-purging stage comprises an air-permeable skeleton which has an acid-neutralizing substance mounted thereto, wherein the air-permeable skeleton comprises fiberglass fibers and the acid-neutralizing substance comprises sodium bicarbonate, and further wherein the sodium bicarbonate is secured to the fiberglass fibers using an adhesive; and a solvent-purging stage, wherein the solvent-purging stage comprises solvent-purging granules captured between two air-permeable screens, and further wherein the solvent-purging granules comprise activated carbon granules.
    Type: Application
    Filed: May 13, 2009
    Publication date: March 25, 2010
    Inventor: Francois Hauville
  • Publication number: 20100071556
    Abstract: A Pd alloy membrane and method of making are described.
    Type: Application
    Filed: June 26, 2009
    Publication date: March 25, 2010
    Applicant: THE OHIO STATE UNIVERSITY
    Inventors: Krenar Shgau, Hendrik Verweij
  • Patent number: 7682422
    Abstract: A method for separating and recovering oxygen-rich air from the air, comprising, using a gas separation membrane module where a laminate consisting of a permeate-side spacer for forming a permeate gas channel communicated with a hollow section in a core tube for collecting and discharging a permeate gas and two flat-film gas separation membranes sandwiching the spacer and a feed-side spacer for forming a feed gas channel are spirally wound around the core tube such that the laminate and the feed-side spacer are alternately superimposed, vacuuming the hollow section of the core tube to 95 kPaA (absolute pressure) or less by vacuuming means while feeding the air into the feed gas channel by air feed means such that a maximum feed-air flow rate and a maximum static pressure divided by an effective membrane area of the gas separation membrane are 100 m3/min·m2 or less and 4000 Pa/m2 or less, respectively, to separate and recover oxygen-rich air from the hollow section of the core tube.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: March 23, 2010
    Assignee: UBE Industries, Ltd.
    Inventor: Nozomu Tanihara
  • Patent number: 7682494
    Abstract: Materials for use in proton transport characterized by several formulas are disclosed. Mixed ion and electron conductors may include metals and/or ceramic electron conductors and a proton conducting material. Hydrogen separation membranes may include porous layers and an electrolyte layer including a proton conducting material and an electron conductor. Hydrogen separation membranes may be formed by thermal spray techniques. Hydrogen separation membranes may include a catalyst layer. A method of separating hydrogen from a mixed gas stream includes passing the mixed gas through a first porous layer to an electrolyte layer, dissociating protons and electrons, diffusing the protons and electrons through the electrolyte layer, recombining them, and passing molecular hydrogen through a second porous layer.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: March 23, 2010
    Assignee: ITN Energy Systems, Inc.
    Inventors: Brian S. Berland, Sabina Gade, Ronald W. Schaller, Michael Schwartz
  • Patent number: 7678181
    Abstract: A hydrogen permeable membrane (10) for selectively allowing hydrogen to permeate therethrough includes a metal base layer (12) containing vanadium (V), a metal coating layer (16) containing palladium (Pd), and an intermediate layer (14) that is formed between the metal base layer (12) and the metal coating layer (16) and made of a metal having a higher melting point than the metal base layer (12) and the metal coating layer (16) and possessing hydrogen permeability.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: March 16, 2010
    Assignees: Toyota Jidosha Kabushiki Kaisha, Sumitomo Electric Industries, Ltd
    Inventors: Satoshi Aoyama, Hiromichi Sato, Takashi Uemura, Osamu Mizuno, Kentaro Yoshida, Tomohiko Ihara
  • Patent number: 7669719
    Abstract: A membrane structure is provided. The membrane structure includes a first layer having a plurality of pores; and a second layer disposed on, the first layer. The second layer has a plurality of unconnected pores. At least a portion of the plurality of unconnected pores of the second layer is at least partially filled with a filler such that the first layer is substantially free of the filler. At least a portion of the plurality of unconnected pores of the second layer is in fluid communication with at least one of the pores of the first layer. A method of making a membrane structure is provided. The method includes the steps of providing a first layer having a plurality of interconnected pores; disposing a second layer on the first layer, and filling at least a portion of the unconnected pores of the second layer with a filler such that the first layer is substantially free of the filler.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: March 2, 2010
    Assignee: General Electric Company
    Inventors: Vidya Ramaswamy, Seth Thomas Taylor, James Anthony Ruud, Melissa Suzanne Sander, Anthony Yu-Chung Ku, Mohan Manoharan
  • Publication number: 20100047648
    Abstract: A method of manufacturing a hydrogen separation membrane with a carrier is characterized by including a first step of providing, between the hydrogen separation membrane and the carrier that supports the hydrogen separation membrane, a low-hardness metal membrane having a hardness that is lower than the hardness of the hydrogen separation membrane, and a second step of joining the hydrogen separation membrane, the low-hardness metal membrane, and the carrier by a cold joining method. In this case, it is possible to suppress the deformation of the hydrogen separation membrane, the low-hardness metal membrane, and the carrier and, as a result, it is possible to prevent damaging of the hydrogen separation membrane. The adhesion of the contact between the hydrogen separation membrane and the carrier is also improved. The result is that it is not necessary to increase the severity of the cold joining conditions.
    Type: Application
    Filed: October 25, 2006
    Publication date: February 25, 2010
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, TOYO KOHAN CO., LTD.
    Inventors: Satoshi Aoyama, Yasuhiro Izawa, Kenji Kimura, Shinji Ohsawa, Kazuo Yoshida, Kouji Nanbu
  • Patent number: 7662198
    Abstract: A separation assembly for separating dirt and dust from air in a vacuum cleaner, through which assembly an air flow path extends from an inlet to an outlet. The air flow path extends through an upstream separator and a downstream separator. The downstream separator includes an air-permeable filter element bounding an inner space. The wall sections bounding the air flow path in the area of the downstream separator include at least a transparent section through which the filter element is visible. The inner space is located upstream of an area outside the filter element for filtering air flowing from inside the filter element to outside the filter element.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: February 16, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Kasper Nicolaas Jansen, Margarita Zwanette Van Raalte, Jarno Beekman, Wiebe Wierda, Bernardus Lubbertus Kuiper, Bart-Jan Zwart, Henriette Marieke Seinen
  • Patent number: 7662212
    Abstract: The invention relates to polymeric ultrafiltration or microfiltration membranes of, for instance, Halar, PVDF or PP, incorporating PVME or vinyl methyl ether monomers. The PVME may be present as a coating on the membrane or dispersed throughout the membrane or both. The membranes are preferably hydrophilic with a highly asymmetric structure with a reduced pore size and/or absence of macrovoids as a result of the addition of PVME. The PVME maybe cross-linked. The invention also relates to methods of hydrophilising membranes and/or preparing hydrophilic membranes via thermal or diffusion induced phase separation processed.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: February 16, 2010
    Assignee: Siemens Water Technologies Corp.
    Inventors: Daniel Mullette, Joachim Muller, Neeta Patel
  • Patent number: 7662218
    Abstract: A hydrogen-purification membrane comprises a Pd alloy film joined to one surface of a porous support substrate. Each pore in the porous support substrate is such that between the thickness T of the porous support substrate, the opening diameter D1 of the pore on the side joined to the Pd alloy film and the opening diameter D2 of the pore on the opposite side, there are relations represented by 1.0?D1/T?5.0 and 1.0?D2/T?5.0, and between the opening diameter D1 of the pore on the side joined to the Pd alloy film, the opening diameter D2 of the pore on the opposite side and the opening diameter D3 of the narrowest portion of the pore there are relations represented by D3/D1<0.8, D3/D2<0.9 and D3<250 ?m. Furthermore, the total opening area of the pores on the side joined to the Pd alloy film accounts for 20 to 80% of the area of the porous support substrate.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: February 16, 2010
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Takanori Maeda, Hiroshi Yagi, Asako Harayama
  • Publication number: 20100031816
    Abstract: There is described a method for the removal of gaseous contaminants from the housings of devices sensitive to the presence of such contaminants by means of nanostructured sorbers, wherein the sorber is in the form of a fiber containing an active material at its inside. Nanostructured sorbers and their manufacturing method are also described.
    Type: Application
    Filed: April 1, 2008
    Publication date: February 11, 2010
    Inventors: Roberto Giannantonio, Lorena Cattaneo
  • Publication number: 20100031822
    Abstract: A hydrogen permeable membrane is disclosed. The membrane is prepared by forming a mixture of metal oxide powder and ceramic oxide powder and a pore former into an article. The article is dried at elevated temperatures and then sintered in a reducing atmosphere to provide a dense hydrogen permeable portion near the surface of the sintered mixture. The dense hydrogen permeable portion has a higher initial concentration of metal than the remainder of the sintered mixture and is present in the range of from about 20 to about 80 percent by volume of the dense hydrogen permeable portion.
    Type: Application
    Filed: September 30, 2009
    Publication date: February 11, 2010
    Applicant: UChicago Argonne, LLC
    Inventors: Sun-Ju Song, Tae H. Lee, Ling Chen, Stephen E. Dorris, Uthamalingam Balachandran
  • Patent number: 7658784
    Abstract: Composite materials are provided. A representative material is configured as a composite membrane for gas separation, vapor separation, or pervaporation. The composite membrane comprises at least a first polymer and a second polymer. Processes for the production of composite materials, in particular composite membranes, also are provided.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: February 9, 2010
    Assignee: GKSS-Forschungszentrum Geesthacht
    Inventors: Detlev Fritsch, Klaus-Viktor Peinemann, Dominique De Figueiredo Gomes
  • Patent number: 7658788
    Abstract: An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: February 9, 2010
    Assignees: Air Products and Chemicals, Inc., SOFCO-EFS Holdings LLC
    Inventors: Michael Jerome Holmes, Theodore R. Ohrn, Christopher Ming-Poh Chen
  • Publication number: 20100024651
    Abstract: A membrane contactor system for removing a component from a gas, comprising a housing defining a gas flow path; a microporous membrane positioned in the housing to allow the gas to flow across the membrane, wherein the membrane comprises a structure of nodes connected by fibrils in which surfaces of the structure of nodes and fibrils define a plurality of interconnecting pores extending through the microporous membrane, wherein the plurality of interconnecting pores are configured to allow the component to diffuse therethrough; and an oleophobic coating disposed on the microporous membrane to form a coated membrane and configured to provide oleophobicity to the coated membrane without blocking the plurality of interconnecting pores.
    Type: Application
    Filed: July 30, 2008
    Publication date: February 4, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Vishal Bansal
  • Patent number: 7655075
    Abstract: A method for producing a filter element involving applying a membrane layer to a carrier substrate, etching a membrane chamber, producing pores in the membrane layer, subjecting the membrane layer to an additional treatment to increase the mechanical strength.
    Type: Grant
    Filed: July 3, 2004
    Date of Patent: February 2, 2010
    Assignee: NFT Nonofiltertechnik Gesellschaft Mit Beschrankter Haftung
    Inventor: Wilfried Hofmann
  • Publication number: 20100018397
    Abstract: A composite membrane material characterized by comprising a hydrogen-permeable membrane which is selectively permeable to hydrogen and is formed by rolling to a thickness of 30 ?m or less which is difficult for the membrane by itself to retain its shape, and a shape-retention mesh which is disposed on at least one side of the hydrogen-permeable membrane and is composed of a wire of a high-melting metal which does not cause thermal diffusion into the hydrogen-permeable membrane, wherein the hydrogen-permeable membrane and the shape-retention mesh are superposed and subjected to a pleat processing in a non-bonded state so that they are separable and the hydrogen-permeable membrane has a surface area increased at least 3 times per unit area. This material is used to constitute a hydrogen separation element.
    Type: Application
    Filed: September 15, 2006
    Publication date: January 28, 2010
    Inventors: Hideomi Ishibe, Hiroyasu Taga
  • Publication number: 20100012576
    Abstract: Disclosed are nanoporous carbonaceous membranes and related devices, along with associated methods.
    Type: Application
    Filed: May 11, 2007
    Publication date: January 21, 2010
    Inventors: Elizabeth Nola Hoffman, Gleb Yushin, Yury Gogotsi, Michel W. Barsoum
  • Patent number: 7648566
    Abstract: An apparatus for producing hydrogen gas wherein the apparatus includes a reactor. In one embodiment, the reactor includes at least two conversion-removal portions. Each conversion-removal portion comprises a catalyst section configured to convert CO in the stream to CO2 and a membrane section located downstream of and in flow communication with the catalyst section. The membrane section is configured to selectively remove the CO2 from the stream and to be in flow communication with a sweep gas.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: January 19, 2010
    Assignee: General Electric Company
    Inventors: Wei Wei, James Anthony Ruud, Anthony Yu-Chung Ku, Vidya Ramaswamy, Ke Liu
  • Publication number: 20100005969
    Abstract: An H2-permeable membrane system (117) comprises an electroless-deposited plating (115) of Pd or Pd alloy on a porous support (110, 110?). The Pd plating comprises face-centered cubic crystals cumulatively having a morphology of hexagonal platelets. The permeability to H2 of the membrane plating (115) on the porous support is significantly enhanced, being at least greater than about 1.3×10?8 mol·m?1·s?·Pa?0.5 at 350° C., and even greater than about 3.4×10?8 mol·m?1·s?1·Pa?0.5. The porous support (110, 110?) may be stainless steel (1100 and include a thin ceramic interlayer (110?) on which the Pd is plated. The method of providing the electroless-deposited plating includes preheating a Pd electroless plating solution to near a plating temperature substantially greater than room temperature, e.g. 60° C., prior to plating.
    Type: Application
    Filed: September 28, 2006
    Publication date: January 14, 2010
    Applicant: UTC Power Corporation
    Inventors: Thomas Henry Vanderspurt, Ying She, Zissis Dardas, Craig Walker, James D. MacLeod
  • Publication number: 20100000411
    Abstract: Filter media, as well as related assemblies, systems and methods. Filter media may contain one or more layers formed of a meltblown material.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 7, 2010
    Applicant: Hollingsworth & Vose Company
    Inventors: John A. Wertz, David T. Healey, William S. Freeman, John L. Manns, Mark Rowlands
  • Publication number: 20090320849
    Abstract: A face mask comprising a filter material being a fibrous substrate, especially non-woven polypropylene or polyester, having an acidic polymer, especially of the Carbopol or Gantres type, deposited on the fibres. The mask has an anti-viral activity against inhaled or exhaled air. A filter material suitable for such a mask, and a process for making it are also described.
    Type: Application
    Filed: July 16, 2007
    Publication date: December 31, 2009
    Inventor: Kimberly Biedermann
  • Patent number: 7637985
    Abstract: A dry compressed air module is provided for attachment to the frame of commercial vehicle. The dry compressed air module includes a shell, an air compressor, an air dryer, and a reservoir. The air compressor, the air dryer, and the reservoir are disposed on the shell, and can be collectively attached to the frame using the shell. The air dryer is provided with compressed air from the air compressor, and the reservoir is provided with dry compressed air from the air dryer. The reservoir capable of storing and supplying the dry compressed air to the vehicle.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: December 29, 2009
    Inventors: Fred W. Hoffman, Randall W. Nichols
  • Publication number: 20090314696
    Abstract: An adaptive membrane structure is provided. The adaptive membrane structure has movable membranes that can be made to change its gas, liquid or particulate permeability in response to surrounding environmental conditions. Such adaptive membrane structures can be used to provide protective apparel that is comfortable to wear wherein the level of protection provided is based on conditions in the environment. The adaptive membrane structures can be used to provide protective enclosures.
    Type: Application
    Filed: August 27, 2009
    Publication date: December 24, 2009
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Joseph D. Trentacosta, Vivek Kapur
  • Patent number: 7628841
    Abstract: A process of producing an asymmetric membrane of multicomponent polyimide. The process includes the steps of (1) preparing a multicomponent polyimide blend solution by mixing a polyimide component A having a number-averaged polymerization index NA and a polyimide component B having a number-averaged polymerization index NB, wherein NA and NB satisfies equation 1: 2.35×NA?2.09<NB<450×NA?1.12??1 (2) subjecting the multicomponent polyimide blend solution to further polymerization and imidation reaction, and (3) causing a phase inversion in the resulting multicomponent polyimide blend solution to form an asymmetric membrane. The polyimide component A is raw materials of polyimide A containing a fluorine atom in the chemical structure thereof and/or a polymerization and imidation reaction product of the raw materials. The polyimide component B is raw materials of polyimide B and/or a polymerization and imidation reaction product of the raw materials.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: December 8, 2009
    Assignee: UBE Industries, Ltd.
    Inventors: Toshimune Yoshinaga, Kenji Fukunaga, Yoji Kase
  • Patent number: 7625427
    Abstract: Carbon dioxide is separated from a gas stream using a supported carrier liquid membrane having a selected concentration of carrier species, the method being especially suitable for use in anaesthesia under conditions of periodic flow.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: December 1, 2009
    Assignee: Molecular Products Limited
    Inventors: Michael John Clarke, Ian Hallas
  • Patent number: 7625426
    Abstract: A nano-scale filter (10) includes a porous supporting component (14) and a carbon nanotube filtration membrane (12) sintered on a top surface of the porous supporting component. The porous supporting component has a number of micro-scale pores. The filtration membrane is configured as a network formed by aggregating a number of multi-junction carbon nanotubes. The multi-function carbon nanotubes are selected from the group consisting of two-dimensional junction carbon nanotubes (30, 40, 50, 60), three-dimensional junction carbon nanotubes (20) and an admixture thereof. A method for making the nano-scale filter is also provided.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: December 1, 2009
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Mong-Tung Lin
  • Patent number: 7621979
    Abstract: A carbon film laminate 1 having a porous substrate 6 formed of a plurality of particles and a carbon film 2 provided on a surface of the porous substrate 6, wherein the porous substrate 6 includes a surface layer 3 which is in contact with the carbon film 2 and which is formed of particles 3a having a mean particle size of 0.01 to 0.11 ?m, and a porous body 5 formed of particles having a mean particle size differing from that of the particles 3a forming the surface layer 3. The invention provides a carbon film laminate which does not generate cracks and pinholes of the carbon film and which is suitable for producing thin film thereof.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: November 24, 2009
    Assignee: NGK Insulators, Ltd.
    Inventors: Kazuyuki Kaigawa, Toshihiro Tomita, Manabu Yoshida, Masamichi Obata
  • Patent number: 7621982
    Abstract: A liquid-gas separator for a direct liquid feed fuel cell includes a tube having an opening portion at a sidewall thereof; liquid extracting members that selectively transmit the liquid in the tube and located at both ends of the tube; a gas extracting membrane that selectively transmits the gas and covers the opening portion; an inlet that guides the liquid and the gas into the tube; chambers that surround an outer side of the liquid extracting member; and outlets that guide the liquid in the chambers to the outside by being connected to the chamber.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: November 24, 2009
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-kyun Kang, Xiaobing Luo, Dong-kee Sohn, Hae-kyoung Kim