Modified With An Enzyme Patents (Class 977/747)
  • Patent number: 8956517
    Abstract: Disclosed are nanocomposite-based biosensors. The biosensors include an electrode, a nanocomposite over the surface of the electrode, the nanocomposite comprising a population of carbon nanotubes and a population of magnetic nanoparticles dispersed in the population of carbon nanotubes, wherein the magnetic nanoparticles comprise a ferromagnetic metal or compound thereof, and one or more biomolecules over the surface of the electrode, wherein the biomolecules are capable of undergoing a redox reaction with a target molecule. Also disclosed are nanocomposites, modified electrodes, kits, and methods for using the biosensors.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: February 17, 2015
    Assignee: Indian Institute of Technology Madras
    Inventors: Ramaprabhu Sundara, Tessy Theres Baby
  • Patent number: 8921084
    Abstract: The present invention answers the demands of power generating device and biosensor development and provides a flexible, free-standing type protein containing carbon nanotube film, and a sensor and power generating device each equipped with the carbon nanotube film as an electrode. According to the present invention a carbon nanotube free standing film is provided including a carbon nanotube aggregate formed by aggregating a plurality of carbon nanotubes, and a plurality of enzymes included between the plurality of carbon nanotubes. The carbon nanotube film may include a different protein to the enzyme and may include a surfactant agent between the plurality of carbon nanotubes.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: December 30, 2014
    Assignees: Tohoku University, National Institute of Advanced Industrial Science and Technology
    Inventors: Matsuhiko Nishizawa, Takeo Miyake, Syuhei Yoshino, Takeo Yamada, Kenji Hata
  • Publication number: 20130157335
    Abstract: The present invention relates to a biomemory device, comprising (a) a substrate; and (b) a heterolayer comprising a protein having a redox potential and an inorganic particle; wherein the heterolayer is immobilized on the substrate. By applying inorganic particles, the present invention provides a biomemory device capable of enhancing low current signals detected electron transfer between biomolecules and substrates up to at least five (5) times greater signals. The present invention is capable of controlling the redox states with help of redox potentials of proteins depending on applied potential. The present invention provides a new-concept biomemory device as an information storage device based on the principle of electron transfer of a naturally occurring biomolecule.
    Type: Application
    Filed: August 1, 2012
    Publication date: June 20, 2013
    Applicant: Industry-University Cooperation Foundation Sogang University
    Inventors: Jeong Woo Choi, Taek Lee, Jun Hong Min
  • Publication number: 20130034532
    Abstract: Embodiments of the present disclosure provides for nanozymes, methods of making nanozymes, methods of using nanozymes, and the like.
    Type: Application
    Filed: April 19, 2011
    Publication date: February 7, 2013
    Inventors: Yunwei Charles Cao, Chen Liu, Hongyan Liu, Zhongliang Wang, Soon Hye Yang
  • Publication number: 20120282229
    Abstract: Disclosed herein are cellular compositions, stable continuous cell cultures, reporter cell lines, pharmaceutical preparations, cell penetrable pluripotent stem cells transcription factors and methods related thereto, related to reprogrammed somatic cells.
    Type: Application
    Filed: August 1, 2008
    Publication date: November 8, 2012
    Inventors: Christian Kannemeier, Joel Sae Won Marh, Kyle Howerton, John Sundsmo
  • Publication number: 20120028267
    Abstract: Disclosed is a method of detecting even a very small amount of a target substance by mixing a linker and a spacer at a suitable ratio and immobilizing the mixture on the surface of carbon nanotubes in a carbon nanotube-based biosensor. This method detects a specific substance at the level of femtomoles and lowers the detection limit of conventional carbon nanotube transistor sensors. Accordingly, the method detects even a very small amount of a target substance, and thus the carbon nanotube-based biosensor is a highly useful sensor which can be used either as a medical sensor for diagnosing diseases or as an environmental sensor.
    Type: Application
    Filed: August 21, 2009
    Publication date: February 2, 2012
    Applicants: Sungkyunkwan University Foundation for Corporate Collaboration, M.I. Tech Co., Ltd.
    Inventors: Sang Jun Sim, Jun Pyo Kim
  • Publication number: 20120021486
    Abstract: The invention relates to decontaminating composites, and methods, compositions, and kits comprising the same. In some aspects, the invention relates to a decontaminating composite, comprising a perhydrolase associated with a carbon nanotube, that is useful for producing peracids.
    Type: Application
    Filed: January 15, 2010
    Publication date: January 26, 2012
    Inventors: Cerasela Zoica Dinu, Jonathan S. Dordick, Ravindra S. Kane, Karl Sanford, Gregory M. Whited, Guangyu Zhu
  • Patent number: 8093174
    Abstract: A carbon nanohorn (CNH) is oxidized to make an opening in the side of the CNH. A substance to be included, e.g., a metal, is introduced through the opening. The inclusion substance is moved to a tip part of the carbon nanohorn through heat treatment in vacuum or an inert gas. The CNH is further heat treated in an atmosphere containing oxygen in a low concentration to remove the carbon layer in the tip through catalysis of the inclusion substance. This exposes the inclusion substance. If the inclusion substance is a metal which is not moved to a tip part by the heat treatment in vacuum or an inert gas, the carbon part surrounding the fine catalyst particle is specifically burned by a heat treatment in an low oxygen concentration atmosphere, while utilizing the catalysis. Thus, the fine catalyst particle is fixed to the tip part of the CNH.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: January 10, 2012
    Assignee: NEC Corporation
    Inventors: Ryota Yuge, Masako Yudasaka, Sumio Iijima
  • Patent number: 8072008
    Abstract: A high-sensitivity field effect transistor using as a channel ultrafine fiber elements such as carbon nanotube, and a biosensor using it. The field effect transistor comprises a substrate, a source electrode and a drain electrode arranged on the substrate, a channel for electrically connecting the source electrode with the drain electrode, and a gate electrode causing polarization due to the movement of free electrons in the substrate. For example, the substrate has a support substrate consisting of semiconductor or metal, a first insulating film formed on a first surface of the support substrate, and a second insulating film formed on a second surface of the support substrate, the source electrode, the drain electrode, and the channel arranged on the first insulating film, the gate electrode disposed on the second insulating film.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: December 6, 2011
    Assignees: Mitsumi Electric Co., Ltd., Semicon Craft Technologies
    Inventors: Koichi Mukasa, Kazuhisa Sueoka, Seiji Takeda, Satoshi Hattori, Yoshiki Yamada, Makoto Sawamura, Hiroichi Ozaki, Atsushi Ishii, Motonori Nakamura, Hirotaka Hosoi
  • Patent number: 7928017
    Abstract: A method of forming a nanowire and a semiconductor device comprising the nanowire are provided. The method of forming a nanowire includes forming a patterned SiyGe1-y layer (where, y is a real number that satisfies 0?y<1) on a base layer, and forming a first oxide layer and at least one nanowire within the first oxide layer by performing a first oxidation process on the patterned SiyGe1-y layer.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: April 19, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-youn Kim, Joong S. Jeong, Eun-ju Bae
  • Patent number: 7892553
    Abstract: The present invention pertains to nanoparticles, comprising a metal and/or polymer core, with 7-alpha hydroxylase, or an enzymatically active fragment thereof, nicotinamide adenine dinucleotide (NADH) and antibodies, or antibody fragments, specific for low density lipoprotein (LDL), attached to the core. The invention also concerns methods for reducing LDL cholesterol in a human or animal subject by administering nanoparticles of the invention. In a preferred embodiment, both circulating LDL and plasma cholesterol levels are reduced in the subject.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: February 22, 2011
    Assignee: University of South Florida
    Inventors: Shyam S. Mohapatra, Arun Kumar
  • Patent number: 7709243
    Abstract: The present invention is related to a biochip and a biomolecular detection system using the same. In particular, the biomolecular detection system is capable of detecting biological molecules (biomolecules) such as DNA or protein at a high speed. The biochip comprises a supporting structure, conductive materials aligned vertically on, and associated with, the supporting structure, and biomolecule probes operably linked to the conductive materials. The biomolecular detection system using the biochip may precisely detect biomolecules as well as the density of the biomolecules.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: May 4, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Young-jun Park, Jong-min Kim, Sung-kee Kang, Jung-woo Kim
  • Patent number: 7670831
    Abstract: Conductive carbon nanotubes (CNTs) obtained by dotting carboxylated CNTs with metal nanocrystals by chemical functional groups, are described, as well as a method for fabricating a pattern or film of the conductive CNTs which involves repeatedly depositing conductive CNTs on a substrate to achieve high surface density. A biosensor is described, in which bioreceptors that bind to target biomolecules are selectively attached to conductive CNTs or a conductive CNT pattern or film. By use of the conductive biosensor, various target biomaterials that bind or react with the bioreceptors can be precisely measured directly or by electrochemical signals at large amounts in one step. Additionally, the biosensor can be used for an electrical detection method capable of providing precise measurement results even with a small amount of source material.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: March 2, 2010
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Sang Yup Lee, Hee Tae Jung, Dae Hwan Jung, Young Koan Ko, Do Hyun Kim, Seok Jae Lee, Byung Hun Kim, Jae Shin Lee
  • Patent number: 7641863
    Abstract: A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover defining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to and extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivatization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: January 5, 2010
    Assignee: UT-Battelle LLC
    Inventors: Mitchel J. Doktycz, Michael L. Simpson, Timothy E. McKnight, Anatoli V. Melechko, Douglas H. Lowndes, Michael A. Guillorn, Vladimir I. Merkulov
  • Publication number: 20080318294
    Abstract: Disclosed is a composition and method for fabricating novel hybrid materials comprised of, e.g., carbon nanotubes (CNTs) and crosslinked enzyme clusters (CECs). In one method, enzyme-CNT hybrids are prepared by precipitation of enzymes which are subsequently crosslinked, yielding crosslinked enzyme clusters (CECs) on the surface of the CNTs. The CEC-enzyme-CNT hybrids exhibit high activity per unit area or mass as well as improved enzyme stability and longevity over hybrid materials known in the art. The CECs in the disclosed materials permit multilayer biocatalytic coatings to be applied to surfaces providing hybrid materials suitable for use in, e.g., biocatalytic applications and devices as described herein.
    Type: Application
    Filed: March 21, 2008
    Publication date: December 25, 2008
    Inventor: Jungbae Kim
  • Patent number: 7452452
    Abstract: The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: November 18, 2008
    Assignee: The Trustees of Boston College
    Inventors: Zhifeng Ren, Yuehe Lin, Wassana Yantasee, Guodong Liu, Fang Lu, Yi Tu
  • Publication number: 20080132584
    Abstract: Biofunctional nanoprobes are disclosed having nanoscale dimensions enabling the non-destructive penetration of lipid membranes. They are functionalized to perform a bio-chemical process using bio-compatible, porous coating in which enzymes are structurally constrained.
    Type: Application
    Filed: December 2, 2005
    Publication date: June 5, 2008
    Applicant: The Trustees of the University of Pennsylvania
    Inventors: David E. Luzzi, Evan Goulet