Plural Solid Sorbent Beds Patents (Class 96/121)
  • Patent number: 8617299
    Abstract: A canister includes a first fuel vapor adsorption device and a second fuel vapor adsorption device. The second fuel vapor adsorption device can adsorb a part of fuel vapor that still remains in a gas after desorption by the first fuel vapor adsorption device. The second fuel vapor adsorption device includes a first passage containing a fuel vapor adsorption material and a second passage containing no fuel vapor adsorption material. The first passage and the second passage allow the gas to flow therethrough. A gas introduction device allows the fuel vapor to flow from the second passage into the first passage.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: December 31, 2013
    Assignee: Aisan Kogyo Kabushiki Kaisha
    Inventors: Masakazu Hasegawa, Masahiro Sugiura
  • Patent number: 8616207
    Abstract: Described herein are various embodiments of an oxygen concentrator system. In some embodiments, an oxygen concentrator system includes one or more components that improve dissipation of heat formed during operation of the oxygen concentrator system.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: December 31, 2013
    Assignee: Inova Labs, Inc.
    Inventor: William R. Wilkinson
  • Publication number: 20130340620
    Abstract: A compact configuration for a plurality of swing adsorption beds. The beds are configured within a single vessel such that one or more beds of adsorbent material are position as successive rings about a first, or core, bed of adsorbent material.
    Type: Application
    Filed: February 27, 2012
    Publication date: December 26, 2013
    Inventor: Narasimhan Sundaram
  • Publication number: 20130340619
    Abstract: Provided are apparatus and systems having a poppet valve assembly and swing adsorption separation techniques related thereto. A poppet valve includes a valve body, a plurality of static valves fixedly secured to the valve body and a single dynamic poppet valve having a plurality of openings. The plurality of static valves align and mate with the plurality of openings. The single dynamic poppet valve reciprocates to selectively open and close the plurality of static valves.
    Type: Application
    Filed: February 27, 2012
    Publication date: December 26, 2013
    Inventor: Robert F. Tammera
  • Publication number: 20130333571
    Abstract: Provided are apparatus and systems having a rotary valve assembly and swing adsorption separation techniques related thereto. The methods utilize a rotary valve assembly to perform swing adsorption processes. The rotary valve assembly includes a feed stator having at least two annular tracks. Each of the annular tracks has an opening to permit fluid flow therethrough. A feed rotor is connected to the feed stator. The feed rotor has at least two annular tracks. Each of the annular tracks has an opening to permit gas to flow therethrough. A bed of adsorbent material may be connected to the feed rotor.
    Type: Application
    Filed: February 27, 2012
    Publication date: December 19, 2013
    Inventors: Narasimhan Sundaram, Richard A. Huntington
  • Publication number: 20130319243
    Abstract: A system and method recover water from an ambient airstream. Dehumidification of the airstream is also achieved by removal of the water. A device of the system includes a chamber having a group of trays that hold respective amounts of liquid desiccant in each tray. Fans, valves, and manifolds are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. The airflow within the chamber and/or each tray is altered depending upon the settings of configurable airflow manifolds. An integral heat exchanger adds heat to the chamber during the extraction cycle. A controller is used to integrate and manage all system functions and input variables to achieve a high efficiency of operational energy use for water collection.
    Type: Application
    Filed: October 25, 2012
    Publication date: December 5, 2013
    Applicant: Z124
    Inventors: James Ball, Charles Becze, Michael J. Flynn, Richard Teltz, Gary Fong, Kean Wing Kin Lam
  • Publication number: 20130312606
    Abstract: A system and method of reducing the net carbon dioxide footprint of an industrial process that generates power from the combustion of hydrocarbon fuels in which ambient air is admixed with up to 50% by volume of an effluent gas from the power generator of the industrial process, in order to substantially increase the CO2 concentration in the air prior to treatment. The treatment comprises adsorbing CO2 from the admixed ambient air utilizing a cooled, porous substrate-supported amine adsorbent, wherein the porous substrate initially contacts the mixed ambient air containing condensed water in its pores, which act as an intrinsic coolant with respect to the exothermic heat generated by the adsorption process.
    Type: Application
    Filed: May 2, 2013
    Publication date: November 28, 2013
    Inventor: Peter Eisenberger
  • Publication number: 20130298774
    Abstract: A conformal filter is disclosed having a plurality of sorbent beds oriented perpendicular to an inner side surface of the filter which conforms to an adjacent surface, such as a wearer's face when attached to a respirator. The inner side of the filter may approximate the curved shape of an interfacing surface. Because the sorbent beds are oriented perpendicular to the inner side surface, a conformal configuration can be achieved without bending the sorbent beds and while keeping constant bed residence time throughout the entire cross-sectional area of the air flow, thus enforcing even air distribution. Reduced bed depth is also achieved through this configuration which consequently reduces the overall pressure drop through the filter. Other embodiments are described and claimed.
    Type: Application
    Filed: July 18, 2013
    Publication date: November 14, 2013
    Inventors: Frank Ding, Edward Powers Simmonds, Michael Lee Parham
  • Patent number: 8580018
    Abstract: A system for isolating a greenhouse gas from an exhaust gas includes a vessel having an inlet to receive an exhaust gas, and an outlet to discharge a process stream, an adsorbent contained in the vessel to selectively adsorb the greenhouse gas from the exhaust gas under suitable conditions, and a heat source to heat the adsorbent and desorb the adsorbed greenhouse gas therefrom to produce a process stream of greenhouse gas for release through the outlet.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: November 12, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Bhupender S. Minhas, Ian A. Cody
  • Publication number: 20130291723
    Abstract: Processes and apparatuses are provided for preparing liquified natural gas from a natural gas feed that comprises C5 to C7 hydrocarbons and C8 or greater hydrocarbons. An exemplary process includes effecting the preferential adsorption of the C8 or greater hydrocarbons from the natural gas feed over adsorption of hydrocarbons having less than 8 carbon atoms to provide a C8-depleted natural gas stream. The process continues with effecting the preferential adsorption of the C5 to C7 hydrocarbons from the C8-depleted natural gas stream over adsorption of hydrocarbons having less than 5 carbon atoms to form a C5 to C8-depleted natural gas stream. The C5 to C7 hydrocarbons are preferentially adsorbed with higher selectivity and capacity than adsorption of the C5 to C7 hydrocarbons during preferentially adsorbing the C8 or greater hydrocarbons. The C5 to C8-depleted natural gas stream is then liquified.
    Type: Application
    Filed: May 1, 2012
    Publication date: November 7, 2013
    Applicant: UOP LLC
    Inventors: Lubo Zhou, Shain-Jer Doong, Bradley P. Russell, Henry Rastelli
  • Patent number: 8568519
    Abstract: A portable oxygen concentrator designed for medical use with a novel housing and internal component design that reduces noise and vibration while increasing durability. The improved design of the portable oxygen concentrator further facilitates easy maintenance and repair over the life of the equipment.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: October 29, 2013
    Assignee: Inogen, Inc.
    Inventors: Brenton Taylor, Peter Hansen, John Stump, Patrick Burgess
  • Publication number: 20130269524
    Abstract: The invention relates to an adsorbent zeolite-based material comprising for 100 mass % an amount different from zero of a zeolite selected from X zeolites or LSX zeolites; the balance up to 100 mass % consisting of an amount different from zero of a cation-exchanged zeolite, said cation-exchanged zeolite being selected from cation-exchanged X zeolites and cation-exchanged LSX zeolites.
    Type: Application
    Filed: January 4, 2012
    Publication date: October 17, 2013
    Applicant: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventor: Christian Monereau
  • Patent number: 8551229
    Abstract: Hydrogen sulfide is removed from a hydrogen rich gas stream using adsorbents having a low loss of carbon dioxide adsorption capacity upon sulfur loading including high purity silica gels, titania or highly cross-linked, non-chemically reactive resins. The adsorbents may be used to adsorb both carbon dioxide and hydrogen sulfide, or may be used as a guard bed upstream of a separate carbon dioxide adsorbent.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: October 8, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Jeffrey Raymond Hufton, Timothy Christopher Golden, Robin Joyce Maliszewskyj, Edward Landis Weist, Jr., Robert Quinn, Erin Marie Sorensen
  • Patent number: 8545604
    Abstract: A modular and compact adsorbent bed structure is disclosed for use in an adsorption-based gas separation plant. The conventional adsorbent bed in a gas separation plant is replaced with a plurality of modular adsorbent bed units connected to make the adsorbent bed structure. The modular design requires lower fabrication and maintenance costs; is easier to transport; and is easier to load with adsorbent material.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: October 1, 2013
    Assignee: Praxair Technology, Inc.
    Inventors: Ashwin Desai, Cem E. Celik, Mark William Ackley, James Smolarek
  • Patent number: 8535417
    Abstract: Carbon dioxide-containing gas such as flue gas and a carbon dioxide-rich stream are compressed and the combined streams are then treated to desorb moisture onto adsorbent beds and then subjected to subambient-temperature processing to produce a carbon dioxide product stream and a vent stream. The vent stream is treated to produce a carbon dioxide-depleted stream which can be used to desorb moisture from the beds, and a carbon dioxide-rich stream which is combined with the carbon dioxide-containing gas.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: September 17, 2013
    Assignee: Praxair Technology, Inc.
    Inventor: Minish Mahendra Shah
  • Patent number: 8512458
    Abstract: A carbon nanotube filter, a use for a carbon nanotube filter and a method of forming a carbon nanotube filter. The method including (a) providing a carbon source and a carbon nanotube catalyst; (b) growing carbon nanotubes by reacting the carbon source with the nanotube catalyst; (c) forming chemically active carbon nanotubes by forming a chemically active layer on the carbon nanotubes or forming chemically reactive groups on sidewalls of the carbon nanotubes; and (d) placing the chemically active nanotubes in a filter housing.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: August 20, 2013
    Assignee: International Business Machines Corporation
    Inventors: Steven J. Holmes, Mark C. Hakey, David V. Horak, James G. Ryan
  • Patent number: 8506680
    Abstract: Systems and techniques for the reclamation from boiler flue gas of all or substantially all gaseous substances for well injection oil recovery. A system can include one or more of a boiler for generating high pressure steam, a high pressure water pump, a tower scrubber, an induced draft fan, an absorber, a separating tank, a heat exchanger, a regenerator, a reboiler, a steam boiler, a water segregator, a carbon dioxide compressor, a purifier, a nitrogen compressor, drying beds, adsorption beds, a carbon dioxide pressurizer, a nitrogen pressurizer and a mixing tank of which: the boiler for generating high pressure steam, the tower scrubber, the absorber, the regenerator and the adsorption beds connect with each other in turn. In addition, the mixing tank connects by pipelines with a gas injection tube of an oil well. Mixed gases of carbon dioxide and nitrogen can be obtained for injection into the oil well, thus gaining favorable results of crude oil output increase as well as environment protection.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: August 13, 2013
    Assignee: Liaohe Petroleum Exploration Bureau, CNPC
    Inventors: Fengshan Zhang, Yuanwen Gao
  • Patent number: 8501134
    Abstract: The invention relates to a process and catalyst for the oxidative desulfurization of hydrocarbonaceous oil. In one aspect, solid carbon materials are provided having stable sulfur trioxide and nitrogen dioxide oxidative species on the surface thereof. Such materials are useful in the production of low sulfur hydrocarbon feedstocks and in the removal of refractory sulfur compounds.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: August 6, 2013
    Assignee: Saudi Arabian Oil Company
    Inventor: Ki-Hyouk Choi
  • Patent number: 8500876
    Abstract: An air dehydrator system for supplying a source of dehydrated air includes an offsite data management system; at least one data network; and an air dehydrator located remote from the offsite data management system. The dehydrator includes a housing containing at least one drying canister; a pressurized air source; and a control circuit coupled with the pressurized air source. The control circuit is also in communication via the at least one data network with the offsite data management system. The control circuit controls operation of the pressurized air source dependent upon control by the offsite data management system.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: August 6, 2013
    Assignee: MSX, Incorporated
    Inventors: Thaddeus M. Jones, Lawrence W. Holz, Robert E. Tax
  • Patent number: 8500851
    Abstract: The present disclosure relates generally to contaminant removal from gas streams. In certain embodiments, the present disclosure relates to a process for removing one or more contaminants from a gas stream via contact with a regenerable sorbent at high temperature and pressure, utilizing a unique arrangement of reactors operating in parallel.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: August 6, 2013
    Assignee: Phillips 66 Company
    Inventors: Ronald E. Brown, Daniel T. Fernald
  • Publication number: 20130160651
    Abstract: In an evaporated fuel treatment apparatus, for reducing blow-by of an evaporated fuel component to the outside, the evaporated fuel treatment apparatus includes at least one adsorption chamber filled with a first adsorbent and a second adsorbent that adsorb and desorb a fuel component of evaporated fuel, and the first adsorbent has a higher pore volume than the second adsorbent with respect to effective pores that effectively adsorb and desorb a low-boiling fuel component, and the first adsorbent has a lower pore volume than the second adsorbent with respect to pores smaller than the effective pores and having higher adsorbability and lower desorbability on butane than the effective pores.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 27, 2013
    Applicant: AISAN KOGYO KABUSHIKI KAISHA
    Inventor: Aisan Kogyo Kabushiki Kaisha
  • Patent number: 8460435
    Abstract: An apparatus for producing high-concentration ozone gas has a plurality of adsorption/desorption columns and a plurality of valves capable of switching opening/closing of the passage of gas flowing into or out of the adsorption/desorption columns, such that each of the adsorption/desorption columns can performs ozone adsorption processing, evacuation processing or desorption processing. At least two of the adsorption/desorption columns are placed in a serial cycle arrangement to constitute a main adsorption/desorption column group, and one or more of the other adsorption/desorption columns is placed in parallel with the main adsorption/desorption column group to constitute an auxiliary adsorption/desorption column. The auxiliary adsorption/desorption column performs desorption processing during a period in which none of the adsorption/desorption columns of the main adsorption/desorption column group is performing desorption processing.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: June 11, 2013
    Assignees: Toshiba Mitsubishi-Electric Industrial Systems Corporation, Mitsubishi Electric Corporation
    Inventors: Yoichiro Tabata, Yujiro Okihara, Tetsuya Saitsu, Noriyuki Nakamura, Ryohei Ueda, Koji Ota, Yasuhiro Tanimura
  • Patent number: 8460444
    Abstract: An equipment for the pressurized adsorption of gaseous carbon dioxide from boiler flue gas for oil recovery by well injection comprising a boiler for generating high pressure steam, a high pressure water pump, a tower scrubber, a compressor, an absorber, a separation tank, a flash pot, a solvent pump, a stripper, an air pump, a carbon dioxide compressor, a purifier, a carbon dioxide pressurizer, a drying beds, a membrane module, a nitrogen pressurizer and a mixing tank. With rational design and handsome practicability, the comprehensive mate equipment, when producing steam by the boiler, can obtain carbon dioxide liquid and nitrogen, thus realizing “single injection”, “double injection” or “triple injection” of steam, gaseous carbon dioxide and nitrogen and thereby gaining favorable results of crude oil output increase as well as environment protection.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: June 11, 2013
    Assignee: Liaohe Petroleum Exploration Bureau, CNPC
    Inventors: Fengshan Zhang, Yuanwen Gao
  • Patent number: 8454728
    Abstract: A method is described for recycling hydrogen (H2) supplied to a chamber (10) in a gas stream comprising hydrogen and at least one other gas, such as silane. A gas comprising at least hydrogen is drawn from the chamber (10) using a first vacuum pump (32) that exhausts gas therefrom at a sub-atmospheric pressure. A portion of the gas exhausted from the first vacuum pump (32), for example between 70 and 95% of this gas, is diverted away from a second vacuum pump (34) backing the first vacuum pump (32). In one embodiment, the diverted portion of the sub-atmospheric pressure gas is treated to produce a purified gas comprising hydrogen, which is stored in a storage vessel (14). The composition of the purified gas is analysed, and, depending on the results of the analysis, at least one of hydrogen and silane is added to the stored gas so that the composition of the stored gas is similar to that of the gas initially supplied to the chamber (10). Gas is then supplied to the chamber (10) from the storage vessel (14).
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: June 4, 2013
    Assignee: Edwards Limited
    Inventor: Robert Bruce Grant
  • Patent number: 8440004
    Abstract: A portable oxygen concentrator designed for medical use with a novel housing and internal component design that reduces noise and vibration while increasing durability. The improved design of the portable oxygen concentrator further facilitates easy maintenance and repair over the life of the equipment.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: May 14, 2013
    Assignee: Inogen, Inc.
    Inventors: Brenton Taylor, Peter Hansen, John Stump, Patrick Burgess
  • Patent number: 8425673
    Abstract: Regenerative air dryers are disclosed for feeding pressurized air with a controlled moisture content to a header. In one embodiment, a dryer comprises first and second chambers alternating between drying and regenerating phases. One of the chambers is at the drying phase while the other is at the regenerating phase. A controller is programmed to switch the phase of the chambers between drying and regenerating when the desiccant in the chamber at the drying phase has retained water to a predetermined capacity. A bypass line bypasses both chambers. An input provides air to the chamber at the drying phase and to the bypass line. A dew point feedback system controls a volume of air passing through the bypass line. Means are included for combining air from the bypass line with air exiting the chamber at the drying phase to provide air with a controlled dew point to the header.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: April 23, 2013
    Assignee: Solution Dynamics
    Inventor: Nicholas Edward Burke
  • Patent number: 8425662
    Abstract: Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Gas separation assemblies are provided.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: April 23, 2013
    Assignee: Battelle Memorial Institute
    Inventors: B. Peter McGrail, Praveen K. Thallapally, Wu Xu
  • Publication number: 20130081538
    Abstract: A moisture removal system for removing water moisture from an air stream and an associated method are provided. The moisture removal system includes one or more packed beds that include a water-entry surface at which liquid water is received and an air-entry surface that is located substantially opposite the water-entry surface and at which the air stream is received. The air stream passes through the one or more packed beds in a direction substantially counter-current to the passage of the liquid water and the liquid water and the air stream contact one another in the one or more packed beds resulting in the removal of at least a portion of the water moisture from the air stream. The moisture removal system can be located upstream of and be operably connected to the inlet of a gas turbine system to which the air stream is delivered from the moisture removal system.
    Type: Application
    Filed: October 3, 2011
    Publication date: April 4, 2013
    Applicant: General Electric Company
    Inventors: Abhijeet Madhukar Kulkarni, Richard Michael Ashley Mann, John Carl Davies
  • Patent number: 8409337
    Abstract: A deep bed scrubber filter section comprises includes an unfiltered air input end, a filtered air output end, an airflow filtration path extending from the unfiltered air input end to the filtered air output end, a plurality of media beds along the airflow filtration path in series arrangement with one another, the media beds each having a media bed volume and each being defined by a plurality of sidewalls, two of the sidewalls of each of the media beds being perforated sidewalls at least partially intersecting the airflow filtration path, wherein an adjustable sidewall of at least one of the perforated sidewalls of a first media bed of the media beds is independently removable from the airflow filtration path and is independently adjustable to a plurality of positions along the airflow filtration path, wherein adjustment of the at least one adjustable sidewall of the first media bed alters the media bed volume of the first media bed.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: April 2, 2013
    Assignee: AAF-McQuay Inc.
    Inventors: Michael W. Osborne, M. Aflal Rahmathullah, Cheah Wei Ng
  • Patent number: 8409520
    Abstract: Provided is an ozone concentrator including an ozone generator (3), adsorption/desorption columns (4) in which silica gel (6) cooled with a certain-temperature refrigerant (25) for concentrating ozone generated by the ozone generator (3) is packed, a refrigerating machine (23) for cooling the refrigerant (25), a vacuum pump (20) for enhancing a concentration of the ozone in one of the adsorption/desorption columns (4) by discharging mainly oxygen from the silica gel (6) adsorbing the ozone, a plurality of valves (8) to (13) for air pressure operations, for switching passages of gas that is allowed to flow in or flow out with respect to the adsorption/desorption columns (4), and ozone concentration meters (28, 29) for measuring the concentration of the ozone enhanced by the vacuum pump (20), in which a discharge line of the vacuum pump (20) is connected to another one of the adsorption/desorption columns (4), whereby the ozone is allowed to pass through another one of the adsorption/desorption columns again.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: April 2, 2013
    Assignees: Mitsubishi Electric Corporation, Toshiba Mitsubishi-Electric Industrial Systems Corporation
    Inventors: Koji Ota, Yasuhiro Tanimura, Yoichiro Tabata, Yujiro Okihara, Tetsuya Saitsu, Noriyuki Nakamura, Ryohei Ueda
  • Patent number: 8404022
    Abstract: A method of concentrating ozone gas in which, although the apparatus configuration is simple, ozone gas of a predetermined concentration can be efficiently taken out, and an apparatus therefor are provided. In a method of concentrating ozone gas in which an ozone-oxygen mixture gas is acted in an adsorbing column that is filled with an adsorbent, to cause the adsorbent to selectively adsorb the ozone gas, and the selectively adsorbed ozone gas is desorbed, thereby concentrating and purifying the ozone gas, the ozone-oxygen mixture gas is acted on the adsorbent in a non-cooled state to cause the ozone gas to be selectively adsorbed to the adsorbent, the adsorbing column is vacuumed when performing an operation desorbing of the ozone gas, thereby desorbing the ozone gas from the adsorbent, and an initial amount of the leading out of the desorbed ozone gas is not recovered, thereby obtaining high-concentration ozone gas.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: March 26, 2013
    Assignee: Iwatani Corporation
    Inventors: Kunihiko Koike, Sadaki Nakamura, Naohisa Makihira, Koichi Izumi, Shigenori Takatori
  • Patent number: 8398747
    Abstract: This invention relates in part to a process for producing high purity acetylene by withdrawing a crude acetylene stream from a storage source, and passing said stream through an adsorbent bed that contains layered adsorption media to selectively remove moisture, solvent and carbon dioxide from the stream, thereby producing the high purity acetylene. The adsorption media is regenerated in-situ. The high purity acetylene product is useful as a source material for depositing carbon and carbon-containing films in semiconductor applications.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: March 19, 2013
    Assignee: Praxair Technology, Inc.
    Inventors: Xuemei Song, Lloyd Anthony Brown, Thomas Thompson
  • Patent number: 8377181
    Abstract: A portable oxygen concentrator designed for medical use with a novel housing and internal component design that reduces noise and vibration while increasing durability. The improved design of the portable oxygen concentrator further facilitates easy maintenance and repair over the life of the equipment.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: February 19, 2013
    Assignee: Inogen, Inc.
    Inventors: Brenton Taylor, Peter Hansen, John Stump, Patrick Burgess
  • Patent number: 8361205
    Abstract: A modular and compact adsorbent bed structure is disclosed for use in an adsorption-based gas separation plant. The conventional adsorbent bed in a gas separation plant is replaced with a plurality of modular adsorbent bed units connected to make the adsorbent bed structure. The modular design requires lower fabrication and maintenance costs; is easier to transport; and is easier to load with adsorbent material.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: January 29, 2013
    Assignee: Praxair Technology, Inc.
    Inventors: Ashwin Desai, Cem E. Celik, Mark William Ackley, James Smolarek
  • Patent number: 8361204
    Abstract: A vacuum-pressure swing absorption concentrator includes a motor driven compressor having pressure and vacuum heads that are connected to a pressure reservoir and a vacuum reservoir respectively. The pressure and vacuum reservoirs are selectively and alternately interconnected in sequence through a main valve to a pair of nitrogen filtering sieve beds. A controller operates the valve to alternately and cyclically interconnect the sieve beds to the pressure and vacuum reservoirs respectively. During each cycle, a respective bed is pressurized and enriched oxygen is produced and delivered to a tank for use by a patient. At the same time, the other bed is evacuated through the vacuum reservoir. A crossover valve delivers oxygen from a pressurized bed to an evacuated bed to facilitate purging of impurities previously collected in the evacuated bed.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: January 29, 2013
    Assignee: O2 Concepts, LLC
    Inventor: Stuart Bassine
  • Patent number: 8357234
    Abstract: An apparatus and method for rapid fractionation of hydrocarbon phases in a sample fluid stream are disclosed. Examples of the disclosed apparatus and method include an assembly of elements in fluid communication with one another including one or more valves and at least one sorbent chamber for removing certain classifications of hydrocarbons and detecting the remaining fractions using a detector. The respective ratios of hydrocarbons are determined by comparison with a non separated fluid stream.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: January 22, 2013
    Assignee: UT-Battelle, LLC
    Inventors: Charles S. Sluder, John M. Storey, Samuel A. Lewis, Sr.
  • Patent number: 8328913
    Abstract: A flammable gas concentration system is described, which includes a concentrating apparatus for acquiring at least a portion of the product gas, concentrating the flammable gas included in the acquired product gas, and generating a high-concentration gas; and a mixer for acquiring the raw gas and the high-concentration gas generated by the concentrating apparatus, mixing the acquired high-concentration gas and the raw gas, and generating the product gas.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: December 11, 2012
    Assignee: Osaka Gas Co., Ltd.
    Inventors: Etsuo Shito, Katsuhiko Hirao, Kenji Seki
  • Patent number: 8323603
    Abstract: A method for producing a substantially desulfurized a hydrocarbon fuel stream at temperatures less than 100° C. The method includes providing a nondesulfurized fuel cell hydrocarbon fuel stream that may include water and passing the fuel stream sequentially through a zeolite Y adsorbent and a selective sulfur adsorbent. The zeolite Y adsorbent may be exchanged with copper ions. The method produces a substantially desulfurized hydrocarbon fuel stream containing less than 50 ppb sulfur.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: December 4, 2012
    Assignee: Sud-Chemie Inc.
    Inventors: Chandra C Ratnasamy, Jon P. Wagner, R. Steve Spivey, Hans-Georg Anfang
  • Patent number: 8317905
    Abstract: Fine, solid particles in a gas stream, especially fly ash particles in the hot gas stream from a coal/coke-utilizing synthesis gas unit, are agglomerated by passage through a gas flow matrix element having a body with confined gas flow channels which bring the particles into close proximity to one another in an environment of low turbulence; a rough surface on the gas flow passages provides surface induction to promote agglomeration of the particles. The larger, agglomerated particles may then be removed from the gas stream by inertial separators such as cyclones.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: November 27, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Ramesh Varadaraj
  • Patent number: 8303930
    Abstract: The present invention relates to various processes for recovering high purity gaseous hydrogen and high purity gaseous carbon dioxide from the gas stream produced using steam hydrocarbon reforming, especially steam methane reforming, utilizing a H2 pressure swing adsorption unit followed by either a CO2 vacuum swing adsorption unit or a CO2 vacuum swing adsorption unit in combination with an additional CO2 pressure swing adsorption unit. By using an uncoupled H2 PSA and CO2 VSA unit it is possible to produce high purity H2 and high purity CO2. The present invention further relates to a process for optimizing the recovery of CO2 from waste gas streams produced during the hydrogen purification step of a steam hydrocarbon reforming/H2 pressure swing adsorption unit utilizing either a CO2 vacuum swing adsorption unit or a CO2 vacuum swing adsorption unit in combination with a CO2 pressure swing adsorption unit.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: November 6, 2012
    Assignees: American Air Liquide, Inc., Air Liquide Industrial U.S. LP
    Inventors: Yudong Chen, Glenn Fair
  • Publication number: 20120255446
    Abstract: An oxygen generator (10) similar to a suitcase includes a compressor unit (24) and an oxygen separating unit (38). These two units have, together with auxiliary components, substantially the same axial dimensions as one another and are arranged next to one another in the interior of a suitcase-shaped housing (68).
    Type: Application
    Filed: August 10, 2011
    Publication date: October 11, 2012
    Applicant: Duerr Technik GmbH & Co. KG
    Inventors: Johannes Eickhoff, Saad Abusamra
  • Patent number: 8282837
    Abstract: The invention proposes a method of destruction of volatile organic and inorganic compounds in wastewater, this method includes following stages: stripping the aforementioned volatile compounds in a stripping-chemisorption column; preliminary heating the gaseous medium containing these volatile compounds in a first heat regenerator; thermal, flare or thermo-catalytic oxidation of the volatile compounds in circulating gaseous medium; cooling the gaseous medium in a second heat regenerator; chemisorption of acidic gases from the gaseous medium in the stripping-chemisorption column with stripping at the same time additional amount of the volatile compounds from the wastewater. After specific period, direction of the gaseous medium flow is alternated. The proposed method can be executed at elevated temperature. The invention includes as well systems realizing the proposed method.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: October 9, 2012
    Assignee: Elcon Recycling Center (2003) Ltd.
    Inventor: Alexander Levin
  • Patent number: 8282715
    Abstract: Carbon dioxide-containing feed stream such as flue gas is treated to produce a high-purity carbon dioxide stream by a series of steps including removing SOx and NOx with activated carbon, carrying out subambient-temperature processing to produce a product stream and a vent stream, and treating the vent stream by pressure swing adsorption or by physical or chemical absorption to produce a product stream which is recycled to the feed stream.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: October 9, 2012
    Assignee: Praxair Technology, Inc.
    Inventors: Nick Joseph Degenstein, Minish Mahendra Shah, Bernard Thomas Neu
  • Publication number: 20120247330
    Abstract: An apparatus for capture and sequestration of CO2 from fossil fuel-fired power plant flue gas includes a polymer matrix embedded with a sorbent suitable for removing CO2 from the flue gas and a spacer mated with the polymer matrix. The spacer is adapted to create channels between adjacent portions of the polymer matrix such that the flue gas flows through the channels and comes in contact with the sorbent. Further, an apparatus for the capture and sequestration of CO2 from fossil fuel-fired power plant flue gas includes a hollow fiber membrane embedded with an adsorbent or other suitable material for removing CO2 from the flue gas. The adsorbent particles may be embedded into a wall of the membrane.
    Type: Application
    Filed: March 30, 2011
    Publication date: October 4, 2012
    Applicant: ELECTRIC POWER RESEARCH INSTITUTE, INC.
    Inventors: Ramsay Chang, Adam Berger, Abhoyjit Bhown
  • Patent number: 8262771
    Abstract: A flammable gas concentration device comprises an adsorption tower filled by an adsorbent for adsorbing a flammable gas. Raw gas containing air and a flammable gas is fed to the adsorption tower via a feeding path and an exhaust gas in the raw gas which has not been adsorbed to the adsorbent is discharged to an outside of the adsorption tower via a discharge path. Pressure in the adsorption tower is reduced lower than an atmospheric pressure, and the flammable gas adsorbed by the adsorbent is desorbed and collected through a collection path. A flammable gas adsorption step of feeding the raw gas to the adsorption tower and discharging the exhaust gas from the adsorption tower, and a flammable gas desorption step of collecting the desorbed flammable gas are sequentially executed.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: September 11, 2012
    Assignee: Osaka Gas Co., Ltd.
    Inventors: Kenji Seki, Etsuo Shito, Katsuhiko Hirao
  • Patent number: 8262784
    Abstract: A regenerative adsorption gas dryer has a wet gas inlet, first and second drying towers, and a dried gas outlet. The inlet, towers and outlet are arranged such that, in use, a flow of purge gas regenerates an off-stream one of the towers, while a stream of wet gas from the wet gas inlet enters an on-stream one of the towers to exit that tower as a stream of dried gas which then continues to the dried gas outlet. The roles of the off-stream and on-stream towers are reversible. The dryer further has a first check valve for controlling a stream of dried gas between the first drying tower and the dried gas outlet, and a second check valve for controlling a stream of dried gas between the second drying tower and the dried gas outlet.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: September 11, 2012
    Assignee: Walker Filtration Limited
    Inventors: Brian Walker, Peter Carney
  • Publication number: 20120222556
    Abstract: A system and process for the recovery of at least one halogenated hydrocarbon from a gas stream. The recovery includes adsorption by exposing the gas stream to an adsorbent with a lattice structure having pore diameters with an average pore opening of between about 5 and about 50 angstroms. The adsorbent is then regenerated by exposing the adsorbent to a purge gas under conditions which efficiently desorb the at least one adsorbed halogenated hydrocarbon from the adsorbent. The at least one halogenated hydrocarbon (and impurities or reaction products) can be condensed from the purge gas and subjected to fractional distillation to provide a recovered halogenated hydrocarbon.
    Type: Application
    Filed: August 31, 2010
    Publication date: September 6, 2012
    Applicant: Blue-Zone Technologies Ltd.
    Inventors: Dusanka Filipovic, Laurence Whitby, Biljna Milin, Frederick Cashin
  • Patent number: 8252089
    Abstract: The present invention relates to a method and device for compressing and drying a gas flow rich in carbon dioxide, for example containing more than 50 mol % of carbon dioxide.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: August 28, 2012
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Jean-Pierre Tranier, Arthur Darde, Jean-François Rauch, Dominique Antonio, Christophe Michel
  • Patent number: 8252090
    Abstract: A system and method is presented for reducing a concentration of ambient air used in a feed stream to form an inerting gas in a pressure swing adsorption system. The method includes introducing ambient air into a pressure swing adsorption system to form an inerting gas, introducing the inerting gas to a large volume of atmosphere, thereby inerting at least a portion of the large volume of atmosphere to form an inerted atmosphere, and removing a portion of the inerted atmosphere and introducing the portion of inerted atmosphere to the pressure swing adsorption system to form the inerting gas, thereby reducing an amount of ambient air utilized to form the inerting gas in the pressure swing adsorption system.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: August 28, 2012
    Assignee: On Site Gas Systems, Inc.
    Inventors: Sean Haggerty, Guy Hatch, Sanh Phan
  • Patent number: 8246727
    Abstract: The disclosure provides methods and systems for sequestering and/or reducing sulfur oxides, nitrogen oxides and/or carbon dioxide present in industrial effluent fluid streams. A solid particulate material comprising a slag component, a binder component (distinct from the slag component), and optionally water is formed and then contacted with the effluent fluid stream to reduce at least one of the sulfur oxides, nitrogen oxides, and/or carbon dioxide. The contacting of the effluent stream may occur in a packed bed reactor with the solid dry particulate material. Methods of reducing pollutants from exhaust generated by combustion sources, lime and/or cement kilns, iron and/or steel furnaces, and the like are provided.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: August 21, 2012
    Assignee: C-Quest Technologies, L.L.C.
    Inventor: Douglas C. Comrie