With Specified Chirality And/or Electrical Conductivity (e.g., Chirality Of (5,4), (5,5), (10,5), Etc.) Patents (Class 977/751)
-
Patent number: 8747799Abstract: The present invention relates to a method of forming single-walled carbon nanotubes. The method comprises contacting a gaseous carbon source with mesoporous TUD-1 silicate at suitable conditions. The mesoporous TUD-1 silicate comprises a metal of groups 3-13 of the Periodic Table of the Elements.Type: GrantFiled: July 5, 2010Date of Patent: June 10, 2014Assignee: Nanyang Technological UniversityInventors: Yuan Chen, Yanhui Yang
-
Patent number: 8715608Abstract: A method for synthesizing carbon nanotubes having a narrow distribution of diameter and/or chirality is presented. The method comprises providing catalyst particles to a reactor for synthesizing the carbon nanotubes, wherein the catalyst particles are characterized by a narrow distribution of catalyst-particle diameters and a narrow distribution of catalyst-particle compositions. Preferably, the catalyst particles are characterized by a mean catalyst-particle diameter of 2.6 nm or less and a composition of NixFe1-x, wherein x is less than or equal to 0.5.Type: GrantFiled: November 29, 2010Date of Patent: May 6, 2014Assignee: Case Western Reserve UniversityInventors: R. Mohan Sankaran, Wei-Hung Chiang
-
Patent number: 8703092Abstract: The subject invention provides a two-phase liquid-liquid extraction process that enables sorting and separation of single-walled carbon nanotubes based on (n, m) type and/or diameter. The two-phase liquid extraction method of the invention is based upon the selective reaction of certain types of nanotubes with electron withdrawing functional groups as well as the interaction between a phase transfer agent and ionic moieties on the functionalized nanotubes when combined in a two-phase liquid solution. Preferably, the subject invention enables efficient, bulk separation of metallic/semi-metallic nanotubes from semi-conducting nanotubes. More preferably, the subject invention enables efficient, bulk separation of specific (n, m) types of nanotubes.Type: GrantFiled: September 15, 2006Date of Patent: April 22, 2014Assignee: University of Florida Research Foundation, Inc.Inventor: Kirk Jeremy Ziegler
-
Patent number: 8591858Abstract: Methods and processes for synthesizing high quality carbon single-walled nanotubes (SWNTs) are provided. The method provides the means for optimization of amount of carbon precursor and transport gas per unit weight of catalyst. In certain aspects, methods are provided wherein a supported metal catalyst is contacted with a carbon precursor gas at about one atmosphere pressure, wherein SWNTs are synthesized at a growth rate of about 0.002 ?m/sec to about 0.003 ?m/sec and the SWNTs have a ratio of G-band to D-band in Raman spectra (IG:ID) of greater than about 4. Efficiencies of about 20% can be achieved when contacting the catalyst deposited on a support with a carbon precursor gas with a flow rates of about 4.2×10?3 mol CH4/sec·g (Fe) at 780° C. Hydrocarbon flow rates of about 1.7 10?2 mol CH4/sec·g (Fe) and higher result in faster carbon SWNTs growth with improved quality. Slower rates of carbon atoms supply (˜4.5×1020 C atoms/s·g Fe or 6.Type: GrantFiled: May 1, 2008Date of Patent: November 26, 2013Assignee: Honda Motor Co., Ltd.Inventors: Avetik R. Harutyunyan, Elena Mora
-
Patent number: 8518870Abstract: The present invention is a method for detecting and destroying cancer tumors. The method is based on the concept of associating a linking protein or linking peptide such as, but not limited to, annexin V or other annexins to carbon nanotubes such as single-walled carbon nanotubes (SWNTs) to form a protein-CNT complex. Said linking protein or peptide can selectively bind to cancerous cells, especially tumor vasculature endothelial cells, rather than to healthy ones by binding to cancer-specific external receptors such as anionic phospholipids including phosphatidylserine expressed on the outer surfaces of cancer cells only. Irradiation of bound CNTs with one or more specific electromagnetic wavelengths is then used to detect and destroy those cells to which the CNTs are bound via the linking protein or peptide thereby destroying the tumor or cancer cells and preferably an immunostimulant is provided to the patient to enhance the immune response against antigens released from the tumor or cancer cells.Type: GrantFiled: November 13, 2009Date of Patent: August 27, 2013Assignee: The Board of Regents of the University of OklahomaInventors: Roger G. Harrison, Jr., Daniel E. Resasco, Luis Filipe Ferreira Neves
-
Publication number: 20130183439Abstract: A method includes the steps of receiving a conductor element formed from a plurality of carbon nanotubes; and exposing the conductor element to a controlled amount of a dopant so as to increase the conductance of the conductor element to a desired value, wherein the dopant is one of bromine, iodine, chloroauric acid, hydrochloric acid, hydroiodic acid, nitric acid, and potassium tetrabromoaurate. A method includes the steps of receiving a conductor element formed from a plurality of carbon nanotubes; and exposing the conductor element to a controlled amount of a dopant solution comprising one of chloroauric acid, hydrochloric acid, nitric acid, and potassium tetrabromoaurate, so as to increase the conductance of the conductor element to a desired value.Type: ApplicationFiled: January 17, 2012Publication date: July 18, 2013Inventors: John A. Starkovich, Edward M. Silverman, Hsiao-Hu Peng
-
Patent number: 8475661Abstract: This invention relates to heterogenous pore polymer nanotube membranes useful in filtration, such as reverse osmosis desalination, nanofiltration, ultrafiltration and gas separation.Type: GrantFiled: April 27, 2012Date of Patent: July 2, 2013Assignee: Nagare Membranes, LLCInventors: Timothy V. Ratto, Jason K. Holt, Alan W. Szmodis
-
Patent number: 8350391Abstract: The sheet structure includes a plurality of linear structure bundles including a plurality of linear structures of carbon atoms arranged at a first gap, and arranged at a second gap larger than the first gap, a graphite layer formed in a region between the plurality of linear structure bundles and connected to the plurality of linear structure bundles, and a filling layer filled in the first gap and the second gap and retaining the plurality of linear structure bundles and the graphite layer.Type: GrantFiled: July 31, 2012Date of Patent: January 8, 2013Assignee: Fujitsu LimitedInventors: Daiyu Kondo, Taisuke Iwai, Yoshitaka Yamaguchi, Ikuo Soga
-
Patent number: 8317978Abstract: A method of fabricating a non-brittle, carbon nanopaper from single wall, multiwall, and combination thereof, from carbon nanotubes, using a vacuum deposition, high temperature annealing, and polystyrene polymer rinse process; which nanopaper can be nitrided by either a plasma-enhanced chemical vapor deposition (PECVD) process, or an by an electrochemical method, to obtain a useful chemically functionalized substrate, a substrate containing metastable N4, N8, and longer chain polymeric nitrogen clusters. Such nitrided carbon nanopaper can be used to enhance the ballistic performance of gun propellants, while reducing gun barrel wear and erosion thereof.Type: GrantFiled: April 6, 2011Date of Patent: November 27, 2012Inventors: Thelma G. Manning, Zafar Iqbal
-
Publication number: 20120292578Abstract: The invention relates to a method for producing composite materials based on at least one polymer and carbon nanotubes (CNTs), and to composite materials obtained in this manner and the use thereof.Type: ApplicationFiled: February 8, 2010Publication date: November 22, 2012Inventors: Alexander Bacher, Michael Berkei, Eva Potyra, Jan Diemer, Susanne Lüssenheide, Jörg Metzge, Helmut Meyer, Irma Mikonsaari, Thomas Sawitowski, Boris Schunke, Janin Tecklenburg, Nadine Willing, Adrian Zanki
-
Publication number: 20120182666Abstract: The invention is directed, in an embodiment, to an inherently conductive polymer comprising a conductive polymer, carbon nanotubes, and dinonylnaphthalene sulfonic acid. The conductive polymer may comprise polyaniline. The invention is also directed to polymeric films and supercapacitors comprising the inherently conductive polymer.Type: ApplicationFiled: September 30, 2011Publication date: July 19, 2012Applicant: LUMIMOVE, INC. D/B/A CROSSLINKInventors: Patrick J. Kinlen, June-Ho Jung, Young-Gi Kim, Joseph Mbugua, Eve F. Fabrizio
-
Patent number: 8216364Abstract: Direct resistive heating is used to grow nanotubes out of carbon and other materials. A growth-initiated array of nanotubes is provided using a CVD or ion implantation process. These processes use indirect heating to heat the catalysts to initiate growth. Once growth is initiated, an electrical source is connected between the substrate and a plate above the nanotubes to source electrical current through and resistively heat the nanotubes and their catalysts. A material source supplies the heated catalysts with carbon or another material to continue growth of the array of nanotubes. Once direct heating has commenced, the source of indirect heating can be removed or at least reduced. Because direct resistive heating is more efficient than indirect heating the total power consumption is reduced significantly.Type: GrantFiled: April 14, 2008Date of Patent: July 10, 2012Assignee: Raytheon CompanyInventors: Delmar L. Barker, Mead M. Jordan, William R. Owens
-
Patent number: 8196756Abstract: This invention relates to heterogenous pore polymer nanotube membranes useful in filtration, such as reverse osmosis desalination, nanofiltration, ultrafiltration and gas separation.Type: GrantFiled: April 2, 2010Date of Patent: June 12, 2012Assignee: NanOasisInventors: Timothy V. Ratto, Jason K. Holt, Alan W. Szmodis
-
Patent number: 8193430Abstract: Disclosed herein too is a method that includes dispersing nanotubes in media that comprises flavin moieties substituted with solubilizing side chains, and/or non-flavin containing molecular species; self-assembling the flavin moieties and other non-flavin containing molecular species in a pattern that is orderly wrapped around the nanotubes to form a composite; introducing desired amounts of an optional reagent that competes with self-assembly in order to disturb the wrapping around nanotubes with moderate order; and centrifuging the mass of the nanotubes and the composites to extract the composite from other nanotubes that are not in composite form.Type: GrantFiled: January 5, 2009Date of Patent: June 5, 2012Assignee: The University of ConnecticutInventors: Fotios Papadimitrakopoulos, Sang-Yong Ju
-
Publication number: 20120107594Abstract: Disclosed is a single wall carbon nanotube (SWCNT) film electrode (FE), all-organic electroactive device systems fabricated with the SWNT-FE, and methods for making same. The SWCNT can be replaced by other types of nanotubes. The SWCNT film can be obtained by filtering SWCNT solution onto the surface of an anodized alumina membrane. A freestanding flexible SWCNT film can be collected by breaking up this brittle membrane. The conductivity of this SWCNT film can advantageously be higher than 280 S/cm. An electroactive polymer (EAP) actuator layered with the SWNT-FE shows a higher electric field-induced strain than an EAP layered with metal electrodes because the flexible SWNT-FE relieves the restraint of the displacement of the polymeric active layer as compared to the metal electrode. In addition, if thin enough, the SWNT-FE is transparent in the visible light range, thus making it suitable for use in actuators used in optical devices.Type: ApplicationFiled: October 28, 2011Publication date: May 3, 2012Applicant: U.S.A. as represented by the Administrator of the National Aeronautics and Space AdministrationInventors: Jin Ho Kang, Cheol Park, Joycelyn S. Harrison
-
Patent number: 8119719Abstract: Disclosed are an intermediate transfer belt for use in a laser printer, a fax machine and a copier, and a production method thereof. Specifically, an intermediate transfer belt including silicone modified polyimide resin and a production method thereof are provided, thereby realizing a monolayer intermediate transfer belt having excellent electrical properties, water repellency and heat dissipation properties and good mechanical strength. Further, even without the additional use of an adhesive layer for adhesion to a fluorine resin layer and fluorine resin, the intermediate transfer belt can exhibit satisfactory properties, and process efficiency can be maximized.Type: GrantFiled: January 3, 2007Date of Patent: February 21, 2012Assignee: Kolon Industries, Inc.Inventors: Hyo Jun Park, Chae Hyun Lim, Chung Seock Kang, Sang Min Song
-
Patent number: 8097141Abstract: According to some embodiments, a method for separating a first fraction of a single wall carbon nanotubes and a second fraction of single wall carbon nanotubes includes, but is not limited to: flowing a solution comprising the nanotubes into a dielectrophoresis chamber; applying a DC voltage, in combination with an AC voltage, to the dielectrophoresis chamber; and collecting a first eluent from the dielectrophoresis chamber, wherein the first eluent comprises the first fraction and is depleted of the second fraction, wherein the first and second fractions differ by at least one of conductivity, diameter, length, and combinations thereof.Type: GrantFiled: March 2, 2007Date of Patent: January 17, 2012Assignee: William Marsh Rice UniversityInventors: Howard K. Schmidt, Haiqing Peng, Manuel Joao Mendes, Matteo Pasquali
-
Patent number: 8093174Abstract: A carbon nanohorn (CNH) is oxidized to make an opening in the side of the CNH. A substance to be included, e.g., a metal, is introduced through the opening. The inclusion substance is moved to a tip part of the carbon nanohorn through heat treatment in vacuum or an inert gas. The CNH is further heat treated in an atmosphere containing oxygen in a low concentration to remove the carbon layer in the tip through catalysis of the inclusion substance. This exposes the inclusion substance. If the inclusion substance is a metal which is not moved to a tip part by the heat treatment in vacuum or an inert gas, the carbon part surrounding the fine catalyst particle is specifically burned by a heat treatment in an low oxygen concentration atmosphere, while utilizing the catalysis. Thus, the fine catalyst particle is fixed to the tip part of the CNH.Type: GrantFiled: January 16, 2008Date of Patent: January 10, 2012Assignee: NEC CorporationInventors: Ryota Yuge, Masako Yudasaka, Sumio Iijima
-
Patent number: 8064203Abstract: A free standing film includes: i. a matrix layer having opposing surfaces, and ii. an array of nanorods, where the nanorods are oriented to pass through the matrix layer and protrude an average distance of at least 1 micrometer through one or both surfaces of the matrix layer. A method for preparing the free standing film includes (a) providing an array of nanorods on a substrate, optionally (b) infiltrating the array with a sacrificial layer, (c) infiltrating the array with a matrix layer, thereby producing an infiltrated array, optionally (d) removing the sacrificial layer without removing the matrix layer, when step (b) is present, and (e) removing the infiltrated array from the substrate to form the free standing film. The free standing film is useful as an optical filter, ACF, or TIM, depending on the type and density of nanorods selected.Type: GrantFiled: January 25, 2008Date of Patent: November 22, 2011Assignee: Dow Corning CorporationInventors: Carl Fairbank, Mark Fisher
-
Publication number: 20110262729Abstract: This disclosure provides articles that include functionalized nanoscale fibers and methods for functionalizing nanoscale fibers. The functionalized nanoscale fibers may be made by oxidizing a network of nanoscale fibers, grafting one or more molecules or polymers to the oxidized nanoscale fibers, and cross-linking at least a portion of the molecules or polymers grafted to the oxidized nanoscale fibers. The functionalized nanoscale fibers may be used to make articles.Type: ApplicationFiled: March 10, 2011Publication date: October 27, 2011Applicant: Florida State University Research FoundationInventors: I-Wen Chen, Zhiyong Liang, Ben Wang, Chun Zhang
-
Patent number: 8038887Abstract: Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.Type: GrantFiled: August 23, 2006Date of Patent: October 18, 2011Assignee: Lawrence Livermore National Security, LLCInventors: Olgica Bakajin, Jason Holt, Aleksandr Noy, Hyung Gyu Park
-
Patent number: 8038795Abstract: A precursor chiral nanotube with a specified chirality is grown using an epitaxial process and then cloned. A substrate is provided of crystal material having sheet lattice properties complementary to the lattice properties of the selected material for the nanotube. A cylindrical surface(s) having a diameter of 1 to 100 nanometers are formed as a void in the substrate or as crystal material projecting from the substrate with an orientation with respect to the axes of the crystal substrate corresponding to the selected chirality. A monocrystalline film of the selected material is epitaxially grown on the cylindrical surface that takes on the sheet lattice properties and orientation of the crystal substrate to form a precursor chiral nanotube. A catalytic particle is placed on the precursor chiral nanotube and atoms of the selected material are dissolved into the catalytic particle to clone a chiral nanotube from the precursor chiral nanotube.Type: GrantFiled: July 16, 2008Date of Patent: October 18, 2011Assignee: Raytheon CompanyInventors: Delmar L. Barker, William R. Owens
-
Patent number: 8017934Abstract: Gate electrodes are formed on a semiconducting carbon nanotube, followed by deposition and patterning of a hole-inducing material layer and an electron inducing material layer on the carbon nanotube according to the pattern of a one dimensional circuit layout. Electrical isolation may be provided by cutting a portion of the carbon nanotube, forming a reverse biased junction of a hole-induced region and an electron-induced region of the carbon nanotube, or electrically biasing a region through a dielectric layer between two device regions of the carbon nanotube. The carbon nanotubes may be arranged such that hole-inducing material layer and electron-inducing material layer may be assigned to each carbon nanotube to form periodic structures such as a static random access memory (SRAM) array.Type: GrantFiled: August 4, 2010Date of Patent: September 13, 2011Assignee: International Business Machines CorporationInventors: Joerg Appenzeller, AJ Kleinosowski, Edward J. Nowak, Richard Q. Williams
-
Publication number: 20110198559Abstract: A method is provided for growth of carbon nanotube (CNT) synthesis at a low temperature. The method includes preparing a catalyst by placing the catalyst between two metal layers of high chemical potential on a substrate, depositing such placed catalyst on a surface of a wafer, and reactivating the catalyst in a high vacuum at a room temperature in a catalyst preparation chamber to prevent a deactivation of the catalyst. The method also includes growing carbon nanotubes on the substrate in the high vacuum in a CNT growth chamber after preparing the catalyst.Type: ApplicationFiled: April 25, 2011Publication date: August 18, 2011Applicant: STMICROELECTRONICS ASIA PACIFIC PTE LTDInventors: Shanzhong Wang, Mui Hoon Nai, Zhonglin Miao
-
Publication number: 20110177493Abstract: A molecular sensor is provided that contains at least one carbon nanotube suspended on a suitable support structure. In one aspect, at least one receptor is attached to a surface of the suspended carbon nanotube. Also provided are methods of detecting an analyte in a sample by contacting a sample suspected of containing the analyte with the molecular sensor of this invention under suitable conditions that favor binding of the analyte to the receptor and detecting any analyte bound to the receptor, if present.Type: ApplicationFiled: February 13, 2009Publication date: July 21, 2011Inventor: Jennifer Lu
-
Publication number: 20110174701Abstract: A process for metallizing nanomaterial including subjecting nanomaterial in a metallizing solution to microwave radiation; nanomaterial made by such a process; and density gradient separation of such material. This abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure and is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims, 37 C.F.R. 1.72(b).Type: ApplicationFiled: January 16, 2010Publication date: July 21, 2011Inventors: Clayton Gallaway, Dean Hulsey, Michael Searfass, Joshua Falkner
-
Publication number: 20110171531Abstract: In one aspect, the present invention provides a method of forming a film of nanocomposites of carbon nanotubes (CNTs) and platinum (Pt) nanoparticles. In one embodiment, the method includes the steps of (a) providing a first solution that contains a plurality of CNTs, (b) providing a second solution that contains a plurality of Pt nanoparticles, (c) combining the first solution and the second solution to form a third solution, and (d) filtering the third solution through a nanoporous membrane using vacuum filtration to obtain a film of nanocomposites of CNTs and Pt nanoparticles.Type: ApplicationFiled: September 8, 2010Publication date: July 14, 2011Applicant: NORTHWESTERN UNIVERSITYInventors: Mark C. Hersam, Gordana Ostojic, Yu Teng Liang
-
Publication number: 20110155964Abstract: The present teachings provide methods for providing populations of single-walled carbon nanotubes that are substantially monodisperse in terms of diameter, electronic type, and/or chirality. Also provided are single-walled carbon nanotube populations provided thereby and articles of manufacture including such populations.Type: ApplicationFiled: December 3, 2010Publication date: June 30, 2011Inventors: Michael S. Arnold, Mark C. Hersam, Samuel I. Stupp
-
Publication number: 20110123735Abstract: A structural support includes a cylindrical core, an inner layer within the core and an outer layer. The inner and outer layers include CNT-infused fiber materials in a thermoset matrix. A composite includes a thermoset matrix and a CNT-infused fiber material having CNTs with lengths between about 20 to about 500 microns or about 0.1 to about 15 microns. For the latter range, CNTs are present between about 0.1 to about 5 percent by weight of the composite. A method of making a structural support includes wet winding a first CNT-infused fiber about a cylindrical mandrel in a direction substantially parallel to the mandrel axis, wet winding a baseline layer about the first CNT-infused fiber at an angle substantially non-parallel to the mandrel axis, and wet winding a second CNT-infused fiber about the baseline layer in a direction substantially parallel to the mandrel axis.Type: ApplicationFiled: November 22, 2010Publication date: May 26, 2011Applicant: APPLIED NANOSTRUCTURED SOLUTIONS, LLCInventors: Tushar K. SHAH, Harry C. Malecki, Samuel J. Markkula, Mark R. Alberding
-
Patent number: 7947542Abstract: A method for making a thin film transistor, the method comprising the steps of: (a) providing a carbon nanotube array and an insulating substrate; (b) pulling out a carbon nanotube film from the carbon nanotube array by using a tool; (c) placing at least one carbon nanotube film on a surface of the insulating substrate, to form a carbon nanotube layer thereon; (d) forming a source electrode and a drain electrode; wherein the source electrode and the drain electrode being spaced therebetween, and electrically connected to the carbon nanotube layer; and (e) covering the carbon nanotube layer with an insulating layer, and a gate electrode being located on the insulating layer.Type: GrantFiled: April 2, 2009Date of Patent: May 24, 2011Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.Inventors: Kai Liu, Kai-Li Jiang, Shou-Shan Fan
-
Patent number: 7939047Abstract: The present invention is directed to methods of separating carbon nanotubes (CNTs) by their electronic type (e.g., metallic, semi-metallic, and semiconducting). Perhaps most generally, in some embodiments, the present invention is directed to methods of separating CNTs by bandgap, wherein such separation is effected by interacting the CNTs with a surface such that the surface interacts differentially with the CNTs on the basis of their bandgap, or lack thereof. In some embodiments, such methods can allow for such separations to be carried out in bulk quantities.Type: GrantFiled: July 27, 2005Date of Patent: May 10, 2011Assignee: William Marsh Rice UniversityInventors: James M. Tour, Christopher A. Dyke, Austen K. Flatt
-
Patent number: 7931884Abstract: Methods and processes for preparing interconnected carbon single-walled nanotubes (SWNTs) are disclosed. The SWNTs soot, synthesized by any one of the art methods, is heated to less than about 1250° C. in flowing dry air using the electrical field (E) component of microwave energy. The tubes of the SWNTs thus treated become welded and interconnected.Type: GrantFiled: October 30, 2009Date of Patent: April 26, 2011Assignee: Honda Motor Co., Ltd.Inventor: Avetik Harutyunyan
-
Patent number: 7884300Abstract: A method of realizing selective separation of metallic single-walled carbon nanotubes and semiconducting carbon nanotubes from bundled carbon nanotubes; and obtaining of metallic single-walled carbon nanotubes separated at high purity through the above method. Metallic single-walled carbon nanotubes are dispersed one by one from bundled carbon nanotubes not only by the use of a difference in interaction with amine between metallic single-walled carbon nanotubes and semiconducting carbon nanotubes due to a difference in electrical properties between metallic single-walled carbon nanotubes and semiconducting carbon nanotubes but also by the use of the fact that an amine is an important factor in SWNTs separation. The thus dispersed carbon nanotubes are subjected to centrifugation, thereby attaining separation from non-dispersed semiconducting carbon nanotubes.Type: GrantFiled: July 29, 2005Date of Patent: February 8, 2011Assignee: University of TsukubaInventors: Takeshi Akasaka, Takatsugu Wakahara, Yutaka Maeda
-
Publication number: 20100297449Abstract: The present invention is a transparent conductive film characterized in that: a major component of the transparent conductive film is a single-walled carbon nanotube; the single-walled carbon nanotubes are present in a bundle state; and a rope-like shape, which is a state where the bundles are gathered together, can be confirmed by scanning electron microscope observation. The present invention is also a method for producing a liquid crystal alignment film using a transparent electrode substrate, with an electrode layer being the aforementioned transparent conductive film. According to the invention, a transparent electrode substrate with high wettability can be obtained, and further a method for producing an alignment film by which a uniform alignment film can be obtained without deteriorating an electrical characteristic is provided.Type: ApplicationFiled: October 24, 2007Publication date: November 25, 2010Applicant: KURARAY CO., LTD.Inventors: Takahiro Kitano, Masayasu Ogushi
-
Publication number: 20100272981Abstract: An optically transparent and electrically conductive single walled carbon nanotube (SWNT) film comprises a plurality of interpenetrated single walled carbon nanotubes, wherein for a 100 nm film the film has sufficient interpenetration to provide a 25° C. sheet resistance of less than 200 ohm/sq. The film also provides at least 20% optical transmission throughout a wavelength range from 0.4 ?m to 5 ?m.Type: ApplicationFiled: July 7, 2010Publication date: October 28, 2010Inventors: ANDREW G. RINZLER, ZHIHONG CHEN
-
Publication number: 20100239491Abstract: The present teachings are directed to methods of preparing cylindrical carbon structures, specifically single-walled carbon nanotubes, with a desired chirality. The methods include the steps of providing a catalyst component on a substrate and a carbon component, contacting the catalyst component and the carbon component to produce a cylindrical carbon structure. Then, no longer providing the carbon component and determining the chirality of the cylindrical carbon structure. The catalyst component is then cleaned and the process is repeated until the cylindrical carbon structure fulfills a desired characteristic, such as, length. The chirality of the single-walled carbon nanotube grown, after cleaning of the catalyst component, has the same chirality as the initially produced nanotube.Type: ApplicationFiled: June 28, 2006Publication date: September 23, 2010Applicant: Honda Motor Co., Ltd.Inventor: Avetik Harutyunyan
-
Patent number: 7785472Abstract: A method of separating, concentrating or purifying uniform carbon nanotubes with desired properties (diameter, chiral vector, etc) in a highly sensitive manner by the use of structure-sensitive properties peculiar to carbon nanotubes; and an apparatus therefor. There is provided a method of separating, concentrating, or purifying carbon nanotubes with the desired properties contained in a sample, comprising the steps of (a) irradiating a sample containing carbon nanotubes with light; and (b) selecting carbon nanotubes with desired properties. In a preferred embodiment, the light irradiation of the step (a) can be carried out in the presence of a metal so as to cause specified carbon nanotubes to selectively induce a photocatalytic reaction, resulting in metal deposition. Further, in a preferred embodiment, a given magnetic filed can be applied in the steps (b) so as to attain accumulation or concentration or carbon nanotubes with metal deposited.Type: GrantFiled: February 10, 2005Date of Patent: August 31, 2010Assignee: Japan Science and Technology AgencyInventor: Kei Murakoshi
-
Patent number: 7786466Abstract: Gate electrodes are formed on a semiconducting carbon nanotube, followed by deposition and patterning of a hole-inducing material layer and an electron inducing material layer on the carbon nanotube according to the pattern of a one dimensional circuit layout. Electrical isolation may be provided by cutting a portion of the carbon nanotube, forming a reverse biased junction of a hole-induced region and an electron-induced region of the carbon nanotube, or electrically biasing a region through a dielectric layer between two device regions of the carbon nanotube. The carbon nanotubes may be arranged such that hole-inducing material layer and electron-inducing material layer may be assigned to each carbon nanotube to form periodic structures such as a static random access memory (SRAM) array.Type: GrantFiled: January 11, 2008Date of Patent: August 31, 2010Assignee: International Business Machines CorporationInventors: Joerg Appenzeller, AJ Kleinosowski, Edward J. Nowak, Richard Q. Williams
-
Patent number: 7767615Abstract: A method for producing aligned carbon nanotubes and/or nanofibres comprises providing finely divided substrate particle having substantially smooth faces with radii of curvature of more than 1 ?m and of length and breadth between 1 ?m and 5 mm and having catalyst material on their surface and a carbon-containing gas at a temperature and pressure at which the carbon-containing gas will react to form carbon when in the presence of the supported catalyst, and forming aligned nanotubes and/or nanofibres by the carbon-forming reaction.Type: GrantFiled: November 13, 2003Date of Patent: August 3, 2010Assignee: Cambridge University Technical Services LimitedInventors: Ian Kinloch, Charanjeet Singh, Milo Sebastian Peter Shaffer, Krzysztof K. K. Koziol, Alan Windle
-
Publication number: 20100166624Abstract: A method of separating at least one carbon nanotube having a desired diameter and/or chirality from a mixture of carbon nanotubes having different diameters and/or chiralities is provided. A calixarene of formula (I): wherein n?4; X is PO3H2, Ra—PO3H, SO3H, or Ra—SO3H; Y is Rb, OH, or ORb; and Ra and Rb are independently selected from the group consisting of optionally substituted alkyl, optionally substituted aryl, optionally substituted arylene alkyl and optionally substituted alkylene aryl is combined with the mixture of carbon nanotubes in an aqueous solvent to produce an aqueous supernatant containing the carbon nanotube(s) having the desired diameter and/or chirality. The aqueous supernatant containing the carbon nanotube(s) is then separated from a residue comprising the remaining carbon nanotubes of the mixture.Type: ApplicationFiled: October 30, 2009Publication date: July 1, 2010Applicant: THE UNIVERSITY OF WESTERN AUSTRALIAInventors: Colin Llewellyn RASTON, Lee John Hubble
-
Publication number: 20100166637Abstract: The subject invention provides a two-phase liquid-liquid extraction process that enables sorting and separation of single-walled carbon nanotubes based on (n, m) type and/or diameter. The two-phase liquid extraction method of the invention is based upon the selective reaction of certain types of nanotubes with electron withdrawing functional groups as well as the interaction between a phase transfer agent and ionic moieties on the functionalized nanotubes when combined in a two-phase liquid solution. Preferably, the subject invention enables efficient, bulk separation of metallic/semi-metallic nanotubes from semi-conducting nanotubes. More preferably, the subject invention enables efficient, bulk separation of specific (n, m) types of nanotubes.Type: ApplicationFiled: September 15, 2006Publication date: July 1, 2010Inventor: Kirk Jeremy Ziegler
-
Patent number: 7727505Abstract: A method for separating carbon nanotubes comprises: providing a mixture of carbon nanotubes; introducing an organic molecule having an end group capable of being chelated by a metal ion to the mixture of carbon nanotubes to covalently bond the organic molecule to at least one of the mixture of carbon nanotubes; and introducing a metal salt to the mixture of carbon nanotubes to chelate the end group of the organic molecule with the metal ion of the metal salt; and centrifuging the mixture of carbon nanotubes to cause the separation of the carbon nanotubes based on a density differential of the carbon nanotubes.Type: GrantFiled: May 21, 2008Date of Patent: June 1, 2010Assignee: International Business Machines CorporationInventors: Ali Afazali-Ardakani, James B. Hannon, Cherie R. Kagan, George S. Tulevski
-
Publication number: 20100086787Abstract: Exemplary embodiments provide coating compositions having pseudo-fluorine surface and methods for processing and using the coating compositions. The coating composition can include, for example, a plurality of fluorine-containing resin fillers and a plurality of nanotubes (e.g., carbon nanotubes (CNTs)) dispersed in a polymer matrix that contains, e.g., one or more cross-linked polymers. The fluorine-containing resin fillers can provide a pseudo-fluorine surface for a low surface energy of the coating composition. The nanotubes can be dispersed in the polymer matrix to provide an improved mechanical robustness of the coating composition. The coating composition can be coated on a member surface, wherein the coated member can be, for example, a fuser member, a fixing member, a pressure roller, or a release agent donor member, used in an electrostatographic printing device or process.Type: ApplicationFiled: October 6, 2008Publication date: April 8, 2010Applicant: XEROX CORPORATIONInventors: Yu QI, Nan-Xing Hu, Qi Zhang, Gordon Sisler, Brian McAneney
-
METHODS FOR PRODUCING CARBON NANOTUBES WITH CONTROLLED CHIRALITY AND DIAMETER AND PRODUCTS THEREFROM
Publication number: 20100081568Abstract: Exemplary methods of producing single-walled carbon nanotubes (SWCNTs) are disclosed. A plurality of seed cap molecules having a same diameter and a same chirality are prepared. The plurality of seed cap molecules are attached to a plurality of catalyst particles to form a plurality of catalyst-cap composites. Carbon atoms are provided to the catalyst-cap composites. Carbon nanotubes having the same diameter and the same chirality are grown on the plurality of catalyst-cap composited by exposing the composites to the carbon atoms.Type: ApplicationFiled: April 13, 2009Publication date: April 1, 2010Applicant: LOCKHEED MARTIN CORPORATIONInventor: Peter V. Bedworth -
Publication number: 20100078600Abstract: The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (Tg) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.Type: ApplicationFiled: August 31, 2009Publication date: April 1, 2010Applicant: USA as represented by the Administrator of the National Aeronautics and Space AdministrationInventors: John W. Connell, Joseph G. Smith, Joycelyn S. Harrison, Cheol Park, Kent A. Watson, Zoubeida Ounaies
-
Publication number: 20100072432Abstract: Carbon nanotube reinforced polymers include a polymer and carbon nanotubes reinforcing the polymer. The carbon nanotube reinforced polymer exhibits a conductivity percolation threshold of less than 106 ?/cm at a carbon nanotube content of 1.5 wt. % and less. The polymer may be selected from a polyamide or a polystyrene based polymer. In certain embodiments, the carbon nanotube content is between 0.1 to 1.5 wt. %, and the reinforced polymer will have a percolation threshold at a carbon nanotube content of less than 0.5 wt. %.Type: ApplicationFiled: May 6, 2009Publication date: March 25, 2010Applicants: STICHTING DUTCH POLYMER INSTITUTE, BEN-GURION UNIVERSITY OF THE NEGEV RESEARCH AND DEVELOPMENT AUTHORITYInventors: Cornelis E. KONING, Oren REGEV, Joachim LOOS
-
Patent number: 7641883Abstract: The separation of carbon nanotubes into metallic carbon nanotubes and semiconducting carbon nanotubes is made to be possible simultaneously with the dispersion of the carbon nanotubes by using viologen.Type: GrantFiled: April 4, 2008Date of Patent: January 5, 2010Assignee: Samsung Electronics Co., Ltd.Inventors: Hyeon Jin Shin, Seonmi Yoon, Jaeyoung Choi, Seong Jae Choi, YoungHee Lee, JungJun Bae
-
Patent number: 7611687Abstract: Methods and processes for preparing interconnected carbon single-walled nanotubes (SWNTs) are disclosed. The SWNTs soot, synthesized by any one of the art methods, is heated to less than about 1250° C. in flowing dry air using the electrical field (E) component of microwave energy. The tubes of the SWNTs thus treated become welded and interconnected.Type: GrantFiled: November 17, 2004Date of Patent: November 3, 2009Assignee: Honda Motor Co., Ltd.Inventor: Avetik R. Harutyunyan
-
Publication number: 20090227162Abstract: Surface films, paints, or primers can be used in preparing aircraft structural composites that may be exposed to lightning strikes. Methods for making and using these films, paints or primers are also disclosed. The surface film can include a thermoset resin or polymer, e.g., an epoxy resin and/or a thermoplastic polymer, which can be cured, bonded, or painted on the composite structure. Low-density electrically conductive materials are disclosed, such as carbon nanofiber, copper powder, metal coated microspheres, metal-coated carbon nanotubes, single wall carbon nanotubes, graphite nanoplatelets and the like, that can be uniformly dispersed throughout or on the film. Low density conductive materials can include metal screens, optionally in combination with carbon nanofibers.Type: ApplicationFiled: March 9, 2007Publication date: September 10, 2009Applicants: Goodrich Corporation, Rohr, Inc.Inventors: Teresa M. Kruckenberg, Valerie A. Hill, Anthony Michael Mazany, Eloise Young, Song Chiou
-
Publication number: 20090218549Abstract: A nanocarbon film that is produced in such a manner that, after a nanocarbon dispersion containing nanocarbon and a dispersant is used to form a film containing the nanocarbon and the dispersant, an external stimulus is applied to the film to at least partially decompose the dispersant contained in the film. Light irradiation is preferably applied as the external stimulus.Type: ApplicationFiled: February 24, 2009Publication date: September 3, 2009Applicant: FUJIFILM CORPORATIONInventors: Takashi Kato, Naoyuki Hayashi