Modified With Atoms Or Molecules Bonded To The Surface Patents (Class 977/748)
  • Publication number: 20120281179
    Abstract: Devices including a coating layer formed of a transparent, conductive coating composition described. The coating layer may function as an active antifog coating for the prevention of water vapor condensation as droplets on a surface. The coating includes a conductive polymer and functionalized carbon nanostructures and may be crosslinked with a transition metal crosslinking agent. The composition may be coated on a surface used in a visualization application such as a face shield, glasses, safety glasses, goggles, oculars, etc., to prevent fogging on the surface.
    Type: Application
    Filed: May 3, 2011
    Publication date: November 8, 2012
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Pingshan Wang, Brij P. Singh, Aladin B. Ferian, III, Timothy H. Morgan, Debra N. Welchel, Matrice B. Jackson
  • Patent number: 8292092
    Abstract: A macrocyclic pore-apertured carbon nanotube apparatus is disclosed. The carbon nanotube apparatus can be used to filter or exclude ions, solutes in solution, as well as particles suspended in a colloidal mixture. The nanotube apparatus includes a carbon nanotube having a carboxylated portion at least one pore entrance and at least one molecular aperture adapted to be bonded to the carboxylated portion of the carbon nanotube. The molecular aperture is further adapted to prevent dissolved ions in a solution from entering the pore entrance. Methods for preparing and using the apparatus are also disclosed. The apparatus can also be incorporated into to filtration media for conducting reverse osmosis filtration.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: October 23, 2012
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Dennis R. Strauss, Martin W. Kendig
  • Publication number: 20120253075
    Abstract: The present invention relates to a method for producing carbon nanomaterials and/or carbon micromaterials, in particular multi-wall carbon nanotubes. The method is characterized according to the invention in that at least one molecule that has a reactive group in terminal position is bound to the surface of the material. In addition, the invention also relates to a correspondingly modified material.
    Type: Application
    Filed: September 16, 2010
    Publication date: October 4, 2012
    Applicant: FUTURECARBON GMBH
    Inventors: Jens Helbig, Christian Zenkel
  • Publication number: 20120234694
    Abstract: A filtration apparatus and filtration method can be used to reduce at least one contaminant (e.g., organic molecules, ions and/or biological microorganisms) in an aqueous fluid. The filtration apparatuses and methods of the invention can separate at least one contaminant from an aqueous fluid and/or oxidize at least one contaminant. In operation, an aqueous fluid is flowed through a filtration apparatus comprising a porous carbon nanotube filter material at an applied voltage. In some embodiments, the filtration apparatus described herein can be used for dead-end filtration. In some embodiments, the filtration apparatus described herein can be used for cross-over filtration.
    Type: Application
    Filed: April 4, 2012
    Publication date: September 20, 2012
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Chad D. Vecitis, Kirsten Van Fossen
  • Patent number: 8227799
    Abstract: The present disclosure provides a thin film transistor which includes a source electrode, a drain electrode, a semiconducting layer, an insulating layer and a gate electrode. The drain electrode is spaced apart from the source electrode. The semiconducting layer is electrically connected with the source electrode and the drain electrode. The gate electrode is insulated from the source electrode, the drain electrode, and the semiconducting layer by the insulating layer. At least one of the gate electrode, the drain electrode, the source electrode includes a carbon nanotube composite layer.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: July 24, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai Liu, Chen Feng, Kai-Li Jiang, Liang Liu, Shou-Shan Fan
  • Publication number: 20120183770
    Abstract: The present invention relates to the exfoliation and dispersion of carbon nanotubes resulting in high aspect ratio, surface-modified carbon nanotubes that are readily dispersed in various media. A method is disclosed for their production in high yield. Further modifications by surface active or modifying agents are also disclosed. Application of the carbon nanotubes of this invention as composites with materials such as elastomers, thermosets and thermoplastics are also described.
    Type: Application
    Filed: June 20, 2011
    Publication date: July 19, 2012
    Inventors: Clive P. Bosnyak, Kurt W. Swogger
  • Publication number: 20120171103
    Abstract: The invention relates to a method of modifying electrical properties of carbon nanotubes by subjecting a composition of carbon nanotubes to one or more radical initiator(s). The invention also relates to an electronic component such as field-effect transistor comprising a carbon nanotube obtained using the method of the invention. The invention also relates to the use of the modified carbon nanotubes in conductive and high-strength nanotube/polymer composites, transparent electrodes, sensors and nanoelectromechanical devices, additives for batteries, radiation sources, semiconductor devices (e.g. transistors) or interconnects.
    Type: Application
    Filed: June 28, 2010
    Publication date: July 5, 2012
    Applicant: NANYANG TECHNOLOGICAL UNIVERSITY
    Inventors: Jianwen Zhao, Lain-Jong Li, Peng Chen, Bee Eng Mary Chan
  • Publication number: 20120165482
    Abstract: The present disclosure is related to a carbon-nanomaterial-supported catalyst, including: a carbon nanomaterial, and a polymer grafted onto the carbon nanomaterial, wherein the polymer has a repeat unit containing a phosphonium salt and its molecular weight is 1,000-200,000. The disclosure is also related to a method of preparing carbonate, which includes using the carbon nanomaterial-supported catalyst for the cycloaddition reaction of carbon dioxide into the epoxy group.
    Type: Application
    Filed: September 1, 2011
    Publication date: June 28, 2012
    Inventors: Cheng-Wei Yeh, Mao-Lin Hsueh, Kuo-Chen Shih, Yi-Zhen Chen
  • Patent number: 8187703
    Abstract: The present invention is directed to methods of integrating carbon nanotubes into epoxy polymer composites via chemical functionalization of carbon nanotubes, and to the carbon nanotube-epoxy polymer composites produced by such methods. Integration is enhanced through improved dispersion and/or covalent bonding with the epoxy matrix during the curing process. In general, such methods involve the attachment of chemical moieties (i.e., functional groups) to the sidewall and/or end-cap of carbon nanotubes such that the chemical moieties react with either the epoxy precursor(s) or the curing agent(s) (or both) during the curing process. Additionally, in some embodiments, these or additional chemical moieties can function to facilitate dispersion of the carbon nanotubes by decreasing the van der Waals attractive forces between the nanotubes.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: May 29, 2012
    Assignee: William Marsh Rice University
    Inventors: Jiang Zhu, Valery N. Khabashesku, Haiqing Peng, Enrique V. Barrera, John L. Margrave, Mary Lou Margrave, legal representative
  • Patent number: 8183648
    Abstract: The present invention relates to a method and apparatus for enhancing the electron transport property measurements of a molecule when the molecule is placed between chemically functionalized carbon-based nanoscopic electrodes to which a suitable voltage bias is applied. The invention includes selecting a dopant atom for the nanoscopic electrodes, the dopant atoms being chemically similar to atoms present in the molecule, and functionalizing the outer surface and terminations of the electrodes with the dopant atoms.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: May 22, 2012
    Assignee: UT-Battelle, LLC
    Inventors: Predrag S. Krstic, Vincent Meunier
  • Publication number: 20120123020
    Abstract: The present invention deals with a methodology of incorporating carbon nanotubes (CNTs) into an epoxy matrix and thereby producing epoxy-based CNT nanocomposites. Both the pristine and ozonized CNTs are almost homogeneously dispersed into the resin by this approach. Compared with the pristine CNTs (p-MWCNTs), the ozonized ones (f-MWCNTs) offer considerable improvements on mechanical properties within the epoxy resin.
    Type: Application
    Filed: February 27, 2010
    Publication date: May 17, 2012
    Applicant: Bayer Material Science AG
    Inventors: Helmut Meyer, Zhong Zhang, Hui Zhang, Long-Cheng Tang, Ke Peng, Lu-Qi Liu, Hongchao Li, Stefan Bahnmüller, Julia Hitzbleck
  • Publication number: 20120118868
    Abstract: The present invention relates to a carbon nanotube-metal particle complex composition prepared by: a) a step of preparing a carbon nanotube solution in which carbon nanotubes are dispersed; b) a step of performing acid treatment on the carbon nanotube solution prepared in operation a); c) a step of neutralizing the carbon nanotube solution prepared in operation b); and d) a step of mixing the carbon nanotube solution prepared in operation c) and a metal solution containing metal particles, in order to bond said metal particles to the surfaces of said carbon nanotubes. The present invention also relates to a heated steering wheel including a carbon nanotube heating coating layer formed from the composition.
    Type: Application
    Filed: July 30, 2010
    Publication date: May 17, 2012
    Applicant: LG HAUSYS, LTD.
    Inventors: Tae-Soo Kim, Yong-Bae Jung, Seong-Hoon Yue
  • Publication number: 20120097886
    Abstract: Compositions include a multi-walled nanotube including metal nanoparticles. The metal nanoparticles are bound to the multi-walled nanotube through functional groups on a surface of the multi-walled nanotube.
    Type: Application
    Filed: October 21, 2010
    Publication date: April 26, 2012
    Inventors: Sundara RAMAPRABHU, Neetu JHA
  • Publication number: 20120088934
    Abstract: Disclosed herein is a sequential functionalization methodology for the covalent modification of nanotubes with between one and four repeat units of a polymer. Covalent attachment of oligomer units to the surface of nanotubes results in oligomer units forming an organic sheath around the nanotubes, polymer-functionalized-nanotubes (P-NTs). P-NTs possess chemical functionality identical to that of the functionalizing polymer, and thus provide nanoscale scaffolds which may be readily dispersed within a monomer solution and participate in the polymerization reaction to form a polymer-nanotube/polymer composite. Formation of polymer in the presence of P-NTs leads to a uniform dispersion of nanotubes within the polymer matrix, in contrast to aggregated masses of nanotubes in the case of pristine-NTs.
    Type: Application
    Filed: June 16, 2011
    Publication date: April 12, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Alexander K. Zettl, Toby Sainsbury, Jean M.J. Frechet
  • Publication number: 20120080319
    Abstract: A method of co-functionalizing single-walled carbon nanotubes for gas sensors, which includes the steps of: fabricating single-walled carbon nanotube interconnects; synthesizing tin oxide onto the single-walled carbon nanotube interconnects; and synthesizing metal nanoparticles onto the tin oxide coated single-walled carbon nanotube interconnects.
    Type: Application
    Filed: May 19, 2011
    Publication date: April 5, 2012
    Applicant: The Regents of the University of California
    Inventors: Nosang Vincent MYUNG, Syed MUBEEN, Ashok MULCHANDANI, Marc Arnold DESHUSSES
  • Patent number: 8137652
    Abstract: The invention provides a method of functionalizing the sidewalls of a plurality of carbon nanotubes with oxygen moieties, the method comprising: exposing a carbon nanotube dispersion to an ozone/oxygen mixture to form a plurality of ozonized carbon nanotubes; and contacting the plurality of ozonized carbon nanotubes with a cleaving agent to form a plurality of sidewall-functionalized carbon nanotubes.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: March 20, 2012
    Assignee: The Research Foundation of State University of New York
    Inventors: Stanislaus S. Wong, Sarbajit Banerjee
  • Patent number: 8120448
    Abstract: A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: February 21, 2012
    Assignee: The Regents of the University of California
    Inventors: Haibing Peng, Alexander K. Zettl
  • Publication number: 20120041226
    Abstract: The present invention relates to an improved process of ozonolysis of carbon nanotubes assisted by water vapour. The improved methodology provides an eco-friendly, cheaper, practical and efficient approach to functionalize carbon nanotubes with oxygen-containing moieties for further chemical functionalization and composite dispersion.
    Type: Application
    Filed: February 27, 2010
    Publication date: February 16, 2012
    Applicant: BAYER MATERIALsCIENCE AG
    Inventors: Helmut Meyer, Stefan Bahnmüller, Julia Hitzbleck, Zhong Zhang, Lu-Qi Liu, Ke Peng, Hongchao Li
  • Publication number: 20120038249
    Abstract: This disclosure discloses novel responsive polymers that comprise a rod segment and (or) a coil segment. This disclosure also discloses nanomaterial-polymer composite comprising the responsive polymers that are covalently linked with nanomaterials. Also disclosed are polymeric transducer materials and sensor systems that comprise the nanomaterial-polymer composite.
    Type: Application
    Filed: May 27, 2011
    Publication date: February 16, 2012
    Inventors: Jennifer Lu, Shuhuai Xiang
  • Publication number: 20120029162
    Abstract: The invention relates to carbon nanotubes comprising hydroxy groups, wherein the surface thereof comprises hydroxy alkyl ester groups covalently bound thereon, chosen from the group according to the general formula (1) and/or the general formula (2), wherein (CNT) stands for the surface of the carbon nanotube and R1 and R2 are independently from each other hydrocarbon, an alkyl radical or an aryl radical. The invention further relates to a method for the production thereof by means of reaction of carbon acid groups of the carbon nanotubes with an epoxy, furthermore a polyurethane polymer, wherein said carbon nanotubes are covalently bound, a method for producing a polymer of said kind and use of the carbon nanotubes for producing polymers.
    Type: Application
    Filed: March 30, 2010
    Publication date: February 2, 2012
    Applicant: Bayer Materialscience AG
    Inventors: Stephanie Vogel, Hartmut Nefzger, Jörg Hofmann
  • Publication number: 20120021191
    Abstract: A structure comprising high aspect ratio molecular structures (HARM-structures), wherein the structure comprises an essentially planar network (2) of HARM-structures, and a support (3) in contact with the network (2). The support (3) has an opening (5) therein, at the peripheral region (4) of which opening (5) the network (2) is in contact with the support (3), such that the middle part of the network (2) is unsupported by the support (3). The network (2) comprises essentially randomly oriented HARM-structures.
    Type: Application
    Filed: January 27, 2010
    Publication date: January 26, 2012
    Applicant: Canatu Oy
    Inventors: David P. Brown, Bradley J. Aitchison, Albert G. Nasibulin, Esko I. Kauppinen
  • Patent number: 8093174
    Abstract: A carbon nanohorn (CNH) is oxidized to make an opening in the side of the CNH. A substance to be included, e.g., a metal, is introduced through the opening. The inclusion substance is moved to a tip part of the carbon nanohorn through heat treatment in vacuum or an inert gas. The CNH is further heat treated in an atmosphere containing oxygen in a low concentration to remove the carbon layer in the tip through catalysis of the inclusion substance. This exposes the inclusion substance. If the inclusion substance is a metal which is not moved to a tip part by the heat treatment in vacuum or an inert gas, the carbon part surrounding the fine catalyst particle is specifically burned by a heat treatment in an low oxygen concentration atmosphere, while utilizing the catalysis. Thus, the fine catalyst particle is fixed to the tip part of the CNH.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: January 10, 2012
    Assignee: NEC Corporation
    Inventors: Ryota Yuge, Masako Yudasaka, Sumio Iijima
  • Publication number: 20110318614
    Abstract: In one example embodiment, an electrolyte has favorable ionic conductivity at low temperatures. In one example embodiment, a solid electrolyte is provided between a cathode and an anode. In one example embodiment, the electrolyte is formed of electrolyte salt such as a lithium salt, carbon cluster such as fullerene, and a liquid having polarity and dissociating the electrolyte salts into ions like organic solvents such as acetone and ionic liquids such as EMITFSI (1-ethyl-3-methyl imidazolium bis(trifluoromethanesulfonyl)imide).
    Type: Application
    Filed: February 8, 2010
    Publication date: December 29, 2011
    Applicant: SONY CORPORATION
    Inventors: Kazumasa Takeshi, Hiroyuki Morioka
  • Patent number: 8084505
    Abstract: The present invention provides: a carbon nanohorn composite including a carbon nanohorn, a substance encapsulated in the carbon nanohorn, and a polyamine adsorbed by chemical reaction firmly to a surface functional group present on the opening part on the surface of the carbon nanohorn, wherein the release amount and release rate of the encapsulated substance can be controlled using the difference in size, substituent or three-dimensional structure of the polyamine, which is used as a plug; a method of controlling the release of the encapsulated substance; and a process for producing the carbon nanohorn composite. The release amount and release rate of the substance encapsulated in the carbon nanohorn composite is controlled by selecting a polyamine molecule, which plugs the opening part formed in the carbon nanohorn by oxidation, by its size, substituent or three-dimensional structure.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: December 27, 2011
    Assignee: NEC Corporation
    Inventors: Ryota Yuge, Hideki Yorimitsu, Masako Yudasaka, Sumio Iijima
  • Patent number: 8084345
    Abstract: Some embodiments include methods of forming dispersions of nanoparticles. The nanoparticles are incorporated into first coordination complexes in which the nanoparticles are coordinated to hydrophobic ligands, and the first coordination complexes are dispersed within a non-polar solvent. While the first coordination complexes are within the non-polar solvent, the ligands are reacted with one or more reactants to convert the first coordination complexes into second coordination complexes that contain hydrophilic ligands. The second coordination complexes are then extracted from the non-polar solvent into water, to form a mixture of the second coordination complexes and the water. In some embodiments, the mixture may be dispersed across a semiconductor substrate to form a uniform distribution of the nanoparticles across the substrate. In some embodiments, the nanoparticles may then be incorporated into flash memory devices as charge-trapping centers.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: December 27, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Dan Millward
  • Publication number: 20110281156
    Abstract: An electrode for a battery is augmented with vertically aligned carbon nanotubes, allowing both improved storage density of lithium ions and the increase electrical and thermal conductivity. Carbon nanotubes are extremely good electrical and thermal conductors, and can be grown directly on the electrode (e.g., anode or cathode) current collector metals, allowing direct electrical contact. Additionally carbon nanotubes have an ideal aspect ratio, having lengths potentially thousands of times as long as their widths, 10 to 1,000 nanometers. In an embodiment, the carbon nanotube electrode (e.g., an anode) comprises a silicon matrix, allowing withstanding volumetric changes exhibited during cycling of the electrochemical cell. In an embodiment, the carbon nanotube electrode (e.g., a cathode) comprises embedded sulfur, allowing both the improved retention of elemental sulfur and increase electrical conductivity.
    Type: Application
    Filed: May 17, 2011
    Publication date: November 17, 2011
    Inventors: Arthur Douglas Boren, Darin Scott Olson
  • Patent number: 8057901
    Abstract: The invention relates to a carbon nanotube composite material, to methods of its production and to uses of such composite material.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: November 15, 2011
    Assignee: Sony Deutschland GmbH
    Inventors: William E. Ford, Jurina Wessels, Akio Yasuda, Jack Barger
  • Publication number: 20110256197
    Abstract: In the method of embodiments of the invention, the metal seeded carbon allotropes are reacted in solution forming zero valent metallic nanowires at the seeded sites. A polymeric passivating reagent, which selects for anisotropic growth is also used in the reaction to facilitate nanowire formation. The resulting structure resembles a porcupine, where carbon allotropes have metallic wires of nanometer dimensions that emanate from the seed sites on the carbon allotrope. These sites are populated by nanowires having approximately the same diameter as the starting nanoparticle diameter.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 20, 2011
    Applicant: United States of America as represented by the Administrator of the National Aeronautics and Spac
    Inventors: Robin E. Southward, Donavon Mark Delozier, Kent A. Watson, Joseph G. Smith, Sayata Ghose, John W. Connell
  • Patent number: 8038795
    Abstract: A precursor chiral nanotube with a specified chirality is grown using an epitaxial process and then cloned. A substrate is provided of crystal material having sheet lattice properties complementary to the lattice properties of the selected material for the nanotube. A cylindrical surface(s) having a diameter of 1 to 100 nanometers are formed as a void in the substrate or as crystal material projecting from the substrate with an orientation with respect to the axes of the crystal substrate corresponding to the selected chirality. A monocrystalline film of the selected material is epitaxially grown on the cylindrical surface that takes on the sheet lattice properties and orientation of the crystal substrate to form a precursor chiral nanotube. A catalytic particle is placed on the precursor chiral nanotube and atoms of the selected material are dissolved into the catalytic particle to clone a chiral nanotube from the precursor chiral nanotube.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: October 18, 2011
    Assignee: Raytheon Company
    Inventors: Delmar L. Barker, William R. Owens
  • Patent number: 8038926
    Abstract: The invention concerns methods for producing carbon nanotubes with embedded nanoparticles comprising providing a template comprising an anodized aluminum oxide membrane with a pore diameter of 20-200 nm; contacting the template with a solution containing nanoparticles; exposing the template and solution containing nanoparticles to sonication; removing the template from the solution; forming a carbon structure via chemical deposition of carbon on said template; and removing the template by exposing the template to a basic solution.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: October 18, 2011
    Assignee: Drexel University
    Inventors: Yury Gogotsi, Davide Mattia
  • Publication number: 20110247866
    Abstract: A conductive paste composition is provided. The conductive paste composition includes 20 to 70 weight % of silver nanoparticles having an average particle size of 1 nm to 250 nm based on a total weight of the conductive paste composition, and 0.01 to 2 weight % of silver-decorated carbon nanotubes based on the total weight of the conductive paste composition.
    Type: Application
    Filed: June 7, 2011
    Publication date: October 13, 2011
    Applicant: LS CABLE & SYSTEM, LTD
    Inventors: Yoon-Jin Kim, Chang-Mo Ko, Ho-Souk Cho
  • Patent number: 8034315
    Abstract: Some embodiments include devices that contain bundles of CNTs. An undulating topography extends over the CNTs and within spaces between the CNTs. A global maximum lateral width is defined as the greatest lateral width of any of the spaces. A material is directly over the CNTs, with the material being a plurality of particles that have minimum cross-sectional equatorial widths exceeding the global maximum lateral width. Some embodiments include methods in which a plurality of crossed carbon nanotubes are formed over a semiconductor substrate. The CNTs form an undulating upper topography extending across the CNTs and within spaces between the CNTs. A global maximum lateral width is defined as the greatest lateral width of any of the spaces. A material is deposited over the CNTs, with the material being deposited as particles that have minimum cross-sectional equatorial widths exceeding the global maximum lateral width.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: October 11, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Nishant Sinha, Gurtej S. Sandhu, Eugene Marsh, Neil Greeley, John Smythe
  • Patent number: 8034448
    Abstract: Fibrous composite comprising a plurality of carbon nanotubes; and a silica-containing moiety having one of the structures: (SiO)3Si—(CH2)n—NR1R2) or (SiO)3Si—(CH2)n—NCO; where n is from 1 to 6, and R1 and R2 are each independently H, CH3, or C2H5.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: October 11, 2011
    Assignee: Los Alamos National Security, LLC
    Inventors: Huisheng Peng, Yuntian Theodore Zhu, Dean E. Peterson, Quanxi Jia
  • Publication number: 20110224357
    Abstract: The invention relates to a composition containing at least one microgel, at least one carbon nanotube and at least one organic medium. Said organic medium can be cross-linked or non cross-linked.
    Type: Application
    Filed: May 20, 2009
    Publication date: September 15, 2011
    Applicants: LANXESS DEUTSCHLAND GMBH, BAYER MATERIALSCIENCE AG
    Inventors: Torsten Ziser, Thomas Früh, Werner Obrecht, Reiner Rudolf, Sigurd Buchholz, Volker Michele, Leslaw Mleczko, Christian Münnich, Aurel Wolf, Daniel Gordon Duff
  • Publication number: 20110220851
    Abstract: A method of dispersing nanotubes and/or nanoplatelets in a polyolefin is provided, involving A) preparing a solution comprising nanotubes or nanoplatelets or both; B) stirring the resulting solution from step (A); C) dissolving at least one polymeric material in the stirred solution from step (B) and isolating precipitates from the solution; and D) melt-blending the precipitates with at least one polyolefin, along with the nanocomposites prepared thereby, and articles formed from the nanocomposites.
    Type: Application
    Filed: December 28, 2010
    Publication date: September 15, 2011
    Applicants: JAPAN POLYPROPYLENE CORPORATION, TEXAS ENGINEERING EXPERIMENTAL STATION
    Inventors: Hung-Jue SUE, Minhao WONG, Chien-Chia CHU, Yukihito ZANKA, Yuuji RYOUSHO
  • Publication number: 20110212297
    Abstract: This is provided a hydrophobic or superhydrophobic surface configuration and method of forming a hydrophobic or superhydrophobic material on a metallic substrate. The surface configuration comprises a metallic substrate having a carbon nanotube/carbon fibers configuration grown thereon, with the carbon nanotubes/carbon fibers configuration having a heirarchial structure formed to have a predetermined roughness in association with the surface. The method comprises providing a metallic substrate having a predetermined configuration, and growing a plurality of carbon nanotubes/fibers or other nanostructures formed into a predetermined architecture supported on the substrate.
    Type: Application
    Filed: November 13, 2009
    Publication date: September 1, 2011
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Ali Dhinojwala, Sunny Sethi
  • Publication number: 20110187240
    Abstract: A piezoelectronic device and a method of fabricating the same are disclosed. The piezoelectronic device of the present invention comprises: a plurality of carbon nanotubes; at least one piezoceramic layer covering the plurality of carbon nanotubes; and a supporting material for supporting the carbon nanotubes and disposed between the carbon nanotubes, the supporting layer being coated with at least one piezoceramic layer, wherein the plurality of carbon nanotubes is arranged in a comb-shape. The piezoelectronic device of the present invention is advantageous in having excellent elasticity (durability) and excellent piezoelectronical property. The induced current obtained from the piezoelectronic device of the present invention is about 1.5 ?A or above as well as induced voltage being over 1V when the size of the piezoelectronic block is 2.5 mm×1 mm×1 mm (length×width×height).
    Type: Application
    Filed: March 29, 2010
    Publication date: August 4, 2011
    Applicant: National Tsing Hua University
    Inventors: Wen-Kuang Hsu, Hsin-Fu Kuo, Yu-Hsien Lin, Chiung-Wen Tang, Chieh-Lien Lu, Yao-Cheng Lai
  • Publication number: 20110180968
    Abstract: A method for making a carbon nanotube metal composite includes the following steps. A number of carbon nanotubes is dispersed in a solvent to obtain a suspension. Metal powder is added into the suspension, and then the suspension agitated. The suspension containing the metal powder is allowed to stand for a while. The solvent is reduced to obtain a mixture of the number of carbon nanotubes and the metal powder.
    Type: Application
    Filed: October 15, 2010
    Publication date: July 28, 2011
    Applicants: TSINGHUA UNIVERSITY, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: CHUN-HUA HU, CHANG-HONG LIU, SHOU-SHAN FAN
  • Publication number: 20110184196
    Abstract: The invention relates to carbon surfaces modified with one or more azide groups. The invention also relates to methods of modifying carbon surfaces with one or more azide groups.
    Type: Application
    Filed: January 10, 2008
    Publication date: July 28, 2011
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Christopher E.D. Chidsey, Anando Devadoss, Neal K. Devaraj
  • Patent number: 7976816
    Abstract: A method for functionalizing the wall of single-wall or multi-wall carbon nanotubes involves the use of acyl peroxides to generate carbon-centered free radicals. The method allows for the chemical attachment of a variety of functional groups to the wall or end cap of carbon nanotubes through covalent carbon bonds without destroying the wall or endcap structure of the nanotube. Carbon-centered radicals generated from acyl peroxides can have terminal functional groups that provide sites for further reaction with other compounds. Organic groups with terminal carboxylic acid functionality can be converted to an acyl chloride and further reacted with an amine to form an amide or with a diamine to form an amide with terminal amine. The reactive functional groups attached to the nanotubes provide improved solvent dispersibility and provide reaction sites for monomers for incorporation in polymer structures. The nanotubes can also be functionalized by generating free radicals from organic sulfoxides.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: July 12, 2011
    Assignee: William Marsh Rice University
    Inventors: Valery N. Khabashesku, Haiqing Peng, John L. Margrave, Mary Lou Margrave, legal representative, Wilbur Edward Billups, Yunming Ying
  • Publication number: 20110162695
    Abstract: A solar cell includes a p-type semiconductor substance, and an n-type semiconductor substance. The p-type semiconductor substance and the n-type semiconductor substance form a pn junction or a pin junction, and the p-type semiconductor substance or the n-type semiconductor substance includes a structure film having a plurality of carbon nanotubes electrically connected to each other.
    Type: Application
    Filed: March 11, 2011
    Publication date: July 7, 2011
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Kei SHIMOTANI, Chikara Manabe, Takashi Morikawa
  • Patent number: 7968489
    Abstract: A new method for preparing a supported catalyst is herein provided. Carbon nanotubes are functionalized by contacting them with an oxidizing agent to form functionalized carbon nanotubes. A metal catalyst is then loaded or deposited onto the functionalized carbon nanotubes. The mixture is then extruded to form the supported catalyst comprising a carbon nanotube structure containing metal catalyst more evenly dispersed within the internal structure of the carbon nanotube structure.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: June 28, 2011
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Jun Ma, David Moy, Asif Chishti, Jun Yang
  • Publication number: 20110128623
    Abstract: A method for manufacturing a polarizer utilizes a support, which is coated with a photoresist. A carbon nanotube film is located over the photoresist, and one portion of the carbon nanotube film is submerged in the photoresist. Metal or semi-metallic particles are deposited over the carbon nanotube film and the photoresist, which is removed. The carbon nanotube film with the metal particles or semi-metallic particles is adhered to a substrate to obtain the polarizer.
    Type: Application
    Filed: May 16, 2010
    Publication date: June 2, 2011
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: SEI-PING LOUH
  • Patent number: 7939047
    Abstract: The present invention is directed to methods of separating carbon nanotubes (CNTs) by their electronic type (e.g., metallic, semi-metallic, and semiconducting). Perhaps most generally, in some embodiments, the present invention is directed to methods of separating CNTs by bandgap, wherein such separation is effected by interacting the CNTs with a surface such that the surface interacts differentially with the CNTs on the basis of their bandgap, or lack thereof. In some embodiments, such methods can allow for such separations to be carried out in bulk quantities.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: May 10, 2011
    Assignee: William Marsh Rice University
    Inventors: James M. Tour, Christopher A. Dyke, Austen K. Flatt
  • Patent number: 7935767
    Abstract: Novel multiblock polymers are prepared and used to disperse carbon nanotubes in solution.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: May 3, 2011
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Bruce A. Diner, Lech Wilczek
  • Patent number: 7935517
    Abstract: A nanostructured molecular delivery vehicle comprising magnetic materials and configured to receive passenger biomolecules. The application of a an appropriate magnetic field having a gradient orients and drives the vehicle into a biological target, which may comprise cells, cell masses, tissue slices, tissues, etc. Under the control of the magnetic field, these vehicles can penetrate cell membranes. Then, the biomolecules carried by the vehicle can be released into the cells to perform their functions. Using this “nanospearing” technique, unprecendented high transfection efficiency has been achieved in several difficult-to-transfect cells. These include, but are not limited to, Bal 17 cells, ex vivo B cells, primary cultured cortical neurons, etc. This method advances the state of the art, providing an improved technique for the introduction of exogenous molecules to cells, with the clinical applications including, but not being limited to, drug delivery, gene therapy, vaccination, etc.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: May 3, 2011
    Assignee: NanoLab, Inc.
    Inventors: Dong Cai, David L. Carnahan
  • Patent number: 7927748
    Abstract: A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: April 19, 2011
    Assignee: Uchicago Argonne, LLC
    Inventors: Di-Jia Liu, Junbing Yang, Xiaoping Wang
  • Patent number: 7922796
    Abstract: A carbon nanotube filter. The filter including a filter housing; and chemically active carbon nanotubes within the filter housing, the chemically active carbon nanotubes comprising a chemically active layer formed on carbon nanotubes or comprising chemically reactive groups on sidewalls of the carbon nanotubes; and media containing the chemically active carbon nanotubes.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: April 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: Steven J. Holmes, Mark C. Hakey, David V. Horak, James G. Ryan
  • Patent number: 7923403
    Abstract: A new method for preparing a supported catalyst is herein provided. The supported catalyst comprises a carbon nanotube network structure containing metal catalysts. The metal catalyst may be loaded onto functionalized carbon nanotubes before forming the carbon nanotube network structure. Alternatively, the metal catalyst may be loaded onto the carbon nanotube network structures themselves.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: April 12, 2011
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Jun Ma, David Moy, Alan Fischer, Robert Hoch
  • Publication number: 20110081546
    Abstract: The present invention relates to a method for preparing a nano-composite comprising carbon nanotube and metal, more precisely a method for preparing a carbon nanotube-metal composite comprising the steps of preparing a dispersion solution by dispersing carbon nanotube in a reductive solvent; preparing a mixed solution by adding a stabilizer and a metal precursor; and reducing the metal precursor by heating the mixed solution, and a carbon nanotube-metal composite prepared by the same. The method of the present invention favors the production of a carbon nanotube-metal composite which is characterized by even metal particles from some nm to hundreds nm in size and even dispersion of those particles to be bound to carbon nanotube.
    Type: Application
    Filed: September 26, 2008
    Publication date: April 7, 2011
    Applicant: Bioneer Corporation
    Inventors: Jae Ha Kim, Kug Jin Yun, Myung Kuk Jin