With Means Regenerating Solid Sorbent Patents (Class 96/143)
  • Patent number: 8580013
    Abstract: An air dryer cartridge is provided for a compressed air supply system, in particular a compressed air supply system of a commercial vehicle, with a drying agent box which is filled with a drying agent. The drying agent box can be coupled in an axial direction to a connecting flange of the compressed air supply system. A seal, which is designed as a non-return valve and, in the fitted state of the air dryer cartridge, acts in a sealing manner between the drying agent box and the connecting flange, is arranged on the drying agent box. A method for operating the air dryer cartridge on the compressed air supply system is also provided.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: November 12, 2013
    Assignee: KNORR-BREMSE Systeme fuer Nutzfahrzeuge GmbH
    Inventor: Eduard Hilberer
  • Patent number: 8574347
    Abstract: The present invention relates to a pressure swing adsorption process, also known as PSA process, which is modified with a view to utilizing the heat from the post-adsorption stream coming from the molecular sieves to heat/vaporize the pre-adsorption stream containing the hydrated product or the mixture component(s) to be adsorbed in said sieves. The present invention provides alternative arrangements for the heat exchanger system in order to use the thermal potential of the post-adsorption stream with the elimination or minimization of the risk of a slug flow regime in the exchangers, the so-called “gush,” which would be a natural result from the periodic oscillation characteristic of PSA processes. With this, the vapor consumption with the modified process according to the present invention is considerably reduced.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: November 5, 2013
    Assignees: Siemens LTDA, Dedini S/A Industrias de Base
    Inventors: Adler Gomes Moura, Daniel Moozydlower
  • Patent number: 8568511
    Abstract: Embodiments are described that generally relate to the storage and release of a gas using piezoelectric materials.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: October 29, 2013
    Assignee: Empire Technology Development LLC
    Inventor: Seth Adrian Miller
  • Publication number: 20130263741
    Abstract: Embodiments of the invention are directed towards a trap canister for adsorbing fuel vapor contained in breakthrough gas discharged from a main adsorbent canister. The main adsorbent canister is connected to a fuel tank has a case defining an adsorption chamber therein and an adsorbent filled in the adsorption chamber. The case has a first end open to the atmosphere and a second end for introducing breakthrough gas into the adsorption chamber. The adsorbent filled in the adsorption chamber adsorbs the fuel vapor contained in the breakthrough gas. The trap canister further has a bypass path for bypassing the adsorption chamber and a valve configured to block the bypass path and to allow for opening during refueling. This prevents the fuel vapor from flowing into the atmosphere during normal operation while also decreasing pressure loss during refueling.
    Type: Application
    Filed: March 18, 2013
    Publication date: October 10, 2013
    Applicant: AISAN KOGYO KABUSHIKI KAISHA
    Inventors: Takashi MANI, Ryuji KOSUGI
  • Patent number: 8545609
    Abstract: The Microwave System and method of reactivation is designed to provide an indirect, safe and energy efficient source of heat and temperature rise required in the reactivation section of the desiccant unit for the release into atmosphere of the water vapors which are accumulated in the desiccant rotor. This microwave reactivation system and method is based on heat transfer produced from a heated fluid which is pumped through a closed loop coil assembly. This closed loop coil assembly is located and runs through both the isolated heating chamber of the microwave section and the reactivation / regeneration section in the dehumidification system. The airstream passing through the reactivation intake section comes in contact with the coil assembly and is heated to the desired temperature prior to reaching the desiccant rotor.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: October 1, 2013
    Assignee: 7142871 Canada Inc.
    Inventor: Mario Caggiano
  • Patent number: 8540810
    Abstract: An adsorption unit comprising an adsorbent hollow fiber in which the fiber includes an active component and means for transmitting heat.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: September 24, 2013
    Assignee: Nano-Porous Solutions Limited
    Inventors: Semali Priyanthi Perera, Chin-Chih Tai
  • Patent number: 8529677
    Abstract: A carbon canister as utilized relative to underground fuel storage tank vapor recovery, including for the capture and purging of hydrocarbon vapors as air is introduced into and released from an underground storage tank, and wherein, in one form intended primarily for use in Stage II Vapor Recovery systems, the carbon canister includes a valve activated by weight of saturated carbon and wherein, in another form intended primarily for use in Stage I Vapor Recovery systems, the carbon canister is a free breathing carbon canister with a surge protection device.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: September 10, 2013
    Assignee: Husky Corporation
    Inventors: Timothy Schroeder, Darrell Vilmer, Arthur C. Fink, Jr.
  • Publication number: 20130225898
    Abstract: A process for separating methane from a natural gas mixture employs pressure swing adsorption in one or more vessels. Each vessel has an adsorbent material having a kinetic selectivity for contaminants over methane greater than 5. Contaminants within the natural gas mixture become gases kinetically adsorbed within the adsorbent material. The vessel is placed under pressure to cause contaminants to be adsorbed in the surfaces and micro-pores of the adsorbent material. The process includes releasing a product stream comprised at least 95% by volume methane from a first gas outlet in the vessel, and desorbing the contaminant gases from the adsorbent material by reducing the pressure within the vessel. The desorbing step is done without applying heat to the vessel, thereby delivering a waste gas stream comprised at least 95% by volume of the contaminant gases. An improved fractionation vessel having both major and minor flow channels is also provided.
    Type: Application
    Filed: September 26, 2011
    Publication date: August 29, 2013
    Applicant: EXXONMOBIL UPSTREAM RESEARCH COMPANY
    Inventors: Narasimhan Sundaram, P. Scott Northrop
  • Patent number: 8518165
    Abstract: An exhaust-gas treating apparatus, which includes an adsorption tower for removing various harmful substances in an exhaust gas using an adsorbent, a regeneration tower for releasing adsorbed substances from the adsorbent, a first transfer passage for transferring the adsorbent from the adsorption tower to the regeneration tower, a second transfer passage for transferring the adsorbent from the regeneration tower to the adsorption tower, a lock hopper connected to one end of the regeneration tower on a higher differential pressure side of a first differential pressure between an inside of the regeneration tower and an inside of the first transfer passage and a second differential pressure between the inside of the regeneration tower and an inside of the second transfer passage to thereby secure gas-tightness, a sealing unit connected to the other end of the regeneration tower on a lower differential pressure side to thereby secure gas-tightness, and an adjusting unit for maintaining the differential pressure
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: August 27, 2013
    Assignee: J—Power Entech, Inc.
    Inventors: Kuninori Furuyama, Masahiro Miya, Ryo Suzuki
  • Patent number: 8512443
    Abstract: Hydrogen can be recovered in a refinery network using a combination of a cycling adsorber unit and a membrane separation unit. A membrane separation unit can be used to generate at least a portion of the purge hydrogen stream for the cycling adsorber unit. This can reduce the portion of the hydrogen product stream from the cycling adsorber unit required for regeneration of the adsorbent.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: August 20, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Narasimhan Sundaram, John W. Viets
  • Patent number: 8512459
    Abstract: The present invention relates to a pre-concentration device and method for an ion mobility detection apparatus. According to an aspect of the invention, there is provided a pre-concentration device comprising: a collecting passage configured to collect a gas mixture including substances to be detected: a sieve provided, in a deploy state, within the collecting passage and configured to separate the substances from the gas mixture, the separated substances being absorbed to the sieve; at least one desorption unit configured to desorb the substances that have been absorbed to the sieve, the sieve being received in a wound state in the desorption unit; and a driving device configured to drive movement of the sieve between an absorption position in which the substances are absorbed to the sieve in the collecting passage, and a desorption position in which the substances are desorbed from the sieve in the at least one desorption unit.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: August 20, 2013
    Assignee: Nuctech Company Limited
    Inventors: Hua Peng, Jin Lin, Liwei Song, Jun Lv, Yue Li
  • Publication number: 20130206006
    Abstract: An off gas extraction system provides superior results to other systems for cleaning polluted soil. Off gas is extracted, followed by compression and condensation. Compression and condensation produce an off gas further treated to produce pollutant-free exhaust. A regenerative adsorber cleans the influent gas/air by adsorbing residual chemical vapor and concentrates the removed chemical vapor and reprocesses them. Conventional scrubbers are used on the back end of the system to produce a final exhaust as prescribed by environmental regulation. Methods of accomplishing the same are likewise taught including combinations and additions consistent with schemes as they evolve.
    Type: Application
    Filed: August 10, 2012
    Publication date: August 15, 2013
    Inventors: Carol D. Krumbholz, Grant Geckeler
  • Publication number: 20130199269
    Abstract: A pre-concentration device is provided for a gas analysis system (10) for collecting molecular contamination in a vacuum environment (11). The pre-concentration device (13) comprises a hollow element (15) having an entrance opening (20) for receiving molecules from the vacuum environment (11) in a collection phase, a gas outlet for transferring collected molecules to a vacuum compatible detector or second preconcentration device in a transfer phase. The device has an inner wall for adsorbing molecules in the collection phase and desorbing molecules in the transfer phase. The device has a filler element (14) that is movable from a first position outside the hollow element in the collection phase to a second position inside the hollow element in the transfer phase which second position leaves open a transfer channel to the gas outlet along the inner wall.
    Type: Application
    Filed: October 20, 2011
    Publication date: August 8, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Ruud Johannes Theodorus Soers, Hugo Hubertus Knobel, Pieter Klaas De Bokx
  • Patent number: 8501134
    Abstract: The invention relates to a process and catalyst for the oxidative desulfurization of hydrocarbonaceous oil. In one aspect, solid carbon materials are provided having stable sulfur trioxide and nitrogen dioxide oxidative species on the surface thereof. Such materials are useful in the production of low sulfur hydrocarbon feedstocks and in the removal of refractory sulfur compounds.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: August 6, 2013
    Assignee: Saudi Arabian Oil Company
    Inventor: Ki-Hyouk Choi
  • Patent number: 8500882
    Abstract: There is provided an air purifier having a dehumidification function, including: a body case having an inner space; a blower part installed in the inner space of the body case and drawing outside air from both sides of the body case through a single blower fan; an air purifying part purifying air drawn from one side of the body case; and a dehumidifying part removing moisture from air drawn from the other side of the body case by a dehumidifying rotor. Through the blower part drawing the air from both sides of the body case, the air purifier purifies the air drawn from one side of the body case and dehumidifies the air drawn from the other side of the body case. Accordingly, a drop in an airflow amount caused by concurrently performing the dehumidification and the purification may be alleviated, so improved dehumidification and purification effects are achieved.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: August 6, 2013
    Assignee: Woongjin Coway Co., Ltd.
    Inventors: Seong-Jin Yun, Byung-Kil Park
  • Patent number: 8500886
    Abstract: Exhaust gas after coal or oil burning has moisture, which hinders carbon dioxide adsorption. It is necessary to completely remove this moisture with the minimum use of energy. The exhaust gas from the burning apparatus is first lowered of its temperature by passing through an total heat exchanger rotor, and the resultant gas which has low temperature and humidity is sent to a carbon dioxide adsorption rotor, thereby removing carbon dioxide from the gas, which is then sent through the total heat exchanger rotor with the resultant desorption of moisture adsorbed there and is exhausted to outside atmosphere, while the carbon dioxide adsorption rotor is desorbed of its carbon dioxide using water vapor, with the resultant very humid carbon dioxide to be sent to a processing system such as for underground burial.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: August 6, 2013
    Assignee: Seibu Giken Co, Ltd
    Inventors: Hiroshi Okano, Tsutomu Hirose
  • Patent number: 8500888
    Abstract: A regeneration tower including a regeneration tower main body having a long trunk, and desorbed gas discharge passages through which a desorbed gas is discharged. The regeneration tower main body is configured so that a heating unit that heats an adsorbent, a separation part that separates desorbable substances as a desorbed gas from the heated adsorbent, and a cooling unit that cools the adsorbent from which the desorbable substances have been desorbed by heating are communicatively disposed in one direction and the heating unit and the cooling unit have approximately the same sectional outer diameter.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: August 6, 2013
    Assignee: J-Power EnTech, Inc.
    Inventors: Kuninori Furuyama, Masahiro Miya, Ryo Suzuki
  • Publication number: 20130186276
    Abstract: An oxygen concentrator provides ambulatory oxygen utilizing a vacuum swing adsorption (VSA) oxygen separator powered by a power pack. The separator has a plurality of nitrogen-selective adsorbent beds, each operating in VSA cycles including feed, evacuation and repressurization phases. The concentrator also contains a delivery system for receiving oxygen produced by the VSA separator.
    Type: Application
    Filed: March 12, 2013
    Publication date: July 25, 2013
    Applicant: Vbox, Incorporated
    Inventor: Vbox, Incorporated
  • Patent number: 8491705
    Abstract: A method for capturing CO2 from the ambient air by the use of solid tethered amine adsorbents, where the amine adsorbents are tethered to a substrate selected from the group of silica, metal oxides and polymer resins. The tethered amines are joined to the substrate by covalent bonding, achieved either by the ring-opening polymerization of aziridine on porous and non-porous supports, or by the reaction of mono-, di-, or tri-aminosilanes, with silica or a metal oxide having hydroxyl surface groups. The method includes the adsorption of CO2 from ambient air, the regeneration of the adsorbent at elevated temperatures not above 120° C. and the separation of purified CO2, followed by recycling of the regenerated tethered adsorbent for further adsorption of CO2 from the ambient atmosphere.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: July 23, 2013
    Inventors: Sunho Choi, Jeffrey H. Drese, Ronald R. Chance, Peter M. Eisenberger, Christopher W. Jones
  • Patent number: 8491710
    Abstract: Systems and methods for circulating air in an enclosed environment are disclosed. In some embodiments, the system includes an inlet to receive air from outside of the enclosed environment and an air handling unit coupled to the inlet and also configured to receive circulated air from the enclosed environment. The air handling unit can be configured to affect a temperature of at least one of the received outside air and the received circulated air. Based on the received outside air and the received circulated air, the air handling unit can be further configured to generate air for supplying to the enclosed environment.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: July 23, 2013
    Assignee: Enverid Systems, Inc.
    Inventor: Udi Meirav
  • Patent number: 8440005
    Abstract: An active carbon filter intended for the fuel supply system of the internal combustion engine of a vehicle consists of a housing (1), inside of which flow paths for the different operating states of the filter are established between the ports (10, 11, 12) for connection with the top space of a tank, the ambient atmosphere and the intake manifold of the internal combustion engine. Proceeding from the port (11), these flow paths are characterized by chambers situated one in back of the other for pre-warming the air, an adjacent chamber (22) equipped with a first heating unit, an adjacent chamber (23) that accommodates active carbon particles, and another, adjacent chamber (28) that accommodates active carbon particles, is equipped with a second heating unit (34), and is provided with the ports (10, 12). This yields the establishment of optimal, in particular thermal conditions for the regeneration of the active carbon particles.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: May 14, 2013
    Assignee: A. Kayser Automotive Systems GmbH
    Inventors: Tobias Lang, Heiko Freter, Detlef Wolf
  • Patent number: 8394174
    Abstract: The present invention provides for various processes for recovering high purity gaseous hydrogen and high purity gaseous carbon dioxide from the gas stream produced using steam hydrocarbon reforming, especially steam methane reforming, utilizing a H2 pressure swing adsorption unit in combination with either a CO2 pressure swing adsorption unit in combination with a membrane separation unit or a CO2 pressure vacuum swing adsorption unit in combination with a membrane separation unit. The present invention further relates to a process for optimizing the recovery of carbon dioxide from waste gas streams produced during the hydrogen purification step of a steam hydrocarbon reforming/water gas shift reactor/H2 pressure swing adsorption unit utilizing either a CO2 pressure swing adsorption unit in combination with a membrane separation unit or a CO2 pressure vacuum swing adsorption unit in combination with a membrane separation unit.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: March 12, 2013
    Assignees: American Air Liquide, Inc., Air Liquide Industrial U.S. LP
    Inventors: Yudong Chen, Glenn Fair
  • Patent number: 8349053
    Abstract: A high efficiency gas concentrating apparatus includes an air compressor for supplying high pressure air, first and second adsorption towers that are disposed above the air compressor and communicating with the air compressor to adsorb nitrogen and concentrate oxygen as the high pressure air is alternately supplied thereto, first and second concentrating passages that are disposed above the respective first and second adsorption towers to discharge the concentrated oxygen, and a cleaning tank that is disposed between the first and second concentrating passages to receive a portion of the concentrated oxygen from one of the first and second adsorption towers, temporarily store the received concentrated oxygen therein, and alternately remove adsorbed nitrogen by supplying the temporarily concentrated oxygen to the other of the first and second adsorption towers.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: January 8, 2013
    Assignees: Oxus Co., Ltd., Sogang University Industry-University Cooperation Foundation
    Inventors: Tae Soo Lee, Yoon Sun Choi, Seung Kwon Oh, Shin Kyu Han
  • Publication number: 20120304858
    Abstract: Disclosed is a method for removing carbon dioxide from a gas stream, comprising placing the gas stream in contact with a resin, wetting the resin with water, collecting water vapor and carbon dioxide from the resin, and separating the carbon dioxide from the water vapor. The resin may be placed in a chamber or a plurality of chambers connected in series wherein the first chamber contains resin that was first contacted by the gas, and each successive chamber contains resin which has been wetted and carbon dioxide collected from for a greater period of time than the previous chamber, and so on, until the last chamber. Secondary sorbents may be employed to further separate the carbon dioxide from the water vapor.
    Type: Application
    Filed: April 17, 2008
    Publication date: December 6, 2012
    Applicant: GLOBAL RESEARCH TECHNOLOGIES, LLC
    Inventors: Allen B. Wright, Klaus S. Lackner, Ed Leon-Guerrero, Ursula Ginster, Tymothy Catterson, Karl Madison, Ryuhei Ishikawa, George W. Grimm, Mark Malcomson, Ping Liu
  • Publication number: 20120279397
    Abstract: An apparatus for capture of CO2 from the atmosphere comprising an anion exchange material formed in a matrix exposed to a flow of the air.
    Type: Application
    Filed: July 17, 2012
    Publication date: November 8, 2012
    Inventors: Allen B. Wright, Eddy J. Peters
  • Patent number: 8282715
    Abstract: Carbon dioxide-containing feed stream such as flue gas is treated to produce a high-purity carbon dioxide stream by a series of steps including removing SOx and NOx with activated carbon, carrying out subambient-temperature processing to produce a product stream and a vent stream, and treating the vent stream by pressure swing adsorption or by physical or chemical absorption to produce a product stream which is recycled to the feed stream.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: October 9, 2012
    Assignee: Praxair Technology, Inc.
    Inventors: Nick Joseph Degenstein, Minish Mahendra Shah, Bernard Thomas Neu
  • Publication number: 20120247333
    Abstract: Embodiments are described that generally relate to the storage and release of a gas using piezoelectric materials.
    Type: Application
    Filed: June 11, 2012
    Publication date: October 4, 2012
    Applicant: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventor: Seth Adrian Miller
  • Publication number: 20120247332
    Abstract: The present invention relates to a pre-concentration device and method for an ion mobility detection apparatus. According to an aspect of the invention, there is provided a pre-concentration device comprising: a collecting passage configured to collect a gas mixture including substances to be detected: a sieve provided, in a deploy state, within the collecting passage and configured to separate the substances from the gas mixture, the separated substances being absorbed to the sieve; at least one desorption unit configured to desorb the substances that have been absorbed to the sieve, the sieve being received in a wound state in the desorption unit; and a driving device configured to drive movement of the sieve between an absorption position in which the substances are absorbed to the sieve in the collecting passage, and a desorption position in which the substances are desorbed from the sieve in the at least one desorption unit.
    Type: Application
    Filed: June 25, 2010
    Publication date: October 4, 2012
    Applicant: Nuctech Company Limited
    Inventors: Hua Peng, Jin Lin, Liwei Song, Jun Lv, Yue Li
  • Patent number: 8273160
    Abstract: A method and apparatus for extracting CO2 from air comprising an anion exchange material formed in a matrix exposed to a flow of the air, and for delivering that extracted CO2 to controlled environments. The present invention contemplates the extraction of CO2 from air using conventional extraction methods or by using one of the extraction methods disclosed; e.g., humidity swing or electro dialysis. The present invention also provides delivery of the CO2 to greenhouses where increased levels of CO2 will improve conditions for growth. Alternatively, the CO2 is fed to an algae culture.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: September 25, 2012
    Assignee: Kilimanjaro Energy, Inc.
    Inventors: Allen B. Wright, Klaus S. Lackner, Ursula Ginster
  • Patent number: 8273164
    Abstract: A fuel vapor processor has a fuel tank, a canister, a vapor pipe, a recovery pipe, an air pipe, a suction device, a vapor pipe valve, an air pipe valve, and a pressure regulator. The vapor pipe leads fuel vapor generated in the fuel tank to the canister for trapping the fuel vapor in the canister. The recovery pipe recoveries the fuel vapor desorbed from the canister into the fuel tank. The air pipe communicates the canister with the atmosphere. The suction device is disposed on the recovery pipe for desorbing the fuel vapor trapped in the canister. The pressure regulator is communicated with the air pipe between the air pipe valve and the canister in order to allow gas flow from the atmosphere toward the canister. During desorption of the fuel vapor due to the suction device, the vapor pipe valve and the air pipe valve are closed, and negative pressure is kept in the canister such that the fuel vapor is desorbed from the canister and fresh air is led into the canister via the pressure regulator.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: September 25, 2012
    Assignee: Aisan Kogyo Kabushiki Kaisha
    Inventors: Katsuhiko Makino, Masanobu Shinagawa, Hideki Teshima, Takashi Mani
  • Patent number: 8268044
    Abstract: A feed stream, comprising hydrogen sulphide (H2S), carbon dioxide (CO2), hydrogen (H2) and, optionally, carbon monoxide (CO), is separated into at least a CO2 product stream and an H2 or H2 and CO product stream. The stream is separated using a pressure swing adsorption system, an H2S removal system and a further separation system, which systems are used in series to separate the stream. The method has particular application in the separation of a sour (i.e. sulphur containing) syngas, as for example produced from the gasification of solid or heavy liquid carbonaceous feedstock.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: September 18, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andrew David Wright, Vincent White, Kevin Boyle Fogash, Jeffrey William Kloosterman, Jeffrey Raymond Hufton, Charles Linford Schaffer
  • Patent number: 8262783
    Abstract: A gas separation device is disclosed. In particular, seal assemblies and adsorbent element constructions for a gas separation device such as a pressure swing adsorption device are disclosed. The seal assembly can be part of a rotary valve and can include a seal backer and a floating seal positioned within a bore in the seal backer. The floating seal is configured to press towards and seal against an adjacent rotor. Valve action is provided as apertures in the floating seal and rotor are brought into and then out of alignment as a result of relative rotation therebetween. The seal assembly can include two types of gas chambers to apply balanced sealing pressures over the sealing surface of the valve, one type configured to receive pressurized process gas from within the device and the other configured to receive gas from an independently controlled pressurized gas source.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: September 11, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Christopher Stoner, Christopher R. McLean, Daryl Musselman
  • Patent number: 8257470
    Abstract: Disclosed is a harmful material treatment system for recovering the energy and removing the harmful material in the process of treating the gas containing the harmful material generated in the multiplex utilization facility, in the display mall, in diverse manufacturing processes and in the vehicle painting process, more particularly, to a harmful material treatment system which can recover the energy contained in the air conditioning facility or in the exhaust gas of the process with an efficiency of more than 90%, for exhausting the inside air to the outside so as to treat the contaminating material such as odor and volatile organic chemicals, and to remove the harmful material with a removal efficiency of more than 90% by adsorbing and concentrating the harmful material with a rotary-type adsorbent.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: September 4, 2012
    Assignee: Enbion Inc.
    Inventors: Hyun Jae Lee, Myeong Soo Yoon, Min Su Shin, Won Moon Jeong, Jeong Ki Min
  • Patent number: 8257472
    Abstract: According to one embodiment, a method for removing a gas from a nanostructure material includes a providing gas that is implanted in a carbon nanostructure material. The nanostructure material is subjected to a microwave field to remove the hydrogen from the nanostructure material.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: September 4, 2012
    Assignee: Raytheon Company
    Inventor: Timothy J. Imholt
  • Publication number: 20120210873
    Abstract: An exhaust gas processing apparatus for processing a mixed gas discharged from a semiconductor manufacturing apparatus is provided with: an adsorption separation unit for separating a monosilane gas that requires abatement and a hydrogen gas that does not require abatement by allowing the mixed gas to pass through and then by mainly adsorbing the monosilane gas among a plurality of types of gases contained in the mixed gas; a heating unit for desorbing the monosilane adsorbed onto the adsorption separation unit; a silane gas abatement unit for abating a monosilane gas desorbed from the adsorption separation unit; and a hydrogen gas discharge unit for discharging a hydrogen gas separated from the mixed gas by the adsorption separation unit.
    Type: Application
    Filed: March 11, 2010
    Publication date: August 23, 2012
    Applicant: JX Nippon Oil & Energy Corporation
    Inventors: Ken Samura, Tai Ohuchi, Tsuyoshi Asano, Takashi Okabe
  • Patent number: 8246723
    Abstract: An apparatus for capture of CO2 from the atmosphere comprising an anion exchange material formed in a matrix exposed to a flow of the air.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: August 21, 2012
    Assignee: Kilimanjaro Energy, Inc.
    Inventors: Allen B. Wright, Eddy J. Peters
  • Publication number: 20120204717
    Abstract: A method and apparatus for removing water vapor from the flue gas stream of an industrial process, including flue gas from a power station. The apparatus including a moisture transfer device, a cooling device, and an optional enthalpy exchange device. The method including running high volumes the flue gas through the moisture transfer device, the cooling device, and the enthalpy exchange device to remove substantially all of the water vapor from the flue gas stream. Also, a method and apparatus for capturing CO2 from flue gas with very low water vapor content. The apparatus including one or more towers packed with a solid sorbent, or including a liquid sorbent. The CO2 from the water vapor free CO2 stream is sorbed by the sorbent and captured for later use.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 16, 2012
    Applicant: MUNTERS CORPORATION
    Inventor: Paul DINNAGE
  • Publication number: 20120204725
    Abstract: A system for water extraction from air is provided. The system includes a housing having a plurality of openings allowing an air flow to enter into an inner space defined by the housing. The system also includes a sponge disposed within the inner space defined by the housing. The sponge includes a water absorbing/adsorbing material for absorbing/adsorbing water vapor from the air flow. The system further includes a presser disposed above the sponge and configured to compress the sponge to discharge water from the sponge.
    Type: Application
    Filed: February 3, 2012
    Publication date: August 16, 2012
    Inventor: John Goelet
  • Patent number: 8241374
    Abstract: The present invention discloses a fluidized bed system for the single step reforming technology for the production of hydrogen. Single step reforming combines the steam methane reforming, water gas shift, and carbon dioxide removal in a single step process of hydrogen generation. In the present invention, to address the heat transfer and the replenishment issues associated with single step reforming, the sorbent particles are fluidized. This fluidization allows the sorbent particles to be regenerated and consequently allows the optimal operating conditions for single step reforming to be maintained.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: August 14, 2012
    Assignee: Texaco Inc.
    Inventors: Farshad Bavarian, James F. Stevens, Balaji Krishnamurty, Yunquan Liu, Curtis L. Krause, Lixin You, Daniel G. Casey
  • Patent number: 8236095
    Abstract: A vacuum-pressure swing absorption concentrator includes a motor driven compressor having pressure and vacuum heads that are connected to a pressure reservoir and a vacuum reservoir respectively. The pressure and vacuum reservoirs are selectively and alternately interconnected in sequence through a main valve to a pair of nitrogen filtering sieve beds. A controller operates the valve to alternately and cyclically interconnect the sieve beds to the pressure and vacuum reservoirs respectively. During each cycle, a respective bed is pressurized and enriched oxygen is produced and delivered to a tank for use by a patient. At the same time, the other bed is evacuated through the vacuum reservoir. A crossover valve delivers oxygen from a pressurized bed to an evacuated bed to facilitate purging of impurities previously collected in the evacuated bed.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: August 7, 2012
    Assignee: O2 Concepts, LLC
    Inventor: Stuart Bassine
  • Patent number: 8231717
    Abstract: An oxidizing gas purification apparatus (1) for a fuel cell (7) has a compressor (2) that compresses oxidizing gas and sends the oxidizing gas; a cooling apparatus (4), disposed downstream from the compressor (2), that cools the oxidizing gas passing therethrough; an adsorbent unit (5b), disposed downstream from the cooling apparatus (4), that houses an adsorbent (5a) that adsorbs impurities included in the oxidizing gas sent from the cooling apparatus (4) at a prescribed adsorption temperature and releases the adsorbed impurities at a prescribed thermal regeneration temperature that is above the prescribed adsorption temperature by control of the operation of the cooling apparatus (4) to cool the oxidizing gas that has a temperature above the prescribed adsorption temperature and that is sent from the compressor (2).
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: July 31, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroshi Fujitani
  • Patent number: 8221524
    Abstract: The invention relates to a method for achieving low oxygen levels in a natural gas stream without the use of a catalytic system. In one embodiment, the method comprises: membrane treatment for the removal of the bulk of CO2 and oxygen in the natural gas feed and the addition of a PSA system using a carbon molecular sieve adsorbent for the adsorption of residual oxygen.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: July 17, 2012
    Assignee: Guild Associates, Inc.
    Inventor: Michael J. Mitariten
  • Patent number: 8221527
    Abstract: An apparatus for capture of CO2 from the atmosphere comprising an anion exchange material formed in a matrix exposed to a flow of the air.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: July 17, 2012
    Assignee: Kilimanjaro Energy, Inc.
    Inventors: Allen B. Wright, Eddy J. Peters
  • Patent number: 8197579
    Abstract: Embodiments are described that generally relate to the storage and release of a gas using piezoelectric materials.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: June 12, 2012
    Assignee: Empire Technology Development LLC
    Inventor: Seth Adrian Miller
  • Patent number: 8187368
    Abstract: The present invention provides a low power consumption desorption apparatus, which utilizes a pair of electrodes coupled to an absorbing material to provide an electric current flowing through the absorbing material so as to desorb the substances absorbed within the absorbing material. By means of the desorption apparatus of the present invention, the absorbing material is able to enhance the desorbing efficiency and reducing power consumption during desorption. The present invention further provides a dehumidifier using the low power consumption desorption apparatus for providing a continuous dry air flow to desorb and regenerate the moisture from the absorbing material so that the dehumidifier is capable of removing moisture in the air repeatedly to reduce the humidity.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: May 29, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Shiann Shih, Yu-Li Lin, Jau-Chyn Huang, Ting-Wei Huang, Yen-Hsun Chi, Yo-Ming Chang, Ming-Shan Jeng, Ya-Wen Chou
  • Patent number: 8182772
    Abstract: This specification discloses a radial flow continuous reaction/regeneration apparatus. Through employing a rotary device to individually and annularly distributing process fluid and regeneration fluid into a stationary segmented reaction/regeneration box and receiving effluents individually and annularly from the same stationary reaction/regeneration box, the mentioned radial flow continuous reaction/regeneration apparatus can be operated continuously and efficiently without the need for shutting down for regeneration. This radial flow continuous reaction/regeneration apparatus is not only used to separate components by adsorption, such as dehumidification, but also is used in chemical processes to carry out catalytic reaction, regenerate catalyst and used as filtration device to trap particles by changing the filler in the stationary reaction/regeneration box.
    Type: Grant
    Filed: May 31, 2010
    Date of Patent: May 22, 2012
    Inventor: Leon Yuan
  • Publication number: 20120118829
    Abstract: Contaminants are removed from a quantity of contaminated liquid in a treatment reservoir (2,28) containing a carbon based adsorbent material capable of electrochemical regeneration. The adsorbent material is in the form of a bed supported on a plate (6) at the base of the reservoir. The bed is agitated for a period to distribute the adsorbent material in the liquid and adsorb contaminant therefrom. At the end of the period the agitation ceases, and the bed of adsorbent material is allowed to settle. The adsorbent is then regenerated, during or after settlement, by passing an electric current through the bed to release from the adsorbent gaseous products derived from the contaminant, in bubbles rising through the decontaminated liquid in the reservoir. Various methods of regenerating the adsorbent material are disclosed, as are apparatus in which the method can be applied.
    Type: Application
    Filed: May 6, 2010
    Publication date: May 17, 2012
    Inventors: Nigel Willis Brown, Edward P.L. Roberts
  • Patent number: 8167978
    Abstract: A gas generator includes a high pressure gas-generation system that is capable of generating a product gas stream at a non-ambient, elevated nominal pressure. A thermal swing absorber has a first configuration and a second configuration relative to being connected with the product gas stream. In the first configuration, the thermal swing absorber is connected with the high pressure gas-generation system to receive the product gas stream and remove a constituent gas from the stream. In the second configuration, the thermal swing absorber is disconnected from the product gas stream and releases the constituent gas at a pressure that is substantially equal to the elevated nominal pressure. In the second configuration, the thermal swing absorber is an input source to provide the released constituent gas into the high pressure gas-generation system, which permits more efficient use of materials within the system.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: May 1, 2012
    Assignee: Pratt & Whitney Rocketdyne, Inc.
    Inventors: Albert E. Stewart, Jeffrey A. Mays
  • Patent number: 8157892
    Abstract: Systems and methods for circulating air in an enclosed environment are disclosed. An inlet can be provided to receive an outside air from outside of the enclosed environment and an air handling unit coupled to the inlet to receive the outside air through the inlet and configured to receive a circulated air from the enclosed environment. The air handling unit can be configured to affect a temperature of at least one of the received outside air and the received circulated air. Based on the received outside air and the received circulated air, the air handling unit can be further configured to generate air for supplying to the enclosed environment.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: April 17, 2012
    Assignee: Enverid Systems, Inc.
    Inventor: Udi Meirav
  • Patent number: 8147592
    Abstract: A filter includes a metallocene for removing oxygen from a gas stream. The filter further includes a support for the metallocene.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: April 3, 2012
    Assignee: The Boeing Company
    Inventors: Norman Robert Byrd, Charles A. Smith